

Unversity of Trento

DIPARTIMENTO DI INGEGNERIA CIVILE, AMBIENTALE E MECCANICA

Effect of structural disorder on the thermoelectric behavior of Cu₂SnS₃ (CTS)

Thermoelectricity: Direct conversion of temperature gradient into voltage and vice versa.

TEG & A simple case:

L= Lorentz number

c = Specific heat per unit volume

v = Average phonon velocity I= Average mean free path

Energy and Materials LAB

Optimal thermoelectric materials: High figure of Merit (*zT*)

Heavily doped Semiconductors or Semimetals Phonon-Glass Electron-Crystal or Phonon-Liquid Electron-Crystal

Snyder et al., Nature Materials, Volume7 pages105-114 (2008)

#NASABEYOND

State of art and applications:

Solid Sate generators ,long-lasting, noise free, flexible.

Several potential application

Low efficiency, η ≤10%

Room temperature: Bi₂Te₃ T: 300K-600K

Medium temperature: SnSe, PbTe T: 600K-900K

High temperature: SiGe , T > 1000K

Cronin B. Vining, Nature Materials, Volume 8, pages83-85 (2009)

Voyager 1, Voyager 2, Galileo, Ulysses, Cassini, & New Horizons spacecraft.

To Pluto with Plutonium Radioisotope Power Systems

WE'RE OUT THERE

NASA

Figure 1 Integrating thermoelectrics into vehicles for improved fuel efficiency. Shown is a Bio 5/217 concept car with a thermoelectric generator (yellow; and inset) and radiator (red/blue).

Cu₂SnS₃: Copper-Tin Sulfide (Eco-friendly, Earth-abundant, Cost-effective)

Mohit

 (Cu_2SnS_3)

CTS

V. A. Kovalenkar in 1983. (A new sulfide of Cu and Sn)

- Goldfieldite-Famatinite-Tetrahedrite ores
- Kochbulak deposits (Uzbekistan)

XRD study: Triclinic (SG:P1)

Closely related to Kuramite (Cu₃SnS₄)

Kovalenker, V. A. Cu₂SnS₃, A New Sulfide of Tin and Copper. Int. Geol. Rev. 1983, 25, 117–120

07/17

Applications: Photovoltaic devices, Drug delivery, Transistor, Thermoelectric etc.

PV Application: Tunable bandgap(0.6-1.7 eV) and High optical absorption coefficient (~10cm⁻¹)

Thermoelectric Applications: p-type, medium temperature (~450K-750K) in 2016

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

ALLOYS

Qing Tan, Wei Sun, Zhiliang Li, Jing-Feng Li*

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China

SCIENTIFIC **Reports**

OPEN Eco-friendly *p*-type Cu₂SnS₃ thermoelectric material: crystal structure and transport properties

Received: 08 March 2016 Accepted: 02 August 2016 Published: 26 September 2016

Yawei Shen¹, Chao Li², Rong Huang², Ruoming Tian³, Yang Ye¹, Lin Pan^{1,4}, Kunihito Koumoto³, Ruizhi Zhang⁵, Chunlei Wan⁶ & Yifeng Wang^{1,4}

Tan et al. J. Alloys Compd. 2016, 672, 558–563. ; Shen et al. Sci. Rep. 2016, 6, 32501

Thermoelectric exploration:

Production method in the Literature: Solid-State Reaction using elemental powders.

Disordered polymorph via acceptor doping: In, Zn, Mn, Ni, Fe, and Co.

Zhang et al. J. Alloys Compd. 2019, 780, 618–625.; Xu et al. J. Alloys Compd. 2017, 728, 701–708.; Zhao et al. J. Appl. Phys. 2019, 125, 095107.; Zhao et al. J. Mater. Chem. A 2017, 5, 23267–23275.

ISE 2021 July 22

Energy and Materials LAB

Production:

High energy reactive ball milling. (Simple, fast, Scalable)

EDXS

Energy and Materials LAB

Structural and chemical analysis:

XRD : Rietveld Refinement

SAED

20

Computational methods: Chalcogenide

Thermopower and Resistivity:

13617

Thermal conductivity:

As most of high resistivity SC, Main contribution of k is due to k₁.

Using Phonopy :

Low freq. modes: heavy atoms (Cu/Sn) Low freq. modes : Ordered Cu domination & disordered Sn domination. Similar V_g for acoustical but flat optical. Low lying optical modes. (heat traps)

Disordered

Z

K-path

R

X M

ELF and Grüneisen Parameter

Ordered

Grüneisen parameter

Grüneisen parameter

10

15/17

Energy (THz)

Nuclear Inelastic scattering (NIS): PETRA III (DESY, Hamburg)

Broad Phonon-band (5-9 THz).

Similar Debye energy and V_g.

Relative energy shifts $\Delta E/E$.

Conclusions:

especially disordered (e.g., CZTS, Colusites) using high energy reactive ball-milling.

Future scope: Stabilize new disordered structures and exploration of disordered structures with doping.

Thank you

This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

Contents lists available at ScienceDirect Journal of Alloys and Compounds

Journal of Alloys and Compounds 830 (2020) 154604

journal homepage: http://www.elsevier.com/locate/jalcom

pubs.acs.org/JPCC

THE JOURNAL OF

CHEMISTRY

Experimental and *Ab Initio* Study of Cu₂SnS₃ (CTS) Polymorphs for Thermoelectric Applications

Ketan Lohani, Himanshu Nautiyal, Narges Ataollahi, Carlo Fanciulli, Ilya Sergueev, Martin Etter, and Paolo Scardi*

Cite This: J. Phys. Chem. C 2021, 125, 178–188

Read Online

Ultra-low thermal conductivity and improved thermoelectric performance in disordered nanostructured copper tin sulphide (Cu₂SnS₃, CTS)

K. Lohani^a, E. Isotta^a, N. Ataollahi^a, C. Fanciulli^b, A. Chiappini^c, P. Scardi^a, * ^a Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy ^b National Research Council of Utaly-Institute of Condensed Mutter Chemistry and Technologies for Energy (CIN-CMATE). Lecco Unit, Via Pre

23900, Lecco, Italy ⁶ Institute of Photonics and Nanotechnologies IFN, National Research Council CNR CSMFO Lab. & Fondazione Bruno Kessler FBK, Centro Materiali e Microsistemi CMM, Via alla Cascata 56(C, 38123, Trento, Italy

Acknowledgement:

Mr. Himanshu Nautiyal Dr. Narges Ataollahi Dr. Carlo Fanciulli Dr. Ilya Sergueev Dr. Martin Etter Prof. Paolo Scardi & Whole Family of Energy Materials Lab, UniTrento

Ketan Lohani e-mail: ketan.lohani@unitn.it

Department of Civil, Environmental and Mechanical Engineering

(DICAM)

University of Trento, Trento, Italy

ISE 2021 July 22

Supporting Information:

Carrier concentration (n) and mobility (µ):

Figure 12. Grüneisen parameters of the specific phonon peaks of the disordered compound obtained from the NIS measurements at 43 and 295 K (a) and relative volume change $\Delta V/V_{295K}$ from the XRD data collected in temperature range 300–100 K (b).

Figure S6. The lattice parameter of disordered (cubic) CTS in temperature range 300K to 100 K shown in table S1 with a parabolic fit.

Temperature	Lattice Parameter		Cell Volume	
K	a (Å)	e.s.d.	V (Å ³)	e.s.d.
300	5.43614	2.80E-04	160.64699	0.02444
280	5.43485	2.70E-04	160.53262	0.02408
260	5.43364	2.70E-04	160.42521	0.02374
240	5.43243	2.60E-04	160.31784	0.02332
220	5.43123	2.60E-04	160.212	0.02292
200	5.43012	2.60E-04	160.11347	0.02256
180	5.42907	2.50E-04	160.02093	0.02225
160	5.42806	2.50E-04	159.93181	0.02196
140	5.42722	2.40E-04	159.85763	0.02156
120	5.42654	2.40E-04	159.79713	0.02133
100	5.42576	2.40E-04	159.72824	0.02095

Table S1. Lattice parameter (a) and cell volume (V) for the disordered (cubic) CTS in temperature range 300 K to 100 K.

.

Figure S3. Band structures for ordered (a), Sn-rich disordered (b), and Sn-poor disordered (c) cells.