Fusion Principles

Jef ONGENA Plasma Physics Laboratory Royal Military Academy – Brussels

6th SIF-EPS International School on Energy Online Edition 22 July 2021 The sun and the stars shine thanks to fusion reactions taking place in their core.

Can we mimic this tremendous energy source on Earth?

Slide: A.J.H. Donné, SPIG 2020

Energy gain in fusion reactions

- $E = mc^2$: the reaction products are lighter than the fusing elements
- The mass is released as the energy
- To accomplish fusion the Coulomb repulsion has to be overcome
- \rightarrow the nuclei must have very high energy, i.e. high temperature \rightarrow plasma
- Main problem: confine the plasma until the rate of fusion reactions is large enough to generate the necessary power

Energy gain in fusion reactions

⁴He has a particularly large binding energy

Nucleus	Total Binding Energy (MeV)
D = ² H	2.22457
T = ³ H	8.48182
³ He	7.71806
⁴He	28.29567

Nucleon mass number A

Large gain in energy when ⁴He is one of the reaction products

Fusion from hydrogen to helium

Group #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																		
	1		Fusion														2	
	Н										He							
2	3	4													7	8	9	10
4	LI	Li Be							В	С	N	0	F	Ne				
	11 12								13	14	15	16	17	18				
3	Na	Mg	A							AI	Si	Р	S	CI	Ar			
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
-	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
	55	56	*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
0	Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
-	87	88	**	104	105	106	107	108	109	110	111	112	113	114	115	116	(117)	118
1	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	(Uus)	Uuo
57 58 59 60 61 62 63 64 65 66 0						67	68	69	70	71	ň							
	anute	moids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
	** Act	Inoldo	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
Acunoids			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Helium from protons only as in our sun?

On earth: use deuterium and tritium

Stable Isotope Artificial Isotope Half life 12.3 years

'Easiest' fusion reactions

Extensive database on fusion reactions : http://pntpm3.ulb.ac.be/Nacre/barre_database.htm

The 'simplest' fusion reaction on earth

Comparison: fusion reaction on earth and in the sun

On earth (D-T)

In the sun (p-p)

D-T reaction has 10²⁵ times larger reactivity (cm³/s) than the p-p reaction

Fusion on earth: deuterium and tritium supply

Deuterium: from sea-water (30 gr/ton) \rightarrow virtually unlimited source Tritium is radioactive (T_{1/2} ~ 12 years) \rightarrow has to be produced Breeding of Tritium from Lithium: $n + {}^{6}\text{Li} \rightarrow {}^{4}\text{He} + T$

 $n + {}^{7}\text{Li} \rightarrow {}^{4}\text{He} + T + n$

The walls of a fusion-reactor are covered with Lithium In-situ production of T, closed circuit \rightarrow safety aspect

Lithium: deposited in earth-crust and sea-water

In summary: fusion fuel – D and Li – is practically unlimited

The D in 3 bottles and the Li in 3 stones can supply a family with 2 kids with electricity for a year!

Advantages of fusion

- Ash is ⁴He
 - no radioactivity
 - chemically inert : no ozone depletion, no acid rain,...
 - no greenhouse effect
 - ⇒ Excellent environmental compatibility
- Does not imply long term storage of radioactive waste
 - part of fuel is active (tritium), but consumed in reaction
 - choice of structural materials to reduce long lived activity
 - \Rightarrow Offers prospect to recycle radioactive waste in 1-2 generations
- Inherently safe
 - malfunction of control system does not lead to runaway
 - 'gas burner' : shutting down gas supply stops reactor
 - ⇒ Tchernobyl like accident EXCLUDED
- Inexhaustible
 - fuel consumption is minimal, reaction releases lots of energy
 - \Rightarrow Energy source for thousands/millions of years
- Energy independence
 - no geographical dependence for fuel
 - \Rightarrow Avoid geopolitical difficulties

Height of the Coulomb barrier V_c

$$V_{C} = \frac{q^{2}Z_{x}Z_{y}}{4\pi\varepsilon_{0}(R_{x} + R_{y})} \qquad \text{Joule}$$
$$= 1.44 \frac{Z_{x}Z_{y}}{1.4(A_{x}^{1/3} + A_{y}^{1/3})} \qquad \text{MeV}$$

D-T reaction \rightarrow V_c = 0.38MeV = 380 keV. The corresponding gas temperature is ~ 4.4 10⁹ K

However the maximum reactivity is reached at 10-15 keV or 110-160 million K...

Most fusion reactions occur through tunneling

Fusion Cross-Sections and Reactivities

 $\mathsf{P}_{\text{fusion}}$ normalized to max of D-T

How to confine matter at very high temperatures ?

Realizing Fusion A. Inertial Fusion

Using powerful laser or particle beams to compress a tiny pellet

Surface Heating

Compression

Ignition

Fusion

Targets for Inertial Fusion

Realizing Fusion A. Inertial Fusion

Hohlraum axis: NIF hohlraums irradiate ignition capsules with symmetry similar to that of a basketball

Very powerful laser systems needed High requirements for isotropic illumination of target

Realizing Fusion: B. Magnetic Fusion – a real challenge

Sun

T ~ 15 000 000 K R ~ 600 000 000 m Heat flux at edge ~ 60MW/m²

http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html

ITER (France, in construction)

Fusion research in Europe

Principle of magnetic fusion

Principle of magnetic fusion

Principle of magnetic fusion

Particles follow magnetic fields how to limit losses at the end of cylinder? Two possible solutions

• 'close' magnetic field at ends

BUT : too high losses at ends

- 'close' magnetic fields on themselves
 - \Rightarrow toroidal configuration, BUT.....

Pure Toroidal field does not work : Charge Separation !

Fundamental Reason: Gyroradius varies with magnetic field and particle speed

Pure toroidal magnetic field Charges Separate → Electric Field

Pure Toroidal field does not work : Charge Separation !

Fundamental Reason: Gyroradius varies with magnetic field and particle speed

Pure toroidal magnetic field Charges Separate → Electric Field Magnetic field + Electric Field ALL particles move outward !

Realizing a helicoidal magnetic field : Option 1

Tokamak Large current induced in plasma (~100kA - 10MA)

A torus with a large flux of high energetic neutrons

Nota : 1 keV = 11 600 000 °C

Two tokamak configurations in use

Limiter Configuration

Divertor Configuration

Largest operating tokamak: Joint European Torus (JET)

- Start of operation in 1983
- Major radius: ~ 3 m
- Plasma radius: ~ 1 m
- Plasma volume: ~ 80–100 m³
- Plasma current: ~ 3 MA
- Magnetic field: ~ 3 T
- World record in fusion power: 16 MW
- $Q = P_{out} / P_{in} = 0.66$

Dimensions of JET

Joint European Torus (JET)

Inside of JET with and without plasma

Magnetic surfaces

Characterizing progress – Power multiplication Q

Inside of JET with Be wall

From JET to ITER

*ITER = International Thermonuclear Experimental Reactor

ITER should show us how to maintain the fusion 'fire'!

Important questions waiting for an answer

Physics

- Clean plasma centre needed
- He must disappear quickly (...but not too quickly...)
- Low level of other impurities
- High fusion reactivity :

Ensure a good flow of D and T to the plasma center

- Stable plasma:
- Suppress instabilities

Technological

- Check first wall properties
- Check T breeding techniques

ITER is not just 'big science'

BUT crucial for scientific progress

With ITER, for the first time: fraction of alpha particles similar to fusion reactor plasma

ITER : ~ 2x larger than JET

ITER Design Parameters

	ITER
Major radius	6.2 m
Minor radius	2.0 m
Plasma current	15 MA
Toroidal magnetic field	5.3T
Elongation / triangularity	1.85 / 0.49
Fusion power amplification	≥ 10
Fusion power	~500 MW
Plasma burn duration	300-500 s

ITER's construction progress (2020)

Cryostat Upper Cylinder emerging to go into storage, April 2020

A very important milestone (May 2020)

()) SME 750 1 STATISTICS OF STORE AN On May 26-27 2020, the 1,250-tonne base of the Cryostat (procured by India) was successfully inserted into the Tokamak Assembly Pit.

On-site fabrication of poloidal field coils (up to 24m diameter)

June 2020

Start of ITER experiments : ~ 2026

PF Coil #2 ready for resin impregnation, June 2020

Realizing a helicoidal magnetic field : Option 2

Stellarator

Complex 3D coils create directly a helical field

- \rightarrow no transionner \rightarrow continuous operat
- \Rightarrow continuous operation

Physics goals

Fusion product should be about 1/50 of a fusion reactor

Major, average minor radius: R=5.5 m, <a>=0.5

Magnetic field on plasma axis:

Test magnetic field optimization

physics experiment:Iheating systems2mimic α-particle heating:Ilow impurity content, heat removal

Technological goals

Reactor feasability of stellarators steady-state operation

R=5.5 m, <a>=0.53 m B=2.5 T

H, D plasmas only, additional planar coils 10*MW ECRH, 20 MW NBI, ICRH* ICRH, *NBI*

divertor

30 minute plasma heating with ECRH superconducting coils active cooling of plasma facing components

How to create the ultra high temperatures needed ?

In a future fusion reactor: α**-particle heating**

How to create the ultra high temperatures needed ?

Analogy for NBI heating

Method 1: neutral beam injection (NBI)

inject high-energy neutral particles (~ 100keV - 1MeV) into the plasma

Neutral beam injection

- •¹ Ion source (low temperature plasma)
- •² Acceleration
- •³ Neutralization (passing through a cold neutral gas)
- •⁴ Separate neutrals and ions

Neutral beam injection: a technological challenge

- Today most NBI systems use positive ion sources (e.g., D⁺, H⁺, T⁺): best choice when the injection energy *E* < 150 keV
- For E > 150 keV: NBI system has to rely on using negative ions (neutralization efficiency ~ 60%)
- The technology has been tested and further developed (e.g., 400 keV beam at JT-60U)
- Technology for 1 MeV NBI system for ITER is much more challenging! (being developed in Padua)

Example of Neutral beam injection (in JET)

- One of the neutral beam injectors in JET
- Four of the 8 PINIs
 (Positive Ion Neutral Injector) are visible:
 ✓ 120keV
 ✓ 2MW D⁰ beam

Total power available
 From NBI in JET:
 max. ~ 36MW

How to create the ultra high temperatures needed ?

Method 2: radiofrequency heating (RF)

resonant transfer of RF power from waves to plasma particles (ions or electrons)

How do radiowaves heat plasmas ?

- Hydrogen ions (A = 1, Z = 1)
- Deuterium ions (A = 2, Z = 1)
- Tritium ions (A = 3, Z = 1)

Cyclotron frequency

$$\omega_{cs} = \left(q_s/m_s
ight) B$$

- Depends on a particle's charge-to-mass ratio
- Rotation direction is different for ions and electrons

Example: Cyclotron frequencies in ITER

Particle in ITER (<i>B</i> ₀ = 5.3T)	(<i>Z</i> /A) _i	Cyclotron frequency f _{ci}
D, ⁴ He ²⁺	1/2	40MHz
т	1/3	27MHz
Electron (ECRH)		148GHz

How do radiowaves heat plasmas ?

- ICRF: cyclotron absorption by ions when $\omega = n\omega_{ci}$ (*n* = 1, 2, 3,...)
 - → localized around the ion cyclotron (IC) resonance layers $\omega = n\omega_{ci}(R_{res})$
 - ightarrow IC location externally controlled with ω

Color: magnetic field strength, |B|

 $B(R)pprox B_0R_0/R$

 $\Rightarrow \left. m{R}_{
m res}
ight|_{m{\omega}=m{n}m{\omega}_{ci}} = R_0 rac{nZ_i}{A_i} rac{15.25\,B_0({
m T})}{f({
m MHz})}$

Example of RF heating systems (in JET)

Plasma Energy and Energy Confinement Time

$$\begin{split} & \textbf{W}_{p} = 1.5 \int_{V} k \left[n_{e}(r) \ T_{e}(r) + n_{i}(r) \ T_{i}(r) \right] dV \\ & \frac{dW_{p}}{dt} = P - \underbrace{\begin{pmatrix} W_{p} \\ \hline \tau_{E} \end{pmatrix}} & \text{If } P = 0 \implies W_{p}(t) = W_{p}(0) \ e^{-t/\tau_{E}} \end{split}$$

Transport losses by conduction and convection

 $\begin{aligned} \tau_{\mathsf{E}} & \text{measures how fast the plasma looses its energy} \\ \tau_{\mathsf{E}} & \text{is a measure for the thermal insulation of the plasma} \end{aligned}$

Under stationary conditions (dW/dt=0) :
$$\tau_{E} = \frac{W_{p}}{P}$$

Heating power must be large enough to compensate for the losses

$$P_{heat} + P_{\alpha} \ge P_{transport} + P_{Bremsstrahlung}$$

Condition for Breakeven (Q=1)

$$n_e \tau_E \ge 10^{20} \, m^{-3} s$$

Condition for Ignition (Q=∞)

$$n_e \tau_E \ge 3 \times 10^{20} \, m^{-3} s$$

Charcterizing progress – Lawson Criterion

Positive power balance in a reactor \rightarrow Condition on n_i T_F

Present machines are close to produce fusion energy comparable with the energy required to sustain the plasma (breakeven : Q=1)

Next step devices (ITER) are expected to produce significantly more fusion energy than the energy required to sustain the plasma (Q=10 or larger)

Latest status in fusion research

Nature Physics, May 2016

"Insight Section" On nuclear fusion

66 pages of last minute info on:

- -Magnetic fusion
- -Inertial fusion
- -Fusion materials research
- -Computational advances

http://www.nature.com/nphys/journal/v12/n5/index.html

Personal opinion for consideration by the audience

- Population explosion, especially in emerging economies
- The lion's share of world energy production is of fossil origin (80 90%)
 - Finite resources
 - Need a replacement: but only two classes left nuclear and renewable
 - Climate effects due to CO₂
- Renewable energy (hydro, wind, solar, ...) must contribute, but:
 - Large fluctuations: day / night, summer / winter, storm / windless, ...
 - Low energy density: large installations and costs
 - Need for backup, storage and large interconnections
- Fusion has a large potential to contribute to our future energy mix
 - Low risk, no CO₂, no actinides, inexhaustible,...
 - But: difficult and will take time

Fusion: a necessary option for the future

