

Joint EPS-SIF International School in Energy 2021

Beta decay studies and search for octupole deformation in the A~225 Po-Fr nuclei

22th July 2021

Marta Polettini *Università degli Studi di Milano* INFN Sezione di Milano

Outline

- Beta decay
- Octupole deformation
- Case study: 220<A<230 Po-Fr nuclei
- GSI facility:
 - In-flight fragmentation reactions
 - The FRS Fragment Separator
 - The DESPEC decay station
- Preliminary results
- Conclusions and outlook

This project is part of the experimental program of the HISPEC/DESPEC collaboration

Quantities that can be extracted in a β decay experiment

- *γ* transitions
 - Possible existence of many decaying

states

- $\gamma \gamma$ coincidences \longrightarrow level schemes
- Relative intensities $I_{\beta} \longrightarrow \log ft$
- Estimation and control of the heat emitted by the decay of fission products — key role in the safe operation of reactors
- 8% of the total energy generated during the fission process is related to the energy released in the natural decay of fission products (*decay heat*)
- These calculations require extensive libraries of cross sections, fission yields, and decay data
- These simulations are also used to determine the anti-neutrino spectrum associated to the β decay of fission products

Octupolar deformation

Octupole correlations: β_{30}

 $\beta_{30} \neq 0$

- These correlations are the result of the long-range, octupole-octupole interaction between nucleons occupying pairs of orbitals which differ by 3 units in both orbital- and total-angular momentum.
- Evidence for static octupole deformation are detected when orbitals which differ by Δj, Δl =3 approach the Fermi level for both protons and neutrons.

Octupolar deformation

Octupole correlations: β_3

$$\beta_{30} \neq 0$$

- These correlations are the result of the long-range, octupole-octupole interaction between nucleons occupying pairs of orbitals which differ by 3 units in both orbital- and total-angular momentum.
- Evidence for static octupole deformation are detected when orbitals which differ by Δj, Δl =3 approach the Fermi level for both protons and neutrons.

Experimental evidences:

- The excitation energy spectrum:
 - Alternating negative and positive parity states
 - Energies of the lowest-lying negative-parity states are higher than those of the positive-parity ones
- Large **E3** transition probabilities
- Enhanced **E1** transition

P.A. Butler, J. Phys. G: Nucl. Part. Phys. 43, 073002 (2016)

Island of octupole deformation: actinide region

- The Rn-Th (Z=88-90) actinide nuclei around mass number A~225 delimit the region of the nuclear chart where the strongest octupole correlations are manifested.
- In general, there is a dearth of experimental information on the structure of heavy nuclei in the 220<A<230 transitional region between the Z=82 closed-shell regime and the south-east corner of the A~222 IOD.
- Direct measurements of octupole correlations were performed recently.
 For example:
 - ²²⁰Rn and ²²⁴Ra from L.P. Gaffney et al.
 L.P. Gaffney et al., Nature 497,199–204 (2013)
 - ²²⁸Th from M.M.R. Chishti et al.
 M.M.R. Chishti et al., Nature Physics 16, 853–856 (2020)

Aims of the experiment

Octupole deformation around A~225

Study the octupole degree of freedom and quadrupole-octupole correlations at the far end of the IOD

Test of nuclear models for r process

Obtain new beta-decay information beyond N=126

Shape isomers in ^{220,222}Po

Prove the existence of super-deformed bands at low excitation energies

Aims of the experiment

Octupole deformation around A~225

Study the octupole degree of freedom and quadrupole-octupole correlations at the far end of the IOD

• Test of nuclear models for r process

Obtain new beta-decay information beyond N=126

• Shape isomers in ^{220,222}Po

Prove the existence of super-deformed bands at low excitation energies

238U @ 1AGeV + Be (1624 mg/cm²)				
Setting 225At				
Parent Nucleus	t _{1/2}	energy 1st excited state in daughter	half-life 1st exc state in daughter	ppd @ AIDA
228Rn	65 s	unknown	unknown	2,80E+04
227Rn	20.8 s	2.74 keV	unknown	1,29E+05
226Rn	7.4 m	unknown	unknown	8,85E+04
225Rn	4.66 m	28.55 keV	unknown	1,01E+05
226At	unknown	unknown	unknown	1,79E+04
225At	unknown	unknown	unknown	7,19E+04
224At	76 s	unknown	unknown	1,98E+05
223At	50 s	unknown	unknown	1,86E+05
222At	54 s	186.2	0.32 ns	2,53E+05
221At	2.3 m	30 keV	unknown	2,57E+04
223Po	unknown	unknown	unknown	6,90E+03
222Po	550 s	unknown	unknown	2,03E+04
221Po	112 s	unknown	unknown	2,97E+04
220Po	unknown	unknown	unknown	5,26E+04

Experimental techniques

Octupole deformation around A~225

- Beta delayed and fast-timing spectroscopy:
 - Measure reduced transition strengths
 - Locate low-lying 1⁻ and 3⁻ states
 - Determine excitation energy and B(E2) of first 2⁺ states in even-even nuclei

Test of nuclear models for r process

- Measurement of ground state half-lives
- Determination of possible competing α branches
- Beta-delayed gamma spectroscopy to:
 - Investigate low-lying structure in daughters
 - \circ Determine apparent I_{β} and logft
- Shape isomers in ^{220,222}Po
 - Delayed isomer spectroscopy
 - Measure lifetimes of super-deformed 2⁺ states

In flight fragmentation

Relativistic fragmentation/fission of heavy nuclei on thin targets:

- > 50 MeV/u —— production of cocktail beams of many nuclei
- Use of spectrometers to transport/separate nuclei of interest

Nuclei are brought to rest in final focal plane and let decay

- ✓ cocktail beam: many nuclei at once
- ✓ both short and long-living species
- ✓ get information already with few ions

paths Δt > 150-300 ns

Relatively long decay

- X Low cross sections
- X Limitation on rate to distinguish contribution from each species

GSI facility and FRS

The nuclei of interest were produced using the fragmentation of a ²³⁸U beam at an energy of **1GeV/nucleon**.

- Acceleration of heavy ion beams with:
 - UNILAC (linear accelerator)
 - **SIS18** (synchrotron)
- Selection and transport using: $B\rho \Delta E B\rho$ method

 $ToF - B\rho - \Delta E$ method

- Identification via the measurement of:
 - The ratio of mass number over ionic charge A/Q
 - The **atomic number Z** or the **X position** in the focal planes

FRS+DESPEC at GSI-FAIR: the β decay station

The setup is composed of:

- AIDA: a stack of 3 DSSSD detectors
- **bPlast**: fast plastic detector
- Euroball: HPGe array for gamma detection 4 7-fold clusters (efficiency 2% at 1 MeV)
- FATIMA: array of 36 LaBr₃(Ce) detectors (efficiency 2.9% at 1 MeV)

AIDA

FRS+DESPEC at GSI-FAIR: the β decay station

Preliminary results: alpha decay of ^{218,219}Rn

- ^{218,219}Rn to prove correct implantation and correlations
- First time our setup was used to measure alpha decay
- First time this alpha decay is studied with this method!

Conclusions

The project aims at performing an experimental study of octupole shapes in heavy actinide nuclei, in the A~225 Po-Fr region.

The experiment was performed at GSI in spring 2021. This talk was focused on:

- Aims of the experiment
- Experimental techniques
- Production of the ions of interest
- The GSI facility: FRS and the DESPEC decay station
- Ion- β - γ - γ correlation method
- Preliminary results: alpha decay of ^{218,219}Rn

Thank you for your attention!