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Sun is the main source of energy maintaining life in our planet and
controlling climate

Solar radiation powers Earth is receiving solar
the climate system. radiation and is sending
back to space IR radiation.

If all IR radiation emitted
by the Earth was going
back to space then T~ -

Some solar radiation 18°C

is reflected by
the Earth and the
atmosphere.

Part of the outgoing
radiation from Earth is
trapped in its atmosphere
and is warming Earth. Thus
the actual T is
T, ean Earth =15°C

About half the solar radiation

is absorbed by the

Earth’s surface and warms it. Infrared radiation is
emitted from the Earth’s

surface.



Main drivers of climate change

COurtgoing Longwave
SWR Reflectad by Radiation (OLR)

Incoming the Atmosphere

Shortwave
Radiation (SWH)

——
—

SWR Absorbed by Aerosolidoud
thie Atmicsphers Interactions

GHG:
W < . CO, CH, O; H,0
Fesctions N,O CFCs

°
IPCC AR5 Working Group | IDCC

Climate Change 2013: The Physical Science Basis INTERGOVERNMENTAL PANEL oN ClimaTe change




What do we learn from the past - ice core records ? An ice core. Credit: NASA's Goddard s

. , ] Center/Ludovic Brucker
4 glacial cycles recorded in the Vostok ice core
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The Three Ways
Earth's Orbit Changes

ange Ckyr BF)

J.H. Petit of &, Nadure, 388, 42036, 1505,

Geological periods - Periodicities
100 000 yrs

41 000 yrs

21 000 yrs




Atmospheric CO; at Mauna Loa Observatory
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We are currently out of this ‘safe’ zone (CO,, T) .

CO, >100 ppm higher than max CO,, the last 420 000 yrs.
Increasing rate of CO, 10 - 100 times higher
13 OCTOBER 2000 VOL 290 SCIENCE www.science




Atmospheric CO; at Mauna Loa Observatory

2501 Muodern

- Scripps Institution of Oceanography
I NOAA Global Monitoring Laboratory
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Recent Monthly Mean CO; at Mauna Loa Observatory
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/The Anthropocene is proposed as the new geological epoch where human-influence wiIP
dominate the fossil records. There is overwhelming global evidence that atmospheric, geologic,
hydrologic, biospheric and other Earth system processes are now modified by human activity.
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Large emitters of CO,
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The world’s top 1% of emitters produce over 1000 times more CO, than the bottom 1% (www.iea.org)
The richest 0.1% of the world’s population emitted 10 times more than all the rest of the richest 10% combined.



CO, sources and sinks

stomatal pore

CO, sources

. ) .
Energy - Fossil fuels  Erem e s BUDGET 2015 clole
* Cement Production
 Deforestation a ﬁ 159 \
. . 36.3 (+18) 48 (+18) 70 +33) 11018 l
* Respiration glucose (CsHi204s)

e Sea emissions

Ocean sink

CO, sinks ‘9 | ﬁ.,

LLLLLLLLLLLL

* Photosynthesis lwp;\«;@nm‘}\’ 21
* Ocean Uptake fv
(biological and very long lifetime in the atmosphere Fa

Bacteria

carbonate pumps) ~ century

Sea floor

airs.jpl.nasa.gov



Global Monthly Mean CH4

CH, sources and sinks

CH, sources 3 1850}
* Microbial activity in soil (Methanogens)
Plant decay in wetlands and rice paddies

1900+

1800

1750

CH4 mole fraction (ppb

Digestive processes in domestic animals
and termites
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. GLOBAL METHANE BUDGET 2017 1650¢ \"7RE
* Landfills TOTAL EMISSIONS . . . . |
. +16.8* 1990 2000 2010 2020
* Fossil Fuels (55?&7'14) (14010 19.5) Year
9 o

[ . 7
Biomass Burning - o . 0 5 531 40
(205-246) (25-32) (155-217) (21-50) (502-540) (37-47)

Thawing Permafrost . . .
long lifetime in

CH, sinks | | _ the atmosphere
Oxidation by -OH n 60% ) ~

(producing szO) 4 b SO 10 yrs
Methanotrophic Bacteria
Reactions with Cl- kat O
in the stratosphere
Reactions with Cl- from

Sink in soils

B. Riley Berkley Uni.
the sea https://newscenter.lbl.gov/2020/08/13/global-methane-emissions-soaring-but-how-much-
was-due-to-wetlands/



Observed warming Contributions to warming based on two complementary approaches

a) Observed warming b) Aggregated contributions to c) Contributions to 2010-2019
2010-2019 relative to 2010-2019 warming relative to warming relative to 1850-19200,
1850-1900 1850-1200, assessed from assessed from radiative

°C attribution studies forcing studies
2.0

Temperature
anomaly in
2010-2019
compared to
1850-1900
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Mainly contribute to Mainly contribute to
changes in changes in
non-C0; greenhouse gases  anthropogenic asrosols




Human activities emit not only GHG but also aerosols and
precursor gases

Short lifetimes of aerosols, O;,
and their precursors

Aerosols: suspended in air, solid or
liquids, of <100 um diameter

Impact on health

Scatter or absorb solar radiation — large
uncertainty

Carry trace elements - nutrients or toxic

Kanakidou et al., Envir. Res. Let., 2018



Air pollution : What are we talking about ?

Aerosols:

sulfates, nitrates,
ammonium, black
carbon, organic aerosol
(primary & secondary),
metals

Gases & aerosols

Anthropogenic §

dust, sea-salt,
bioaerosols, volcanic
aerosols, secondary

aerosols
€PM25
Combustion particles, organic
HUMAN HAIR compounds, metals, etc.
50-70um <2.5um (microns) in diameter

(microns) in diameter

© PM1o
Dust, pollen, mold, etc.
<10um (microns) in diameter

90 um (microns) in diameter

FINE BEACH SAND

Image courtesy of the U.S. EPA




aerosol—radiation and aerosol—cloud interactions

Irradiance Changes from Irradiance Changes from
Aerosol-Radiation Interactions (ari) Aerosol-Cloud Interactions (aci)

Radiative Forcing (RFari) Adjustments Radiative Forcing (RFaci) Adjustments

Effective Radiative Forcing (ERFaci) ARS

The blue arrows depict solar radiation, the grey arrows terrestrial radiation and the brown arrow
symbolizes the importance of couplings between the surface and the cloud layer for rapid adjustments.

Effective Radiative Forcing (ERFari)

Globally, between 20 and 40% of aerosol optical depth (medium confidence)
and between 1/4 and 2/3 of cloud condensation nucleus (CCN) concentrations
(low confidence) are of anthropogenic origin |DCC

INTERGOVERNMENTAL PANEL oN ClimaTe chanee wMo UNEP



Pollutant Sources, IranSpots I@;f@mgﬁon, pepasition, and Effects
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Effects
b

‘alpine
tundra

subalpine
forests

Atmospheric cycle of air
pollutants.

Emission, transport and
transformation,
deposition.

(https://www.fws.gov/refu
ges/AirQuality/sources.ht
ml)
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Financial crisis — Low Economy level
Increasing use of Domestic wood burning -

Air pollution issue mainly during winter

Athens winter 2013




Impact of aerosols on human -health

N (0

Oxidative siress

Smaller e : .
particles Air pollution leads
to
zzz;e)zrf Tr? GO L NGRS reduction in
the human Every day, we breath ~ ;xgectance; 0; |'|1|°e
bronchial 12000 liters of air that are -7 years globally
2.2 years in Europe

filtered in our lugs through
a surface equivalent to one

tennis court. Lelieveld 2019

v" In polluted areas, Black Carbon are among the smallest
particles (< 100nm) and have been classified recently by

WHO as cancerogenic
v" Ultra fine particles (UFP) from transportation & combustion

or chemically produced are the most aggressive for health.




Annual premature mortality attributable to outdoor air pollution
Individuals per 100 x 100 km2 — Globally 3.3 million/year
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01 Greece: 4,200/year

1/4 fossil energy production
1/4 agriculture
=304 1/4 traffic, industry, biofuel
— 1/4 desert dust

P WY

—-100 0 100
Lelieveld et al., 2015



Global distribution of aerosols at surface

https://youtu.be/oRsY UviBPE

Courtesy NASA, the Image of the Day Gallery
NASA Center for Climate Simulation at Goddard Space Flight Center


https://www.google.com/search?q=aerosols+NASA+video&client=firefox-b-d&sxsrf=AB5stBgbb21zB2qlgKRzOEctPimaNQ7Mbw%3A1689531890877&ei=8jW0ZIKLNZ-Exc8Pxqyt2Ao&ved=0ahUKEwiCzMTh7JOAAxUfQvEDHUZWC6sQ4dUDCA8&uact=5&oq=aerosols+NASA+video&gs_lp=Egxnd3Mtd2l6LXNlcnAiE2Flcm9zb2xzIE5BU0EgdmlkZW8yBBAAGEcyBBAAGEcyBBAAGEcyBBAAGEcyBBAAGEcyBBAAGEcyBBAAGEcyBBAAGEdItxRQ3gFYmhJwAHgCkAEAmAEAoAEAqgEAuAEDyAEA-AEB4gMEGAAgQYgGAZAGCA&sclient=gws-wiz-serp#fpstate=ive&vld=cid:217ef018,vid:oRsY_UviBPE
https://youtu.be/oRsY_UviBPE
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Canada
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Aerosol Composition Worldwide

® Urban Inorganics: M Sulfate m Nitrate
® Urban Downwind

® Remote Organics: | mm HOA = Other OA M Total OOA m LV-OOA
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100|||||![||r11]6

Sulfur atmospheric cycle

Sulfur dioxide A Dignon & Hameed (1992)
in atmosphere | M Spiro etal. (1992)

I

s T
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- . s —~ 60— A iD
/ Sulfuric acid
Smektin Burning | | Refining &Y r*.: and Sulfate A -13 %
€iing 1 coal fossil fuels L) RN deposited as = 3
R S acid rain M~ gyp—————————— _———
. A Sulfur Total Natural s
D;m:I:iheyl in animals E ~ Sulfur Emissions 0 ON
; = %/ —— — &)
a bacteita (consumers) 3 0
byproduct “ 1

0 L l 1 l 1 1 ! l | l
1860 1880 1900 1920 1940 1960 1980

Year

& . - > i in plants a
NG Mining and 1 A . (producers) |
g extraction v > e Uptake
" by plants

; .
Sulfur <

in ocean
sediments

The increase in SO, since 1860
followed that of CO,

D Process

D Reservoir

Combustion of coal, fossil fuels,
in soil, rock .
and fossil fuels wood, smeltlng, HZSO4
production, refineries. ~80 Tg-S/yr

P Pathway affected by humans

P Natural pathway
in red pathways affected by humans

Carolina Eduardo Ocean, volcanoes, soil/vegetation
https://www.emaze.com/@AWILICQ >70% of emissions are human driven ~ 30 Tg-S/yr



° h ) ; ‘ O“ E
Nitrogen atmospheric Y SN g ooy N B ey
cycle N 2

- Stratosphere %
I

Transport Transport )
I i S
<
N10 N, NO, F2H e HNoOs 5
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- o, Fixation e ait Dmcition "%
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anoxic (no oxygen) Soil and Marine

Assimilation: NO-:: } —= RN Fixed Nitrogen

NH

Ammonification: RN — NH, — NH:

Nitrification: NH§ — NO; — NO3

Denitrification: NO; — NO; —-\N_O — N,O — N,

Transformations in the ecosystems

. . oy NO
https://www.nature.com/scitable/knowledge/library/ Fixation: N, — { NE
the-nitrogen-cycle-processes-players-and-human- -

15644632 / FIGURE 2.4 Processes in the aimospheric cycle of nitrogen compounds. A species written over an

arrow signifies reaction with the species from which the arrow originates.,



Nitrogen atmospheric cycle —impacts of interest

» N,O is a greenhouse gas

» NOx (= NO + NO,) impact on ozone (O,) = photochemical smog
& nitric acid (HNO;) formation = acid rain

» NH; & amines neutralize atmospheric acids

» Aerosol formation (NH,* NO;")

» Nitrogen is the most important nutrient for ecosystems (if too much -
eutrophication, acidification) — necessary to cover humanity’s needs in
food (NH; industrial production)

N,O emissions ~6% fossil & industry, 43% anthropogenic
NH; emissions ~20% combustion, remaining livestock, agriculture, soils
NOx emissions  ~75% combustion, remaining lightning, soils



Geographical distribution of NOx emissions
from anthropogenic sources in 2000.

Vertical distribution of NOX emissions

Stratosphere

Units: Gg MOz cell

1 =0 [ 0.003-0.030 [ 0.,300-3 Bl 10-30
[ 0.0-0003 [ 0.030-0.300 [/ 3-10 B 0 -900

Boundary layer

Image after: Netherlands Environmental Assessment
Agency: Edgar32FT2000

Image: AT2-ELS


http://www.mnp.nl/edgar/model/v32ft2000edgar/edgarv32ft-prec/edgv32ft-nox-map.jsp

Atmospheric NH; & NO, seen from space

CrIS NH; mean surface volume mixing ratio (VMR) (2013—207)

60°N [
45°N
30°N
15°N

00

15°S
30°S

s NH; CrlS- -surfa..}'

60°S
170°W 150°W 130°W 110°W 90°W 70°W 50°W 30°W 10°W 10°E 30°E 50°E 70°E 90°E 110°E 130°E 150°E 170°E

4 e

1 2 3 4 5 6 7 8
Surface volume mixing ratio [ppb]

CrlS 5-year mean (2013—-2017) of surface ammonia globally over
land. The CrIS mean gridded Level 3 values are generated on a
uniform 0.05° x 0.05° ( 5km x 5km) grid with a quality flag of 5.

M. W. Shephard et al., 2020

POMI- ¢ olum n

NO2 troposperic column (umol/m2)
i e

Data between April and September 2018 averaged & regridded

on a regular latitude-longitude grid of about 2 x 2 km.

https://www.esa.int/Applications/Observing the Earth/Cop

ernicus/Sentinel-5P/Nitrogen dioxide pollution mapped



https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/Nitrogen_dioxide_pollution_mapped

Atmospheric N deposition and simulated changes
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TN Deposition, Annual 2005
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N immobilization Start of N saturation = Strong N saturation



Emissions (million metric tons)
=y

0

Impact of emission changes on atmospheric acidity

U.S. Emissions (million metric tons) Midwest NH, Concentrations gases
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Altitude (kilometers)
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Ozone in the Atmosphere

A
, Stratospheric
Ozone Layer Ozone =
—
=N
Ozone .
increases .4 >(T)r(z)§r?§pher IC | :
om pollution
I’(\));%_{“‘%__

e concentratinon  ——»

[

Ozone in the stratosphere protects Earth but in
the troposphere, it is harmful.

HICARS2NNT

90% of O, in the stratosphere
Ozone hole (thinner O, layer
in the stratosphere)

Cooler stratosphere
Penetration of UV => cancer

Phytotoxicity
Premature deaths
High values spring & summer

Secondary pollutant is
difficult to control — needs
coordination between
countries.



Ozone (ppb)
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Historic data for O3
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Formation and destruction of ozone In the stratosphere

shorter A longer A
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Origins and fate of O, in the troposphere?

30

=
o
o

Pressure (mb)

300

1000

Large-scale
ascent carries
tropospheric
chemical species
Stirring by breaking into stratosphere
Large-scale waves

subsidence [\/\/\

400 e . ..........
Is 0
330
Exchange across umulonimbus
T = clouds move

low level air
upwards

Transport from boundary layer “*x\'—__ =00 Tiieon
in frontal systems e SR e B AR R

Pole Latitude Equator

Mechanisms affecting
tropospheric Ozone

1. transport from the
stratosphere

2. photochemistry in the
troposphere

3. deposition



Os chemical production in the troposphere — Complexity
Non-linearity in chemical processes

120
110

Requires NO,

S wF /N UMHC/NOx =300 =

> C \ 3 ‘eel

S 9 ; —-|  emissions of NOx occur

Z g - mainly in the form of NO

» 70l =

'2 - —

o 60 __ : NO + ROZ 9 NOZ

o 50 - iy

é w0 = . - catalytic cycle forming Og

= — | NMHC/NOx =1 1

2 U \ ] No-oO,

o 20 A \ \ =

=~ w0} T\ - Zero catalyti¢g/cycle for O,
o — 1l M

0

|
el

10 10 10 10
NOx ppbv NO, + OH > HNO;,
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Where RO, come from ? CO & VOC oxidation chemistry
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Where RO, come from ? CO & VOC oxidation chemistry

VOC +oxidant+ NOX = O3 + aerosols + ...

CO =+ oxidant + NOX 9 03 + COZ

VOC (except CH,) is 90% natural
CO is 50% anthropogenic
NOXx is 75% anthropogenic



Dependence of O, formation on the ratio of VOC/NOx

(1) VOC+ OH > RO, -> 0,
(2) NO, + OH > HNO, el =
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Anthropogenic emission changes
what is their impact on atmospheric acidity and nutrients?

Global anthropogenic & biomass b
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A twenty years record of greenhouse gases in the Eastern
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University
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Conclusion: Since 2002,CO, and CH, concentrations at Finokalia station increased by 2.4 ppmy-' and 7.5
ppb-y-! respectively, while CO concentrations decreased by 1.6 ppb-y-! Since 2018, CH,

increase accelerated (12.4 ppb-y-1). Gialesakis et al., STOENV 2023



Finokalia Finokalia Finokalia

Sulfate MODIS- AOT
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o Intercept= 24.19, Slope= -0.04, p-value= 1.34e-08 . o Intercept= 5.02, Slope= -0.01, p-value= 3.03e-13 o Intercept= 0.22, Slope= -1.2e-04, p-value= 4.44e-04

> At the Finokalia station a statistical significant decreasing trend in PM, has been observed that could
explain the trend of AOT observed by MODIS (Mann Kendall Trend test)

» The decrease in particulate mass observed is not attributed only to the decrease of dust but also
other constituents as sulfate and organic matter.
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Human driven global warming The Eastern Mediterranean is
warming faster than the
Changes in global surface temperature relative to 1850-1900 g I o ba I m ea n

a) Change in global surface temperature (decadal average) b) Change in global surface temperature (annual average) as observed and
as reconstructed (1-2000) and observed (1850-2020) simulated using human & natural and only natural factors (both 1850-2020)
2°§ = EMME VS. GLOBAL MEAN ANNUAL TEMPERATURE ANOMALY
4 2.0
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IPCC, 2021 Zittis et al., Reviews of Geophysics, 2021, 10.1029/2021RG000762



The rapid warming of the Mediterranean: a key role for aerosols?

anthropogenic aerosols

Warming from GHG

cooling from

In the Mediterranean Basin, the
recent warming acceleration is
largely due to the combined effect
of declining aerosols and a
negative trend in soil moisture.

Red: dry summer climate & hot
summers; Orange: warm summer
for 1981-2020

cooling from
anthropogenic aerosols

Urdiales-Flore et al.,Nat Com:

in press., 2023
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Take home messages

v" The development of human civilization with increasing population and needs for energy, food and comfort
led to the production of numerous air pollutants as products, or-by products of energy production and
industrial activities.

v" Greenhouse gases are a major category with impacts on climate and ecosystem development, short-lived
pollutants like aerosols, are another important category of air pollutants with multiple impacts on climate,
and human and ecosystem health.

v Non-linear relationships imply careful design of measures for AQ mitigation.

v In the Anthropocene era we live, all these pollutants have a large fraction of their sources associated to
energy production and use, and transportation.

v Observed trends of air pollutant levels show that clean air quality has been efficient in limiting air pollution
by short-lived species, with mean atmospheric lifetimes of less than a year.

v" For greenhouse gases that have long lifetimes in the atmosphere, i.e. decades or centuries are required to
reduce their atmospheric levels, immediate action is needed to support future sustainability.

v’ Targeting Carbon-free economical growth will contribute in mitigating air pollution by reducing these air

pollutants and their undesirable effects. Renewable energies, new technologies and change in life-style is
the wav forward
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