

DE LA RECHERCHE À L'INDUSTRIE

Nuclear Energy Basics

Joint EPS-SIF International School on Energy

Varenna, 22 July 2021

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Basics on nuclear fission and fusion

- Fission: more details in M. Ripani's lecture
- Fusion: more details in J. Ongena's and F. Romanelli's lectures
- Nuclear energy in the world: status and perspectives
- Nuclear waste management and environmental impact

Conclusions

Outline

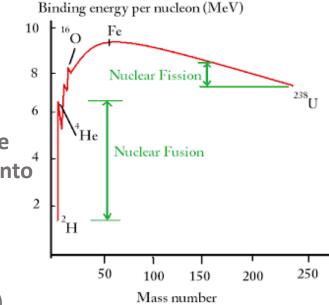
► Nuclear energy comes from the binding energy of the atomic nucleus

Nuclei are composed of nucleons (neutrons and protons) held together by the strong nuclear force

 $M(A,Z) = Z m_p + (A-Z) m_n - B(A,Z)$

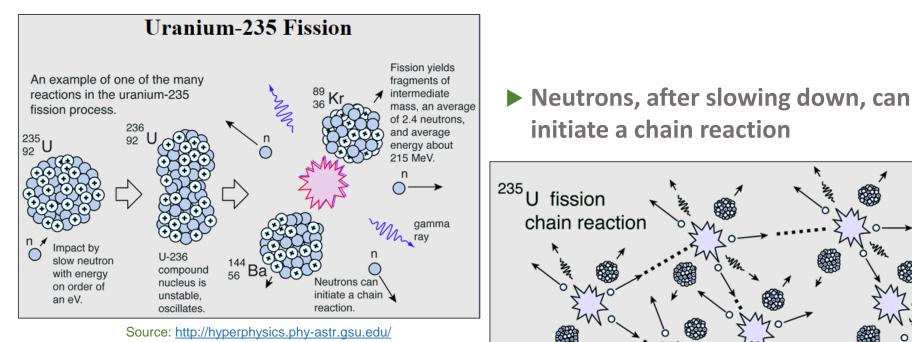
B=Binding energy, B/A maximum around Fe

is released thanks to nuclear reactions in which the constituents of the initial nuclei are redistributed into different final nuclei


Target nucleus + projectile \rightarrow Final nucleus + ejectile + Q

Q = Energy released

Q = B(Target) + B(projectile) - B(Final nucleus) - B(ejectile)


Either

- by splitting heavy nuclei into smaller ones: Fission
- By merging two light nuclei into a larger one: Fusion

Fission reactions can be induced by slow neutrons on some (fissile) nuclei such as ²³⁵U producing 2 fission fragments and 2.4 neutrons in average

Fission

Example 2 Fission: nuclear fuels

- Uranium: Natural uranium is composed of 0.7% ²³⁵U, 99,3% ²³⁸U
 ²³⁵U: fissile
 - ²³⁵U is fissile by neutron capture regardless of the energy of the neutron, but the probability increases with decreasing neutron energy
 - ²³⁸U can fission only with high energy neutrons and with a small probability
 - → In most of presently operating reactors:
 - ²³⁵U enrichment (around 3% in French light-water reactors)
 - Slowing down of neutrons down to thermal energy
- ▶ Plutonium: ²³⁹Pu is fissile

See lecture by Marco Ripani

- ²³⁹Pu is produced by neutron capture on ²³⁸U in thermal reactors ²³⁸U (n, γ) \rightarrow ²³⁹U (23min) \rightarrow ²³⁹Np (2.3d) \rightarrow ²³⁹Pu (2.4x10⁴y)
- In light-water reactors up to one third of the fissions come from ²³⁹Pu
- ► Thorium: ²³²Th is not itself fissile but is 'fertile'
 - neutron absorption leads to 233 U, which is fissile 232 Th (n,y) $\rightarrow {}^{233}$ Th (22min) $\rightarrow {}^{233}$ Pa (23d) $\rightarrow {}^{233}$ U (1.6x10⁵y)
 - Thorium reactors require either that ²³²Th is first irradiated in another reactor to provide ²³³Pa or plutonium to initiate the process

5

CEA Fusion

Fusion reactions can be initiated in a plasma of hydrogen isotopes

0.82

MeV

MeV

deuterium

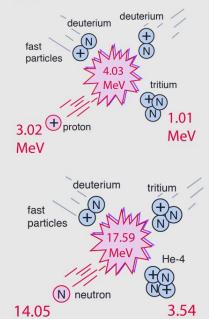
He-3

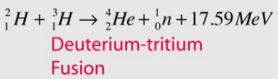
deuterium

neutron

fast particles

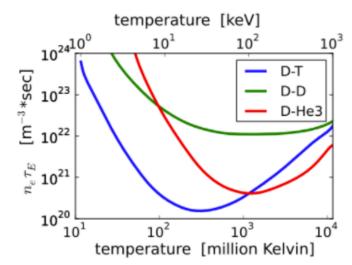
2.45 N


MeV


MeV

$${}^{2}_{1}H + {}^{2}_{1}H \rightarrow {}^{3}_{2}He + {}^{1}_{0}n + 3.27MeV$$

Deuterium-deuterium Fusion

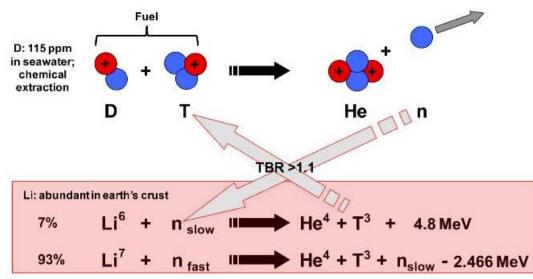

```
{}^{2}_{1}H + {}^{2}_{1}H \rightarrow {}^{3}_{1}H + {}^{1}_{1}H + 4.03MeV
```


Lawson's criterion for sustained fusion plasma

- Sufficiently high temperature to enable the particles to overcome the Coulomb barrier,
- Temperature maintained for a sufficient confinement time, τ
- Sufficient ion density, n, to obtain a net yield of energy.

6

Ceal Nuclear energy from fusion



Inertial confinement (by lasers)

- Low volume (compression of a millimetric target)
- High density (10⁶ x air density)
- Low characteristic time (10⁻¹¹ s)
- High temperature (100 million K)

Magnetic confinement

- High volume (tokamak)
- Low density (10⁻⁵ x air density)
- Large characteristic time (10 s)
- High temperature (100 million K)

Tritium breeding needed

See lectures by Jef Ongena and Francesco Romanelli

- Isla

► Fuel energy content

○ Coal (C): $C + O_2 \rightarrow CO_2 + 4 \text{ eV}$ **1g coal** = 4x1.6x10⁻¹⁹x6.02x10²³/12 = **3.2x10⁴ J**

1 eV = 1.6x10⁻¹⁹ J 1 mole = 6.02x10²³ atoms

- Natural Gas (CH₄): CH₄ + O₂ \rightarrow CO₂ + 2H₂O + 8 eV 1g gaz = 8x1.6x10⁻¹⁹x6.02x10²³/16 = 4.8x10⁴ J
- Nuclear fission (U): ${}^{235}U + n \rightarrow {}^{93}Rb + {}^{141}Cs + 2n + 200 \text{ MeV}$ 1g ${}^{235}U = 2x10^8x1.6x10^{-19}x6.02x10^{23}/235 = 8.2x10^{10} \text{ J}$
- O Nuclear fusion: ²H + ³H → ⁴He + n + **17.5 MeV (80% carried by n) 1g D-T** = $1.75 \times 10^{7} \times 1.6 \times 10^{-19} \times 6.02 \times 10^{23}/5 = 3.4 \times 10^{11} J$

Ceal Nuclear compared to fossil fuels

► Fuel Consumption, 1000 MWe Power Plant (=10⁶ homes) per day

- Coal (40% efficiency)
 10⁹x8.64x10⁴ / 0.4x3.2x10⁴ ≈ 6750 ton/day
- Natural Gas (50% efficiency) : density 0.657 kg·m⁻³ (gas, 25 °C, 1 atm) $10^9 x 8.64 x 10^4 / 0.5 x 4.8 x 10^4 \approx 3600 t/day (/657 = 5.50 x 10^6 m^3/day)$
- Natural uranium (²³⁵U = 0.7%, 33% efficiency): 10⁹x8,64x10⁴ / 0.33x0.7x10⁻²x8.2x10¹⁰ ≈ 460 kg/day
- D-T in nuclear fusion (assuming 10% efficiency): $10^9 \times 8,64 \times 10^4 / 0.1 \times 3.4 \times 10^{11} \approx 250 \text{ kg/day}$

Nuclear energy in the world: status and perspectives

Cea Nuclear energy

US oil production (barrels daily)

US oil production rose by **1.6 million barrels a day in 2014**, by far the largest growth in the world.

The growth expected twenty years ago has not happened:

- ► 2008 economic crisis
- 2011 Fukushima accident

Source: http://www.scottishenergynews.com/ 2015

1990

2000

2005

2010

Shale oil "revolution"

Nuclear energy consumption by region 30 Rest of world Europe Asia Pacific North America CIS 25 20 15 10M 9M 10 RN Source: BP statistical review of world energy 2020

05

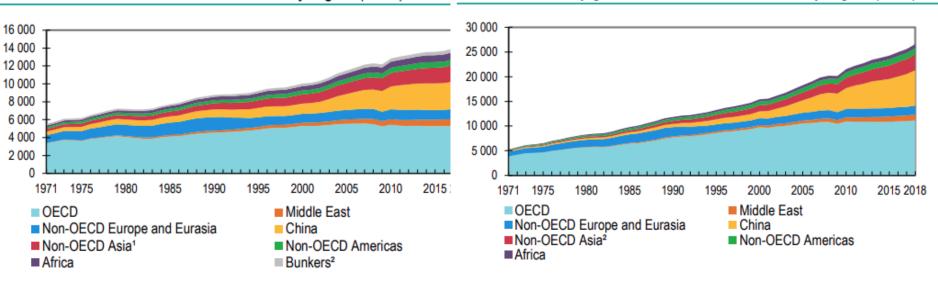
But nuclear energy production had begun increasing again, ...before COVID-19

00

15

20

Cea Energy demand

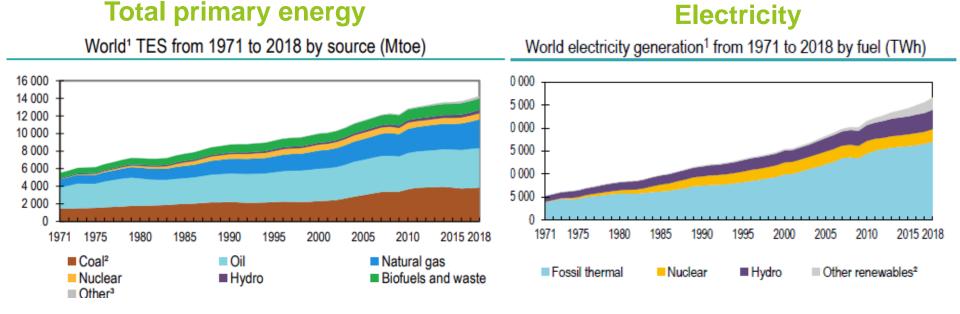

Increase in energy demand due to growth of world population and improving of the standard of living

Demand in electricity increases even faster boosted by the development of smart electronic devices, air-conditioning, electric cars...

Total primary energy

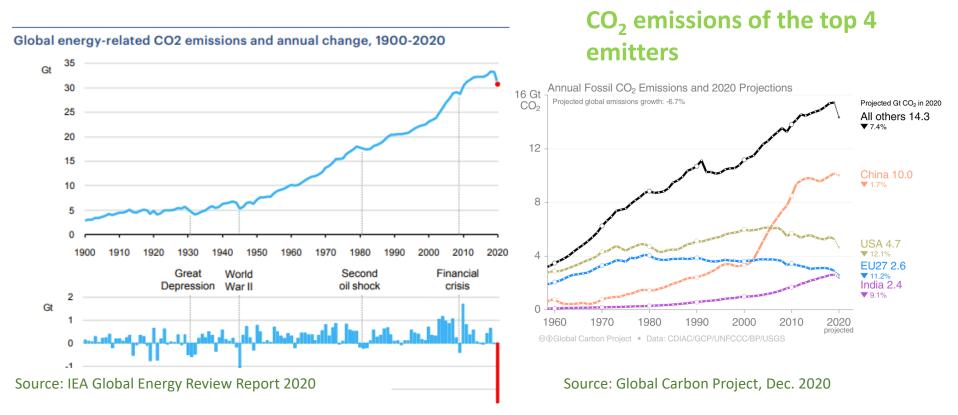
World TES from 1971 to 2018 by region (Mtoe)

Electricity World electricity generation¹ from 1971 to 2018 by region (TWh)


Source: IEA Key world energy statistics 2020

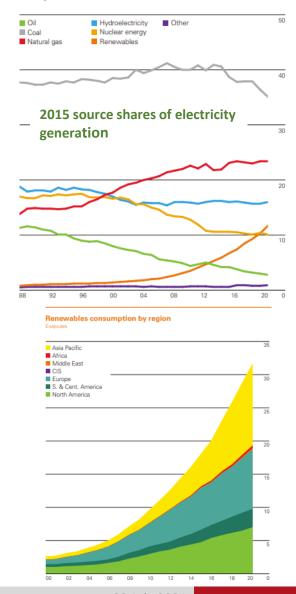
Cea Energy demand

- Total primary energy still produced mostly by fossil fuels
- ► Share of nuclear energy (~10%) no longer increasing in recent years
- Share of renewables increasing significantly



Source: IEA Key world energy statistics 2020

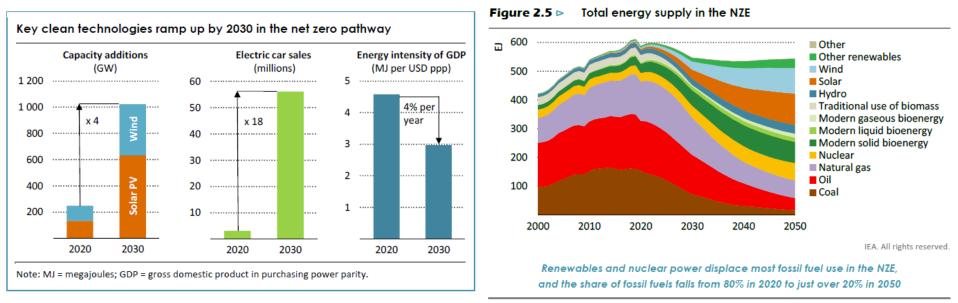
- CO₂ emissions should decrease to mitigate global warming
- new increase since 2017 after 2 years of stagnation
- Impact of COVID19 in 2020


Cea Energy MIX

- Energy saving and increase of energetic efficiency but limited and counterbalanced by increase in developing countries
- Reducing use of fossil fuels, in particular in electricity production and transportation
- Carbon capture and storage, but expensive and profitable only if close to the emission site
- Renewable energies but intermittent and expensive, rare earth element supply
- Nuclear energy but fear of accident and question of waste

no miracle solution but need for a combination of all possibilities to decrease the share of fossil fuels BP statistical review of world energy 2021

Share of global electricity generation by fuel


Percentage

Cea IEA net zero by 2050 proposed scenario

Reducing CO₂ emissions: IEA net-zero by 2050 proposed scenario

- Combination of all solutions
- Share of electricity in total energy supply has to increase
- Nuclear energy has to be at least doubled

IEA Net Zero by 2050 report iea.li/nzeroadmap

Ceal IEA net zero by 2050 proposed scenario

Nuclear power capacity has to be at least doubled

- Advanced economies:
 - lifetime extensions for existing reactors
 - 4.5 GW / year new construction from 2021 to 2035
 - increasing emphasis on small modular reactors
- Emerging and developing economies
 - Two-thirds of new nuclear power capacity
 - mainly in the form of large scale reactors,
 - fleet of reactors quadruples to 2050

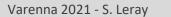
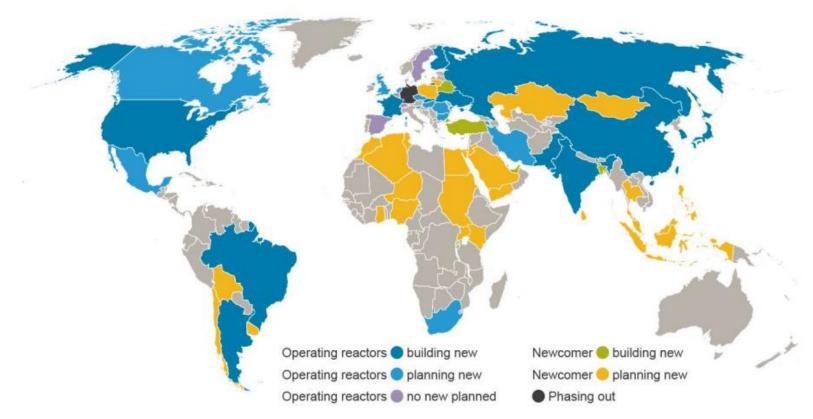

100% Thousand TWh Oil Unabated natural gas Unabated coal 20 80% Fossil fuels with CCUS Hydrogen based 15 60% Nuclear Other renewables Hydropower 10 40% Wind Solar PV 5 20% 2010 2020 2030 2040 2050 2020 2030 2050

Figure 3.10 Global electricity generation by source in the NZE

IEA. All rights reserved.

Solar and wind power race ahead, raising the share of renewables in total generation from 29% in 2020 to nearly 90% in 2050, complemented by nuclear, hydrogen and CCUS

IEA Net Zero by 2050 report iea.li/nzeroadmap


Cea Nuclear energy

WORLD NUCLEAR ASSOCIATION

New build and new countries

Agneta Rising, World Nuclear Association, March 2018

- 56 reactors under construction, of which 16 in China, 6 in Russia, 7 in India
- 152 reactors planned, of which 43 in China, 25 in Russia, 14 in India

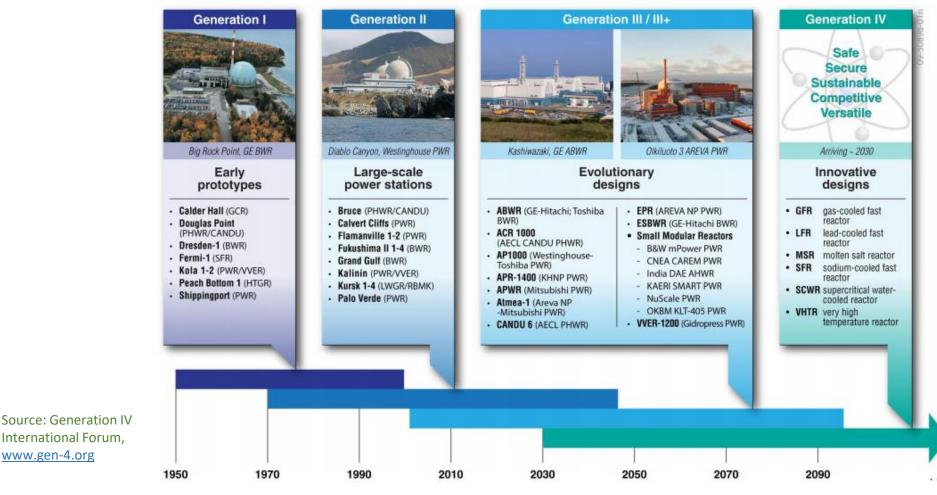
Cea

World Nuclear Power Reactors

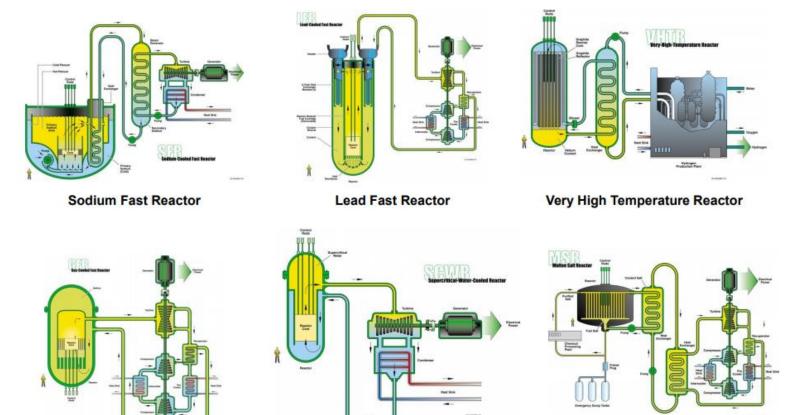
Source: The World Nuclear Association https://www.world-nuclear.org/information-library/factsand-figures/world-nuclear-power-reactors-and-uraniumrequireme.aspx

COUNTRY	NUCLEAR ELECTRICITY GENERATION REACTORS OPERABLE		REACTORS UNDER CONSTRUCTION		REACTORS PLANNED		REACTORS PROPOSED			
		020	June 2021		June 2021		June 2021		June 2021	
	TWh	% e	No.	MWe net	No.	MWe gross	No.	MWe gross	No.	MWe gross
Argentina	10.0	7.5	3	1641	1	29	1	1150	2	1350
Armenia	2.6	34.5	1	415	0	0	0	0	1	1060
Bangladesh	0	0	0	0	2	2400	0	0	2	2400
Belarus	0.3	1.0	1	1110	1	1194	0	0	2	2400
Belgium	32.8	39.1	7	5942	0	0	0	0	0	0
Brazil †	13.2	2.1	2	1884	1	1405	0	0	4	4000
Bulgaria	15.9	40.8	2	2006	0	0	1	1000	2	2000
<u>Canada</u>	92.2	14.6	19	13,624	0	0	0	0	2	1500
China	344.7	4.9	51	49,569	17	18,616	38	41,785	168	196,86
Czech Republic	28.4	37.3	6	3934	0	0	1	1200	3	3600
Egypt	0	0	0	0	0	0	4	4800	0	0
Finland	22.4	33.9	4	2794	1	1720	1	1170	0	0
France	338.7	70.6	56	61,37	1	1650	0	0	0	0
Germany	60.9	11.3	6	8113	0	0	0	0	0	0
Hungary	15.2	48.0	4	1902	0	0	2	2400	0	0
India	40.4	3.3	23	6885	6	4600	14	10,5	28	32
Iran	5.8	1.7	1	915	1	1057	1	1057	5	2760
Japan †	43.0	5.1	33	31,679	2	2756	1	1385	8	11,562
Jordan	0	0	0	0	0	0	0	0	1	1000
Kazakhstan	0	0	0	0	0	0	0	0	2	600
Korea RO (South)	152.6	29.6	24	23,15	4	5600	0	0	2	2800
Lithuania	0	0	0	0	0	0	0	0	2	2700
Mexico	10.9	4.9	2	1552	0	0	0	0	3	3000
Netherlands	3.3	3.9	1	482	0	0	0	0	0	0
Pakistan	9.6	7.1	6	2332	1	1100	1	1170	0	0
Poland	0	0	0	0	0	0	0	0	6	6000
Romania	10.6	19.9	2	1300	0	0	2	1440	1	720
Russia ‡	201.8	20.6	38	28,578	2	2510	25	23,89	21	20,1
Saudi Arabia	0	0	0	0	0	0	0	0	16	17
Slovakia	14.4	53.1	4	1837	2	942	0	0	1	1200
<u>Slovenia</u>	6.0	37.8	1	688	0	0	0	0	1	1000
South Africa	11.6	5.9	2	1860	0	0	0	0	8	9600
<u>Spain</u>	55.8	22.2	7	7121	0	0	0	0	0	0
Sweden	47.4	29.8	6	6882	0	0	0	0	0	0
<u>Switzerland</u>	23.0	32.9	4	2960	0	0	0	0	0	0
Thailand	0	0	0	0	0	0	0	0	2	2000
Turkey	0	0	0	0	3	3600	1	1200	8	9500
Ukraine †	71.5	51.2	15	13,107	2	1900	0	0	2	2,4
UAE	0	0	1	1345	3	4200	0	0	0	0
United Kingdom	45.9	14.5	15	8923	2	3440	2	3340	2	2300
USA	789.9	19.7	93	95,523	2	2500	3	2550	18	8000
<u>Uzbekistan</u>	0	0	0	0	0	0	2	2400	2	2400
WORLD*	2553	c 10.1**	444	395,267	54	61,219	100	102,437	325	353,812
	TWh	% e	No.	MWe	No.	MWe	No.	MWe	No.	MWe
		ELECTRICITY	OPE	RABLE	UNDER CO	NSTRUCTION	PLA	NNED	PRO	POSED
·					1					

Nuclear Power Reactors : China



- Presently, going from Generation II to Generation III
- **Preparing for Generation IV**

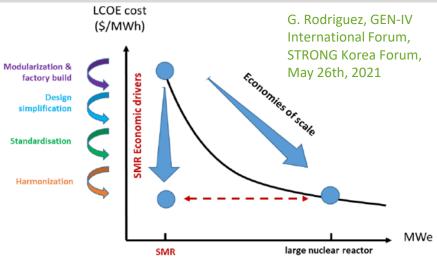

www.gen-4.org

21

Gas Cooled Fast Reactor

 Sustainable energy generation • Long-term availability • Minimization and management of their nuclear waste • Economical competitiveness • High level of safety and reliability • Proliferation-resistance

Supercritical Water Cooled Reactor


Molten Salt Cooled Reactor

22 The emergence of small / micro modular reactors

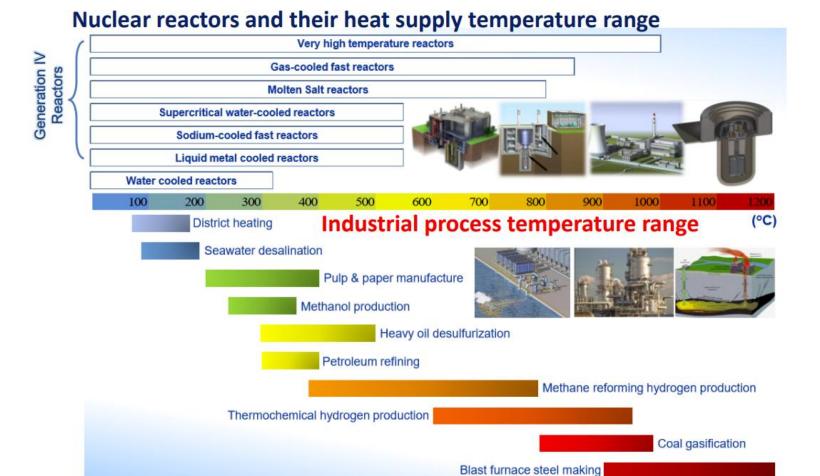
Definitions: SMR / AMR / MMR

- Small Modular Reactor (SMR):
 <500 MWe max, usually between
 50 and 200 MWe, generally based
 on GEN-3 technology (PWR, BWR, sometimes HTR)
- Advanced Modular Reactor (AMR):
 SMR type but of GEN-4 type system (Molten salt, Na, Pb, Gas, SuperCritical Water)
- Micro Modular Reactor (MMR) or Very Small Modular Reactor (vSMR) : Electro- and/or calogen nuclear reactor of a range power from 1 to 20 MWe

- Scale effect => modularization plus offsite fabrication
- Design simplifications allowed by a reduced power => limitation of the Emergency Planning Zones
- Series effect => Reduction of construction time & costs
- Opening towards new specific markets => remote areas, non-electrical applications, mix between electricity/heat...

Cea

The emergence of small / micro modular reactors

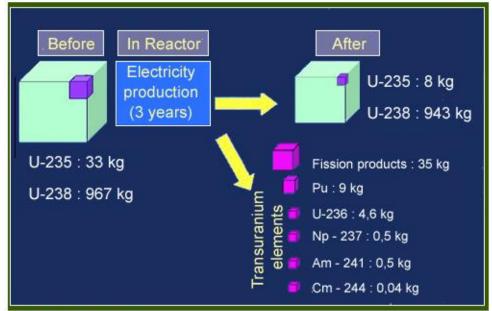

Design	Output	Туре	Designers	Country	Status	
	MW(e)		SMALL MODULAR REAC	TORS (LAND PASE	D)	
CAREM	30	PWR	CNEA	Argentina	Under construction	
ACP100	100	PWR	CNEA	China	Detailed Design	
CANDU SMR	300	PHWR	Candu Energy Inc (SNC-	Canada	Conceptual Design	
			Lavalin Group)			
CAP200	200	PWR	SNERDI/SPIC	China	Conceptual Design	
DHR400	400 MW(t)	LWR (pool type)	CNNC	China	Basic Design	
HAPPY200	200 MW(t)	PWR	SPIC	China	Detailed Design	
TEPLATOR TM	50 MW(t)	HWR	UWB Pilsen & CIIRC CTU	Czech Republic	Conceptual Design	
NUWARD	2 × 170	PWR	EDF, CEA, TA, Naval Group	France	Conceptual Design	
IRIS	335	PWR	IRIS Consortium	Multiple Countries	Basic Design	
DMS	300	BWR	Hitachi-GE Nuclear Energy	Japan	Basic Design	
IMR	350	PWR	MHI	Japan	Conceptual Design	
SMART	107 PWR		KAERI and K.A.CARE	Republic of Korea, and Saudi Arabia	Certified Design	
RITM-200	2 × 53	PWR	JSC "Afrikantov OKBM"	Russian Federation	Under Development	
UNITHERM	6.6	PWR	NIKIET	Russian Federation	Conceptual Design	
VK-300	250	BWR	NIKIET	Russian Federation	Detailed Design	
KARAT-45	45 - 50	BWR	NIKIET	Russian Federation	Conceptual Design	
KARAT-100	100	BWR	NIKIET	Russian Federation	Conceptual Design	
RUTA-70	70 MW(t)	PWR	NIKIET	Russian Federation	Conceptual Design	
ELENA	68 kW(e)	PWR	National Research Centre "Kurchatov Institute"	Russian Federation	Conceptual Design	
UK SMR	443	PWR	Rolls-Royce and Partners	United Kingdom	Conceptual Design	
NuScale	12 × 60	PWR	NuScale Power Inc.	United States of America	Under Regulatory Review	
BWRX-300	270 - 290	BWR	GE-Hitachi Nuclear Energy and Hitachi GE Nuclear Energy	United States of America, Japan	Pre-licensing	
SMR-160	160	PWR	Holtec International	United States of America	Preliminary Design	
W-SMR	225	PWR	Westinghouse Electric Company, LLC	United States of America	Conceptual Design	
mPower	2 × 195	PWR	BWX Technologies, Inc	United States of America	Conceptual Design	
P	ART 2: WA	TER COOLED S	SMALL MODULAR REACT	ORS (MARINE BAS	SED)	
KLT-40S	2 × 35	PWR in Floating NPP	JSC Afrikantov OKBM	Russian Federation	In Operation	
RITM-200M	2 × 50	PWR in FNPP	JSC Afrikantov OKBM	Russian Federation	Under Development	
ACPR50S	50	PWR in FNPP	CGNPC	China	Conceptual Design	
ABV-6E	6-9	PWR in FNPP	JSC Afrikantov OKBM	Russian Federation	Final design	
VBER-300	325	PWR in FNPP	JSC Afrikantov OKBM	Russian Federation	Licensing Stage	
		PART 6:	MICRO MODULAR REACT	ORS		
Energy Well	8	FHTR	Centrum výzkumu Řež	Czech Republic	Pre-Conceptual Design	
MoveluX	3~4	Heat Pipe	Toshiba Corporation	Japan	Conceptual Design	
U-Battery	4	HTGR	Urenco	United Kingdom	Conceptual Design	
Aurora	1.5	FR	OKLO, Inc.	United States of America	Conceptual Design	
Westinghouse eVinci	2 -3.5	Heat Pipe	Westinghouse Electric Company, LLC.	United States of America	Under Development	
	5-10	HTGR	Ultra Safe Nuclear	United States of	Preliminary Design	

Design	ign Output MW(e) Ty		Designers	Country	Status	
SHELF	6.6 PWR in Immersed NPP		NIKIET	Russian Federation	Detailed Design	
PA	RT 3: HIG	H TEMPERATU	RE GAS COOLED SMALL	MODULAR REACT	ORS	
HTR-PM	210	HTGR	INET, Tsinghua University	China	Under Construction	
StarCore	14/20/60	HTGR	StarCore Nuclear	Canada/UK/US	Pre-Conceptual Design	
GTHTR300	100 - 300	HTGR	JAEA	Japan	Pre-licensing	
GT-MHR	288	HTGR	JSC Afrikantov OKBM	Russian Federation	Preliminary Design	
MHR-T	4 × 205.5	HTGR	JSC Afrikantov OKBM	Russian Federation	Conceptual Design	
MHR-100	25 - 87	HTGR	JSC Afrikantov OKBM	Russian Federation	Conceptual Design	
PBMR-400	165	HTGR	PBMR SOC Ltd	South Africa	Preliminary Design	
A-HTR-100	50	HTGR	Eskom Holdings SOC Ltd.	South Africa	Conceptual Design	
HTMR-100	35	HTGR	Steenkampskraal Thorium Limited	South Africa	Conceptual Design	
Xe-100	82.5	HTGR	X-Energy LLC	United States of America	Basic Design	
SC-HTGR	272	HTGR	Framatome, Inc.	United States of America	Conceptual Design	
HTR-10	2.5	HTGR	INET, Tsinghua University	China	Operational	
HTTR-30	30 (t)	HTGR	JAEA	Japan	Operational	
RDE	3	HTGR	BATAN	Indonesia	Conceptual Design	
	PART 4:	FAST NEUTRO	N SPECTRUM SMALL MO	DULAR REACTORS	8	
BREST-OD-300	300	LMFR	NIKIET	Russian Federation	Detailed Design	
ARC-100	100	Liquid Sodium	ARC Nuclear Canada, Inc.	Canada	Conceptual Design	
48	10	LMFR	Toshiba Corporation	Japan	Detailed Design	
microURANUS	20	LBR	UNIST	Korea, Republic of	Pre-Conceptual Design	
LFR-AS-200	200	LMFR	Hydromine Nuclear Energy	Luxembourg	Preliminary Design	
LFR-TL-X	5~20	LMFR	Hydromine Nuclear Energy	Luxembourg	Conceptual Design	
SVBR	100	LMFR	JSC AKME Engineering	Russian Federation	Detailed Design	
SEALER	3	LMFR	LeadCold	Sweden	Conceptual Design	
EM ²	265	GMFR	General Atomics	United States of America	Conceptual Design	
Westinghouse LFR	450	LMFR	Westinghouse Electric Company, LLC.	United States of America	Conceptual Design	
SUPERSTAR	120	LMFR	Argonne National Laboratory	United States of America	Conceptual Design	
	P	ART 5: MOLTE	N SALT SMALL MODULAR	REACTORS		
Integral MSR	195	MSR	Terrestrial Energy Inc.	Canada	Conceptual Design	
smTMSR-400	168	MSR	SINAP, CAS	China	Pre-Conceptual Design	
CA Waste Burner 0.2.5	20 MW(t)	MSR	Copenhagen Atomics	Denmark	Conceptual Design	
ThorCon	250	MSR	ThorCon International	International Consortium	Basic Design	
FUJI	200	MSR	International Thorium Molten-Salt Forum: ITMSF	Japan	Experimental Phase	
Stable Salt Reactor - Wasteburner	300	MSR	Moltex Energy	United Kingdom / Canada	Conceptual Design	
LFTR	250	MSR	Flibe Energy, Inc.	United States of America	Conceptual Design	
KP-FHR	140	Pebble-bed salt cooled Reactor	KAIROS Power, LLC.	United States of America	Conceptual Design	
Mk1 PB-FHR	100	FHR	University of California at Berkeley	United States of America	Pre-Conceptual Design	
MCSFR	50 - 1200	MSR	Elysium Industries	USA and Canada	Conceptual Design	

IAEA: Advances in Small Modular Reactor Technology Developments https://aris.iaea.org/P ublications/SMR_Book _2020.pdf

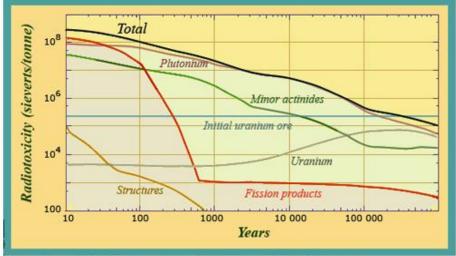
Opportunities for nuclear non-electric applications

(JAEA


From Xin L. Yang, JAEA, https://nucleus.iaea.org/sites/INPRO/df16/Day-1/Keynote_YAN.pdf

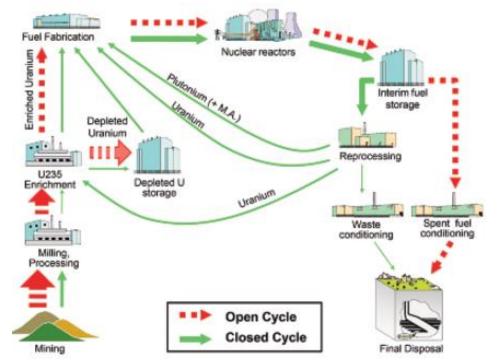
Nuclear waste management and environmental impact

26


Ceal Spent fuel composition and radiotoxicity

Spent fuel composition

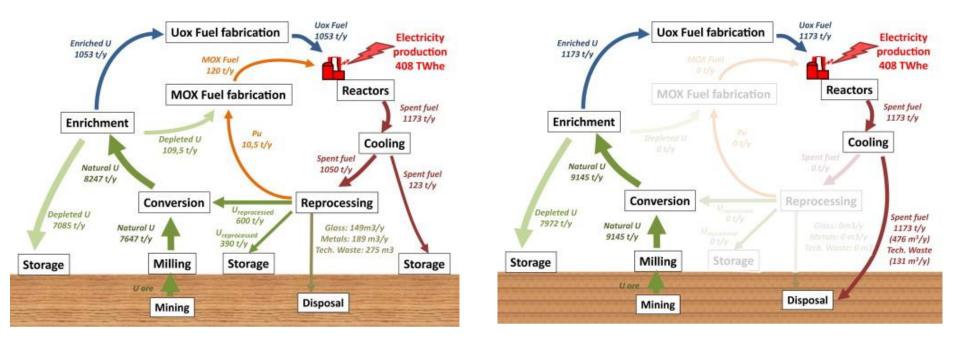
Distribution (in kg per tonne of fuel) and mass produced by the principal radioactive elements present in fuel unloaded from an irradiated pressurised water reactor core. @IPHC/IN2P3 (Source: Isabelle Billard)

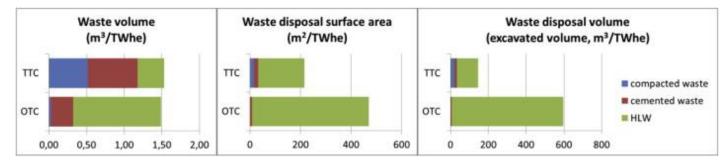


Change in radiotoxicity over the period 10 years to 1 million years The pattern of change in the radiotoxicity of spent fuel highlights the predominance of plutonium. This element overtakes fission products around 50 years after removal from the reactor. @Source: CEA

Cea Nuclear fuel cycle

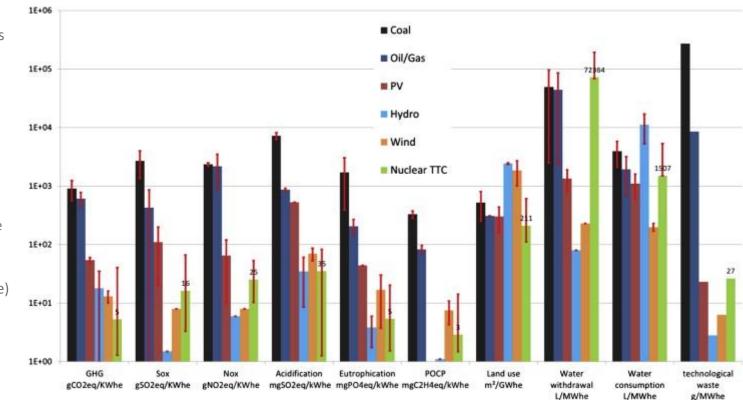
- **Two options:**
 - Open cycle: direct disposal of spent fuel (US, Sweden, Finland...)
 - Partially closed cycle: reprocessing to extract Pu and make MOX fuels (France, Japan, Russia, China...)


Reprocessing reduces the amount, volume and radiotoxicity of the highlevel waste to be stored, but generates additional volumes of intermediate wastes during the reprocessing and fuel fabrication processes


In any case a final deep geologic disposal of remaining long-lived high level wastes will be necessary

Ceal Nuclear energy: environmental impact

Comparison between Twice-Through (TTC) and Once-Through Cycle (OTC)



Ch. Poinssot et al. Energy 69 (2014): French case

Ceal Nuclear energy: environmental impact

- ▶ Indicators selected to describe the non-radioactive impacts.
- Comparison of the selected indicators between the French Twice-Through Cycle and other energy sources. The error bars represent the gap between the minimum and maximum values found in the literature.

Ch. Poinssot et al. / Energy 69 (2014)

- green-house-gases emissions (GHG, gCO₂eq/kWhe),
- atmospheric pollution (mg/kWhe)
 - SOx
 - NOx
- water pollution (mg/kWhe),
 - Acidification
 - Eutrophisation
 - POCP (photochemical ozone creation potential)
- land-use (m²/GWhe)
- water consumption (I/MWhe)
- water withdrawal (I/MWhe)
- production of technological waste (g/MWhe)

- Infa

► High-level waste (HLW) :

- Used fuel or separated waste from reprocessing of used fuel.
- Decay heat (>2kW/m³) leading to temperature increase
- 3% of the volume, but 95% of the total radioactivity of produced waste
- Have long-lived and short-lived components

Intermediate-level waste (ILW) :

- comprises resins, chemical sludges, and metal fuel cladding, as well as contaminated materials from reactor decommissioning
- Highly radioactive but decay heat < 2kW/m³
- 7% of the volume, 4% of total radioactivity

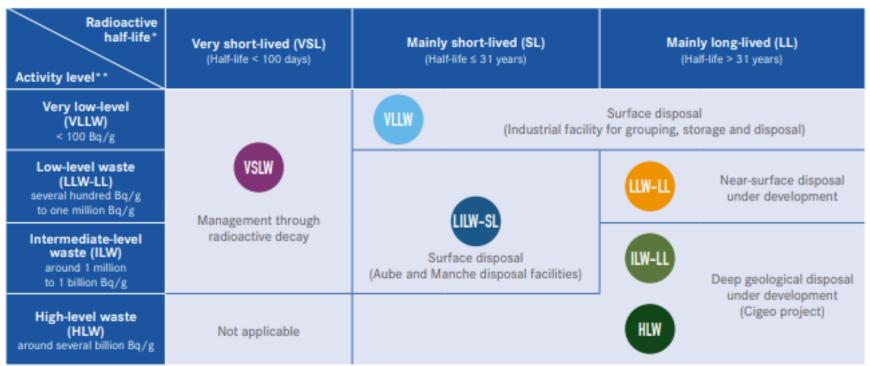
► Low-level waste (LLW) :

- radioactive content not exceeding 4 GBq/t of alpha activity or 12 GBq/t beta-gamma activity
- comprises paper, rags, tools, clothing, filters, etc., which contain small amounts of mostly short-lived radioactivity
- 90% of the volume, 1% of total radioactivity

Very low-level waste (VLLW) :

- radioactive materials at a level not considered harmful to people or the surrounding environment
- demolished material (concrete, plaster, bricks, metal, valves, piping, etc.)
 produced during rehabilitation or dismantling operations

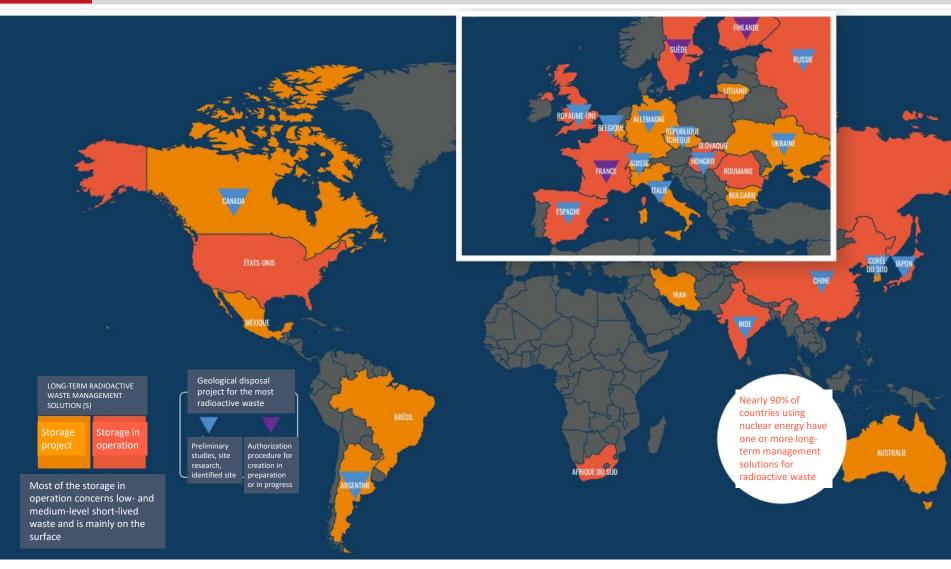
Déchets issus de l'utilisation de produits radioactifs lans un laboratoire


VLLW

Photos from ANDRA Synthesis report 2021

Management solutions for each type of waste

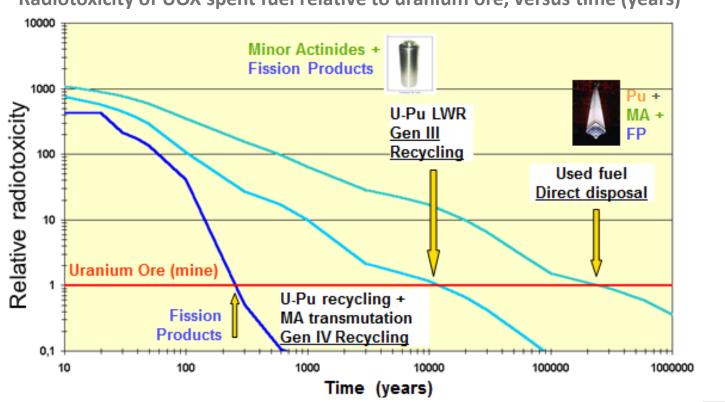
CATEGORIES OF RADIOACTIVE WASTE AND ASSOCIATED MANAGEMENT SOLUTIONS


*Half-life of the radioactive elements (radionuclides) contained in the waste

**Activity level of the radioactive waste

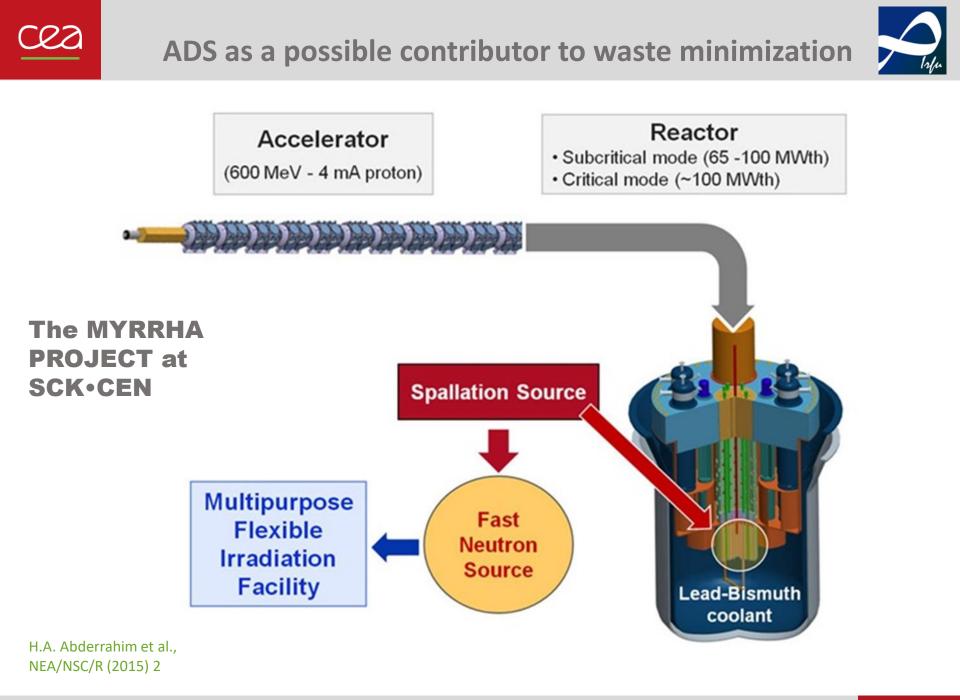
From ANDRA Synthesis report 2021

Cea Nuclear Waste management


From ANDRA: https://www.andra.fr/panorama-mondial-ou-en-sont-les-autres-pays

► Two options:

Small amount of minor actinides in many (fast) reactors


Large amount of minor actinides in dedicated systems

Radiotoxicity of UOX spent fuel relative to uranium ore, versus time (years)

H.A. Abderrahim et al..

NEA/NSC/R (2015) 2

- Nuclear energy must be part of the tools to fight climate change
- Most of the new nuclear power reactors are built in emerging countries
- Small Modular Reactors to play an increasing role
- Global non-radioactive environmental impact lower than for other sources of energy
- Nearly 90% of countries using nuclear energy have one or more long-term management solutions for radioactive waste

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr