

Structure & Reactivity of IrOx Nanoparticles for the Oxygen Evolution Reaction in Electrocatalysis: An Electronic Structure Study

Dr. Kalishankar Bhattacharyya

Molecular Theory and Spectroscopy Max-Planck-Institut für Kohlenforschung

21.07.2021

Electrochemical Redox Reaction

carbon dioxide electro reduction _____

Electrochemical interface

Combine density functional theory with Thermodynamic concepts

Chemical potentials allows us to compute the relevant structural entities separately

(divide and conquer)

Major challenge

Electrochemical interface at fixed electron μ_e and solvent/electrolyte μ_s chemical potentials.

- Computational model for description the electrochemical setup
- Simple method to calculate the solution-phase free energies of electrocatalysts
- Computational potential-pH diagrams as a descriptor for structure identification
- > Applications to OER electrocatalyst.

Computational model for description the electrochemical setup

- Amorphous cluster structure
- PBE-D3 and B3LYP functionals for geometry optimization
- Implicit CPCM model

- > Exchange of electrons and protons with bath (electrode/solvent).
- > Charged state of the cluster tuned by potential and pH.

Computational model for description the electrochemical setup

Calculations of stable charged state at specific potential: Constant Potential

Redox reaction:

$$M^q + e^- \rightleftharpoons M^{q-1}$$

• optimizations of each charged state

• Energy difference between charged state yields the energy of the transferred electrons.

Potential $E^{0} = \mu^{0}(M^{q-1}) - \mu^{0}(M^{q}) - 4.28 \text{ (eV)}$

Computational model for description the electrochemical setup

> Acid-Base reaction:

$$MH_{n-1}^{q-1} + H^+ \rightleftharpoons MH_n^q$$

Reaction free energy calculation

$$\Delta G = \mu^0 (MH_{n-1}^{q-1}) + \mu^0 (H_s^+) - \mu^0 (MH_n^q) + RT \ln \frac{\left[MH_{n-1}^{q-1}\right][H_s^+]}{\left[MH_n^q\right]}$$

\succ Calculation of pK_a

$$pK_a = \frac{\mu_s^0(A^-) + \mu_{eff}^0(H^+) - \mu_s^0(AH)}{k_b T \ln(10)}$$

Set of reference system is taken with known experimental pKa to compute the effective chemical potential $\mu_{eff}^0(H^+)$

$M\!H_{n+1}^{q+1}$	$M\!H_n^q$	$M\!H^{q-1}_{n-1}$	$M\!H_{n-2}^{q-2}$
Antique (Margel) Antique	Vra(nuri) (1+4 mur) prod	() and a multiple of the second of the secon	

2D phase diagram with U and pH

Potential-pH diagram

$$\Delta G_{AH_5^0}(AH_n^q) = (\mu_{AH_n^q} - \mu_{AH_5^0}) + (5-n)\mu_{H^+} - (5-n)RT\ln(10)pH - (5-n-q)(4.28+U)$$

 Computational potential-pH diagrams as a descriptor for structure identification

IrO_x Electrocatalyst at Acidic Condition

11

Cluster Approach

 $Ir_{3}(O\mu_{2})_{4}(OH\mu_{1})_{4}(H_{2}O)_{6}$

 $Ir_{13}(O\mu_1)_{29}(O\mu_2)_{14}(O\mu_3)_6(OH\mu_1)_3$

> Cluster model is chosen for describing local phenomena i.e. interaction on catalytically active sites.

Cluster approach is also efficient for modelling defect sites which is crucial for \succ understanding the experimental findings.

Potential-pH Diagram of Small Cluster

Potential-pH Diagram of Larger Cluster

Oxidation States of Ir Center

➢ Mixed oxidation state arises in the OER potential region.

High valent oxidation states hints the possible dissolution process at high potential. Mayrhofer et al. Angew. Chem. 2018, 57, 2488-2491

Reaction Mechanism of O-O Bond Formation

Mechanistic Pathway for O-O Bond Formation

Nucleophilic Addition of Water

Potential vs. Energy Profile

 $Ir_{13}(O\mu_1)_{29}(O\mu_2)_{14}(O\mu_3)_6(OH\mu_1)_3^{3-} Ir_{13}(O\mu_1)_{29}(O\mu_2)_{14}(O\mu_3)_6(O\mu_1)_3^{3-}$

 $Ir_{13}(O\mu_1)_{29}(O\mu_2)_{14}(O\mu_3)_6(OH\mu_1)_3^{5-}$

Take Home Message

- New methodology to describe the structural analysis under electrochemical conditions.
- In acidic region with low potential region, cluster structure are mostly protonated; covered by aqua and hydroxyl group.
- Deprotonated structures with possible exotic species arises at high potential region.
- Electronic structure analysis reveal the mixed oxidation state exist in the OER potential region.
- O-O bond formation step are significantly reduces from low potential to high potential regime.

Acknowledgement

Thank you for your attention!

Dr. Alexander A. Auer

For financial support, we gratefully acknowledge the Alexander Von Humboldt Foundation, Max-Planck Society.

Max-Planck-Institut für Kohlenforschung

19

Email: ksb@kofo.mpg.de