Nuclear Energy

Cea Basics

Joint EPS-SIF International School
on Energy

DE LA RECHERCHE A 'INDUSTRIE

Varenna, 19 July 2023

Sylvie Leray ﬁm

Commissariat a I’énergie atomique et aux énergies alternatives - www.cea.fr




E Outline :‘I

» Basics on nuclear fission and fusion
= Fission: more details in M. Ripani’s lecture

= Fusion: more details in A. Spagnuolo and D. Batani’s
lectures

»Nuclear energy in the world: status and
perspectives
= Some perspectives in R. De Salvo’s lecture

»Nuclear waste management and environmental
impact

= more details in V. Montoya and A. Mariani’s lectures

» Conclusions
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Nuclear energy basics :‘I

» Nuclear energy comes from the binding energy of the atomic nucleus

Nuclei are composed of nucleons (neutrons and protons) held together by the

stro ng nuc I €ar fo rce Biudiug energy per nucleon (MeV)

M(A,Z) =Z m, + (A-Z) m_- B(A,Z) 10}

B=Binding energy, B/A maximum around Fe s |

» is released thanks to nuclear reactions in which the

) L. . . . . 4L Nuclear Fusion
constituents of the initial nuclei are redistributed into
different final nuclei > |
Target nucleus + projectile - Final nucleus + ejectile + Q H

_ I 1 I ! !
Q = Energy released 50 100 150 200 250

Q = B(Target) + B(projectile) - B(Final nucleus) — B(ejectile) Mass mumber
Either

= by splitting heavy nuclei into smaller ones: Fission

= By merging two light nuclei into a larger one: Fusion
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Fission >,

» Fission reactions can be induced by slow neutrons on some (fissile)
nuclei such as 235U producing 2 fission fragments and 2.4 neutrons

in average

Uranium-235 Fission

Fission yields
fragments of

A intermediate » Neutrons, after slowing down, can

mass, an average

An example of one of the many
reactions in the uranium-235
fission process.

of 2.4 neutrons, e e, . .
X+) and average initiate a chain reaction
'0-.'.; energy about
215 MeV.
n b ol
Qo—> 235 o
U fission '\? &
gamma chain reaction amnms o—>
N7 impact by o .
O slow neutron U-236 4 "f, 4
ith compoun s
:‘,I] o:il?[gr nucleus is ¥ Neutrons can
an eV unstable, initiate a chain
' oscillates. reaction. o—>
Source: http://hyperphysics.phy-astr.gsu.edu/ ‘y,"_ -
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Fission: nuclear fuels :‘I

» Uranium: Natural uranium is composed of 0.7% 23°U, 99,3% 238U
= 235 is fissile by neutron capture regardless of the energy of the neutron,
but the probability increases with decreasing neutron energy
= 238 can fission only with high energy neutrons and with a small
probability

= |n most of presently operating reactors:
— 23U enrichment (around 3% in French light-water reactors)
- Slowing down of neutrons down to thermal energy

» Plutonium: 23°Pu is fissile = See lecture by Marco Ripani

= 239py js produced by neutron capture on 238U in thermal reactors
2381 (n,y) — 232U (23min) — 23°Np (2.3d) — 23°Pu (2.4x10%)
= |n light-water reactors up to one third of the fissions come from 23°Pu

» Thorium: 232Th is not itself fissile but is ‘fertile’
= neutron absorption leads to 233U, which is fissile
232Th (n,y) — 233Th (22min) — 233Pa (23d) — 233U (1.6x105y)
= Thorium reactors require either that 232Th is first irradiated in another
reactor to provide 233Pa or plutonium to initiate the process
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Fusion

» Fusion reactions can be initiated in a plasma of hydrogen isotopes

'H+H—  He+ yn+327MeV

Deuterium-deuterium
Fusion

'H+ H— JH+ H+403MeV

'H+ H — jHe+ jn+17.59MeV
Deuterium-tritium
Fusion

deuterium

" deuterium ; »
o 7
fast | 8
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Source: http://hyperphysics.phy-astr.gsu.edu/
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» Lawson's criterion for sustained
fusion plasma

Sufficiently high temperature to
enable the particles to overcome the
Coulomb barrier,

Temperature maintained for a
sufficient confinement time, t

Sufficient ion density, n, to obtain a

net yield of energy.
temperature [keV]

,410° 10 10°
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temperature [million Kelvin]


http://hyperphysics.phy-astr.gsu.edu/

Nuclear energy from fusion ':‘I

» Inertial confinement (by lasers) » Magnetic confinement
* Low volume (compression of a * High volume (tokamak)
millimetric target) « Low density (105 x air density)
* High density (10°x air density) * Large characteristic time (10 s)
* Low characteristic time (10" s)  High temperature (100 million K)

* High temperature (100 million K)

» Tritium breeding needed

Fuel /
: O
D: 115 ppm +
in seawater;
cheniical ‘ + ' 10— ‘
extraction
He - n
- s /\)\)
\\ //’/'.

~ - >
~ . - >
e s

ea /(
7%  Li® + ng,, "= He*+T® + 4.8MeV

Li: abundantin earth’s crust / -~ O 7

93%  Li’ + ng M= He*+ T3+ ng,, - 2.466 MeV

- See lectures by Alessandro Spagnuolo and Dimitri Batani
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Nuclear compared to fossil fuels :‘I

» Fuel energy content
o Coal (C):C+0, > CO,+4eV
1g coal = 4x1.6x101°x6.02x10%3/12 = 32 kJ

leV=1.6x101J
1 mole = 6.02x10%3 atoms

o Natural Gas (CH,): CH, + O, - CO, + 2H,0 + 8 eV
1g gaz = 8x1.6x101°x6.02x10%3/16 = 48 kJ

o Nuclear fission (U): 23°U + n = 3Rb + #1Cs + 2n + 200 MeV
1g 235U = 2x108x1.6x101°x6.02x10%3/235 = 8.2x107 kJ

o Nuclear fusion: 2H + *H = “He + n + 17.5 MeV (80% carried by n)
1g D-T = 1.75x107x1.6x101°x6.02x10%3/5 = 3.4x108 kJ
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E Nuclear compared to fossil fuels :‘I

» Fuel Consumption, 1000 MWe Power Plant (=10° homes) per day
o Coal (40% efficiency)
10°x8.64x10% / 0.4x3.2x10* = 6750 ton/day

o Natural Gas (50% efficiency) : density 0.657 kg-m~3 (gas, 25 °C, 1 atm)
10°x8.64x10% / 0.5x4.8x10* = 3600 t/day

o Natural uranium (?3°U = 0.7%, 33% efficiency):

10°x8,64x10% / 0.33x0.7x102x8.2x10° =~ 460 kg/day

o D-Tin nuclear fusion (assuming 10% efficiency):
10°x8,64x10% / 0.1x3.4x10% = 2,5 kg/day
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Nuclear energy in
the world: status
and perspectives
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Nuclear energy -

\J

The growth expected twenty five years ago has not
happened:

3000

B West & Central Europe

2500 B South America

» 2008 economic crisis Tt
t:, 2000 — B Asia

» 2011 Fukushima accident ™

» Shale oil “revolution” T

http://www.scottishenergynews.com/
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US oil production rose by 1.6 million
barrels a day in 2014, by far the
| largest growth in the world.
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Source: World Nuclear Association and IAEA Power Reactor Information Service (PRIS)

But nuclear energy production had begun increasing slowly
again, driven mainly by China and Russia
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Energy demand -

» Increase in energy demand due to growth of world population and
improving of the standard of living

» Demand in electricity increases even faster boosted by the development
of smart electronic devices, air-conditioning, electric cars...

Total primary energy Electricity
.@ Es':rjlﬁ!;gy 30k .@ ﬁsqsggy

500

-
Ll

250

1985 1990 1995 2000 2005 2010 2015 2020 1985 1990 1995 2000 2005 2010 2015 2020
Year Year
i [ 0 i
. - N « i »
@ North America @ s.2Cent. America @ Europe @ North America @ s.&Cent. America @ Europe
cis ® Middle East @ Africa oIS ® Middle East ® Africa
@ Asia Pacific @ Asia Pacific

Source: BP Statistical Review of World Energy 2022
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» Share of nuclear energy
rather small (~¥10%) declining
from the 90s

» Share of renewables solar and
wind increasing significantly

GWh

30000 000

Electricity generation
by source

25 000 000
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Wind
07 T T T T T T
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0 Coal ® Oil © Naturalgas @ Biofuels © Waste O Nuclear © Hydro © Geothermal @ SolarPV O Solarthermal © Wind

IEA. All rights res:

Source: IEA Key world energy statistics 2022
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Nuclear power role in electricity generation .

But

» still exceeding the contribution
of combined solar and wind
production in the low emissions
electricity generation

Low emissions electricity generation by source worldwide, 2020
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IEA. All rights reserved.

Note: CSP = concentrating solar power; CCUS = carbon capture, utilisation and storage.
Source: |EA (2021), Werld Energy Qutlook 2021.

erved

Source: IEA Nuclear Power and Secure Energy Transitions 2022



CO, emissions

IEA report: Nuclear Power and Secure Energy Transitions, Sept. 2022

» ~66 Gt of CO, avoided between 1971 and 2020

» Without the contribution of nuclear power, total emissions from
electricity generation would have been almost 20% higher (40% for
Europe) and total energy-related emissions 6% higher over that period.

Cumulative CO; emissions avoided by nuclear power by country/region

70 ® Emerging market and

developing economies

O Other advanced
economies

O Canada

<]
60

50

40 E Korea

30 O.Japan

20 @ United States

10 E European Union

0
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IEA. All ights reserved.
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E Energy Mix :‘1

» Reducing CO, emissions:

- Energy saving and increase of energetic efficiency but limited and
counterbalanced by increase in developing countries

- Reducing use of fossil fuels, in particular in electricity production,
heating and transportation, but then higher demand for
electricity

- Carbon capture and storage, but expensive and profitable only if
close to the emission site

- Hydropower but possibilities for new sites limited

- Wind and solar renewable energies but intermittent and variable,
and question of critical material supply (lithium, rare earth
elements, ...)

- Nuclear energy but concerns about safety and waste

> no miracle solution but need for a combination of all
possibilities to decrease the share of fossil fuels
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IEA net zero by 2050 proposed scenario a

» Reducing CO, emissions: |IEA net-zero by 2050 proposed
scenario

- Assumes a decrease of the energy demand (decrease of
energy intensity of GDP)

- Combination of all solutions

- Replacing fossil fuels by electricity in many domains

. ] Figure 2.5 > Total energy supply in the NZE
Key cledan technologies ramp up by 2030 in the net zero pathway
600
Capacity additions Electric car sales Energy intensity of GDP o Other
. M Other renewables
(GW) (millions) (MJ per USD ppp) 500 Wind
4+ M Hydro
1 000 7 DRETT IO 4 400 Traditional use of biomass
x 18 Modern gaseous bioenergy
800 - A0 ceevendeminnnm, 300 m Modern liquid bioenergy
3 - B Modern solid bioenergy
600 - 70 T F— 200 Nuclear
2 - W Natural gas
400 - 1o [T S | Qil
100 m Coal
2000 2010 2020 2030 2040 2050
2020 2030 2020 2030 2020 2030 IEA. All rights reserved.
Note: MJ = megajoules; GDP = gross domestic product in purchasing power parity. Renewables and nuclear power d:'sp!ace most fossil fuel use in the NIE,
and the share of fossil fuels falls from 80% in 2020 fo just over 20% in 2050

IEA Net Zero by 2050 report
iea.li/nzeroadmap
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IEA net zero by 2050 proposed scenario -

» Big increase in electricity demand

Global electricity demand and share of electricity in total energy consumption in selected
applications in the Net Zero Emissions by 2050 Scenario
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Source: |[EA (2021), Met Fero by 2050: A Roadmap for the Global E Sector.
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IEA. All rights reserved.

Solar and wind power race ahead, raising the share of renewables in total generation
from 29% in 2020 to nearly 90% in 2050, complemented by nuclear, hydrogen and CCUS
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IEA net zero by 2050 proposed scenario -

» Nuclear power capacity has to be at least doubled

[ | H . Nuclear power capacity additions and retirements in the Net Zero Emissions by 2050
Adva nCEd economies. Scenario by country/region and decade
- | |f€t| m e eXte n S I O n S Retirements Capacity additions B G7 members
fo r eX i Sti n g 2041-2050 (1 /S O Other advanced economies
2031-2040 _
Fea CtO I'S 2021-2030 B China
r Oth i rket and
- 4.5GW /year new T S " Geveloping economies.
2001-2010
construction from 19912000
1981-1990
2021 to 2035
- i i -30 -20 -10 0 10 20 30
increasing .
emphasis on small IEA. All rights reserved.
Sources: |[EA (2021), Net Zero by 2050: A Roadmap for the Global Energy Sector; IEA (2021), Achieving Net Zero Electricity
modu Iar reacto rs Sectors in G7 Members.

= Emerging and developing economies
— Two-thirds of new nuclear power capacity
— mainly in the form of large scale reactors,
— fleet of reactors quadruples to 2050
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Life time extension of existing reactors -

IEA report: Nuclear Power and Secure Energy Transitions, Sept. 2022

» Extending nuclear plants’ lifetimes is an indispensable part of a cost-
effective path to net zero by 2050.

- In US, 88 reactors have
obtained a 20-year license

Age distribution of operational nuclear capacity by region, end of 2021

60

= extension to 60 years and 11
45 recently applied for a further
30 extension to 80 year
15 - In UK, Hungary, Finland and
. -!I .EE_E:EEFQE; iil the Czech Republic, recent
CNTOXOIILRAILABISILBLIITELE extensions by 20 years
Age (years) - In France, 10 years extensions
mOECD Europe mOECD Americas ©DOECD Asia mRussia mChina mindia possible after check of Safety
IEA. All rights reserved. req u | rement

Note: OECD Europe includes Belgium, Czech Republic, Finland, France, Germany, Hungary, Lithuania, Netherlands, Slovakia,

Slovenia, Spain, Sweden, Switzerland and the United Kingdom. OECD Americas includes Canada, Mexi d the United 1A
St[;r:;l%Eglé:])ll;‘sia\\l‘incﬁ::jes\ﬂ:fja;nagndan}(ore; n ingaom mencas includes Lanada exIico an e unie aVOIdlng the closu re of
nearly 25% of the available

Source: |AEA Power Reactor Information System (PRIS).
capacity
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E World Nuclear Power Reactors

Operable Reactors

Reactors Under Construction

(=)

Share of Global Electricity
Generation

y

10%

391,586 MWe

61,121 MWe

» 59 reactors under
construction, of which 21 in
China, 8 in India, 4 in Turkey,
3 in Russia

» 100 reactors planned, of
which 45 in China, 25 in
Russia, 12 in India

Source: World Nuclear Association, July 2023
https://www.world-nuclear.org/information-library/fas
figures/world-nuclear-power-reactors-and-uranium-

requireme.aspx
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Total Operable Reactor Net Capacity (Top 10)
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Reactors Under Construction Net Capacity (Top 10)
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eIII
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- 7123 MWe
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5,000 10,000 15,000
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20,000 24,738


https://www.world-nuclear.org/information-library/facts-and-figures/world-nuclear-power-reactors-and-uranium-requireme.aspx

E World Nuclear Power Reactors

IEA report: Nuclear Power and Secure Energy Transitions, Sept. 2022

» Market leadership is shifting away from advanced economies

Muclear power construction starts by national origin of technology, 201 7-2022

10

Mumber of reactor starts

2017 2018 2019 2020 2021 2022 Year to date

IEA. All rights resened.
Source: |AEA Power Reacior Information System (PRIS).
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Nuclear energy roadmap )

- Presently, going from Generation |l to Generation llI

- Preparing for Generation IV

Generation Il Generation 111 / 11+

Generation |

Generation IV ;‘

Safe
Secure
| Sustainable
A Competitive
__.oa Versatile
WE A W e "'\"
| \w(‘"; - %‘\ .
_‘,. ; = i Tving ~
Big Rock Point, GE BWR Diatilo Canyon, Westinghouse PHR Kashiwazaki, GE ABWR Olkiluolo 3 AREVA PWR At 2030
Early Large-scale Evolutionary Innovative
prototypes power stations designs designs
- Calder Hall (GCR) + Bruce (PHWR/CANDU) + ABWR (GE-Hitachi; Toshiba + EPR (AREVA NP PWR) « GFR gas-cooled fast
. DounlascPolnl - Calvert Cliffs (PWR) :cw:;m « ESBWR (GE-Hitachi BWR) o Ifeagw' kst
(PHWR/CANDU) - Flamanville 1-2 (PWR) 7 « Small Modular Reactors . lead-cooled fas
. Dresden-1 (BWR) - Fukushima 11 1-4 (BWR) e - B&W mPower PWR U ok s e
- Fermi-1 (SFR) - Grand Gulf (BWR) S el - CNEA CAREM PWR o Bienllindirre
» Kola 1-2 (PWR/VVER) + Kalinin (PWR/VVER) . APR-1400 (KHNP PWR) - India DAE AHWR oz R
g Loach Ravem 1 ¢ HiGH) + Kursk 1-4 (LWGR/RBMK) + APWR (Mitsubishi PWR) - KAERI SMART PWR » SCWR supercritical water-
« Shippingport (PWR) - Palo Verde (PWR) . Atmea-1 (Areva NP - NuScale PWR cooled reactor
-Mitsubishi PWR) - OKBM KLT-405 PWR « VHTR very high
CANDU 6 (AECL PHWR) « VVER-1200 {Gidropress PWR) temperature reactor

Source: Generation [V
International Forum,

www.gen-4.0rg
1950 1970 1990 2010 2030 2050 2070 2090

Varenna 2023 - S. Leray 19 July 2023


http://www.gen-4.org/

Generation IV technology goals :‘I

e Sustainable energy generation ¢ Long-term availability ® Minimization and
management of their nuclear waste ¢ Economical competitiveness ¢ High level of
safety and reliability e Proliferation-resistance

[

T

=0

Lead Fast Reactor Very High Temperature Reactor

Gas Cooled Fast Reactorv Supercritical Water Cooled Reactor Molten Salt Cooled Reactor

ar
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The emergence of small / micro modular reactors :‘I

LCOE cost )
($/MWh) G. Rodriguez, GEN-IV

» Definitions: SMR / AMR / MMR t NG e o

Modl:la:lza:lznl&d C May 26th, 2021
"o
1 eo
»f,.
@ -
L 1 » MWe

SMR large nuclear reactor

- Small Modular Reactor (SMR): C
<500 MWe max, usually between50 C
and 200 MWe, generally based on
GEN-IIl technology (PWR, BWR, C
sometimes HTR)

5|mplf

SMR Economic drivers

- Advanced Modular Reactor (AMR):
SMR type but of GEN-IV type system
(Molten salt, Na, Pb, Gas,
SuperCritical Water)

» Scale effect => modularization plus off-
site fabrication

» Design simplifications allowed by a
reduced power => limitation of the

- Micro Modular Reactor (MMR) or Emergency Planning Zones
Very Small Modular Reactor » Series effect => Reduction of
(VSMR) : Electro- and/or calogen construction time & costs
nuclear reactor of a range power » Opening towards new specific markets
from 1 to 20 MWe => remote areas, non-electrical

applications, electricity/heat
cogeneration ...
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The emergence of small / micro modular reactors 5 )

Table 2. SMRs assessed in The NEA SMR Dashboard

P 0 A e o o
. i organisation city/region) (MWith) ) (thermal/fast)

70 projects of SMRs in the world  [gciee | AcCen | ssiniomn, | oo oo et Meslic
. Technology | New Brunswick U-Zr alloy
Advances in Small Modular Reactor Technology CAREM CNEA? Buenos Aires | Argentina 100 326 Thermal U0, pellets
Developments ACPR50S CGN? Shenzhen China 200 3218 Thermal U0, pellets
L. ) . CHNC? and Hainan .
https://aris.iaea.org/Publications/SMR_Book_2020.pdf ACP100 NPIC* Province China 383 3193 Thermal | UO, pellets
Nuward EDF Paris France 540 307 Thermal U0, pellets
» In 2023, OECD/NEA SMR BWRX300 | FCRTE | NorhCaroima | UnitedStates | 870 27 Thermal | UO, pellets
. Alameda, -
Hermes Kairos Power e United States 35 585 Thermal TRISO pebble
Dashboard to track the progress Galforia _
SEALER-55 Leadeald | Stockholm Sweden 140 432 Fast Urantum
of 21 SMRs around the world, Stable Sat R
Reactor - Moltex Energy New Brunswick Canada 750 590 Fast Molten salt fuel
H H H H Wasteburner
assessing progress in licensing, e |
VOYGR NuScale Power Oreg-:-nr United States 250 321 Thermal U0, pellets
S le, . Metalli
siting, financing, supply chain, Aurora oo | S | gue | 4 500 | e
Rolls-Royce Rolls-Royce United
e n ga ge m e nt’ a n d fu e | . SMR SMR Ltd Manchester Kingdom 1358 325 Thermal U0, pellets
. KLT-405 Rosatom Moscow Russia 150 316 Thermal UO2 pellets
https.//WWW.OeCd- RITM-200M Rosatom Moscow Russia 190 an Thermal U0, pellets
nea.org/upload/docs/application/pdf/2023- RITM-2005 Rosatom Moscow Russia 198 318 Thermal U0, pellets
02/7650 smr dashboard.pdf Natrium TerraPower wz::::;:;n United States B840 500 Fast Uhjl;t:::::y
. HTR-PM INET® Beijing China 500 750 Thermal TRISO pebble
» Innovative nuclear reactors call = |ww Unose | Seatte, | iasimes | 15 o0 | Thema | TR0
uclear Washington prismatic
. United TRISO
France 2030 investment plan UBattery | U | StokePooes | gngaom |10 o el e
Westinghouse Cranberry
. . eVinci Electric Tcrwnsh]p,_ United States 13 750 Thermal TRISO
» UK launching SMR selection Company _| Pennsyvoni .
XE-100 X-energy Moc e, United States 200 750 Thermal ;
ey . ey . aryland pebble
CO m petlt I O n (G re at B rlt I S h (1) Argentina’s National Atomic Energy Commission; (2) China General Muclear Power Group; (3) China National Muclear Corporation;

N | | ) {4) Nuclear Power Institute of China; (5) Electricité de France; (6) Tsinghua University Institute of Nuclear and New Energy Technology.

THE MEA SMALL MODULAR REACTOR DASHBOARD, NEA No. 7850, © 0ECD 2023
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https://www.oecd-nea.org/upload/docs/application/pdf/2023-02/7650_smr_dashboard.pdf

The emergence of small / micro modular reactors

» NEA SMR Strategy

https://www.oecd-nea.org/upload/docs/application/pdf/2023-02/7650 smr dashboard.pdf

Figure 11. NEA SMR Strategy

gnabling conditions

Technologies The essential con?\il;ior:: to connect Applications and markets
RD&D and safety assessments for various the technology push o the market oy Analysis of various power and
reactor concepts and configurations ! non-power applications and markets

Reactor concepts
WO TKs PO GYATEGUIOA

B a0 § gy

By 3 M - st
spectrum Fran e SCCUTI ) gl

RACTO S fuel cycle: front-end and back-eng
Molten salt — —
b Taent ipeline 4

Reactor configurations Technology Market

Iand-based push public engagement pull Hydrogen and synfuels

Multi-module

Economic competitiveness and ﬁnanci,,g
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Non electric applications of reactors

Opportunities for nuclear non-electric applications @

Nuclear reactors and their heat supply temperature range

( I Very high temperature reactors I

Gas-cooled fast reactors I

Molten Salt reactors

A

Generation IV
Reactors

Sodium-cooled fast reactors

Liquid metal cooled reactors

I
I
I Supercritical water-cooled reactors
I
I
I

Water cooled reactors I

30 400  so0 600 700 ool S00 MNGOO NN
A Oistrict heating Industrial process temperature range (°C)
- Seawater desalination T

- Pulp & paper manufacture
W vethanol production

" Heavy oil desulfurization

‘ Petroleum refining
I \<thane reforming hydrogen production
Thermochemical hydrogen production [ NNRNRNRNREIEGg2QEEEE
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From Xin L. Yang, JAEA, https://nucleus.iaea.org/sites/INPRO/df16/Day-1/Keynote YAN.pdf
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E Waste management

» All human activities generate waste

» Only 3 ways to manage waste
= Dilution
" Transformation
= Storage
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Electricity
production
(3 years)

After

—

Fission products : 35 kg
Pu:9kg

U-235 : 8 kg
U-238 : 943 kg

U-235 : 33 kg

U-238 : 967 kg
U-236 : 46 kg
Np - 237 : 0.5 kg

elements

Am-241:0,5kg
Cm-244 : 0,04 kg

Transuranium

Spent fuel composition
Distribution (in kg per tonne of fuel) and mass produced by the principal radioactive
elements present in fuel unloaded from an irradiated pressurised water reactor core.
®IPHC/IN2P3 (Source: Isabelle Billard)
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Spent fuel composition and radiotoxicity

Minor-actinides

Inttiatwranivm-ore

Urantum

Structures

Radiotoxicity (sieverts/tonne)

Flission products

! 2l nl ! |
100 1000 10 000

Years

Change in radotoxicity over the period 10 years to 1 million years
The pattern of change in the radiotoxicity of spent fuel highlights the predominance of
plutonium. This element overtakes fission products around 50 years after removal from

the reactor.

®Source: CEA



E Nuclear fuel cycle a

G swssnep g
'

Fuel Fabrication

» Two options: 54
5
- Open cycle: direct disposal of  }:
spent fuel (US, Sweden, i_ Orimean
Finland...) ==y iy
- Partially closed cycle: Ex'
reprocessing to extract Pu and ,&.:..1
make MOX fuels (France, ‘T :
Japan, Russia, China...) = g Q
'QWA wep Closed Cycle F“-emmi

» Reprocessing reduces the amount, volume and radiotoxicity of the high-
level waste to be stored, but generates additional volumes of intermediate
wastes during the reprocessing and fuel fabrication processes

» In any case a final deep geologic disposal of remaining long-lived high level
waste will be necessary
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» Comparison between Twice-Through (TTC) and Once-Through Cycle (OTC)

Uox Fuel
[ Uox Fuel fabrication l 1053 t/y
Enriched U \
1053 tfy MOX Fuel
120 t/y
' MOX Fuel fabrication | Reactors
Depleted U iy
109,5 t/y 10,5 t/y
Spent fuel
Natural U 1050 t/y
8247 t/y
= [raproessi
Depleted U 6"(‘)‘5“"/‘”“’
7085 t/y Natural U & J Glass: 149m3/y
7647 t/y ;‘;};”{;;““ Metals: 189 m3/y
Tech. Waste: 275 m3

Milling Storage

Electricity

production

408 TWhe

Spent fuel
1173 tfy

Storage

Nuclear energy: environmental impact

Fuel

i Uox Fuel fabrication l\‘” ty

Enriched
1173 t/y

Natural U
Spent fuel 9145 t/y
123t/y
Depleted U
7972tfy Natural U
9145 t/y

Waste volume Waste disposal surface area Waste disposal volume
(m3/TWhe) (m2/TWhe) (excavated volume, m3/TWhe)
~ ~ I
® compacted waste
W cemented waste
oTC oT1C = HLW
000 050 100 15 200 0 200 400 600 0 200 400 600 800

Ch. Poinssot et al. Energy 69 (2014): French case

Varenna 2023 - S. Leray

Electricity
production
408 TWhe

Spent fuel
1173 t/y

Spent fuel
1173 tfy
(476 m’/y)
Tech. Waste
(131 m’/y)




Nuclear energy: environmental impact D

» Indicators selected to describe the non-radioactive impacts.

» Comparison of the selected indicators between the French Twice-Through
Cycle and other energy sources. The error bars represent the gap between the
minimum and maximum values found in the literature.

Ch. Poinssot et al. / Energy 69 (2014)

16406

o green-house-gases emissions = Coal
(GHG, gC0O,eq/kWhe), u Oil/Gas
. . 16405
o atmospheric pollution i
(mg/kWhe)
- SOx .HYdfO
1E+04
- NOx » Wind
water pollution (mg/kWhe
° P (mg/ ) » Nuclear TTC
- Acidification 16403
- Eutrophisation
- POCP (photochemical ozone
creation potential) 16402
o land-use (m?/GWhe)
o water consumption (I/MWhe)
1401 | i
o water withdrawal (I/MWhe) :
o production of technological ] I .
waste (g/MWhe) N , i X ) ,
GHG Sox Nox Acdification Eutrophication POCP Water Water technological
gC02eq/KWhe  gSO2eq/KWhe gNO2eq/KWhe mgSO2eq/kWhe mgPOdeq/kWhe mgC2HAeq/kWhe  m?/GWhe withdrawal consumption waste
MWhe LU/MWhe g/MWhe
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Transmutation of Nuclear Waste a

» Two options:
== Small amount of minor actinides in many (fast) reactors

== Large amount of minor actinides in dedicated systems

Radiotoxicity of UOX spent fuel relative to uranium ore, versus time (years)

10000 3
. Minor Actinides + Accelerator ~ Reactor
Fission Products (600 MeV - 4 mA proton) el Al
1000 i

2 U-Pu LWR R ) ) ) ) )M )M N) )N

L \ Gen Il FP

é 100 - Recycling

° : Used fuel

- ] Direct disposal 531 g%

[

“ 0. fl

Q@ ]

E I . . U IJ Multipurpose \.\\4

®  {Uranium Ore (mine) Flexible Jrew 2N

L 14 Up i Irradiation = R \ @4

n: . -u recyc II'I!]."' _\ Facility Lead-Bismuth

Fission MA transmutation ookt
Products \Gen IV Recycling = :
0,1 R ey R e o e R
10 100 1000 10000 100000 1000000

Time (years)

The MYRRHA PROJECT

. at SCK.CEN
H.A. Abderrahim et al., NEA/NSC/R (2015) 2
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a Conclusions ,:‘!

» Energy demand will likely continue to grow with
an increasing importance of electricity

» In a mix of tools to reduce CO, emission, nuclear
energy has a key role to play

» Most of the new nuclear power reactors are built
In emerging countries

» Emergence of Small Modular Reactors with a
possible use for non-power applications

» Disposal of long-lived high level waste necessary
but global non-radioactive environmental impact
lower than for other sources of energy
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