Bioenergy & Sustainability

Glaucia Mendes Souza Full Professor Institute of Chemistry University of São Paulo

Coordinator BIOEN Program FAPESP

Co-Leader Task 39 IEA Bioenergy

Bioenergy & Sustainability

References **Drivers: Sustainable Development and Climate Change** What, Why, How much Sustainability, Emissions, Pollutants, Water, Soils, Biodiversity, Jobs Policies to stimulate, insure and reward sustainability **Main Technological routes** Where **Case of success** Innovation Let's meet again!

SCOPE-FAPESP

Reporting a global assessment of Bioenergy & Sustainability 137 experts from 24 countries

Bioenergy status Bioenergy expansion Energy security Food security Environmental and climate security Sustainable development and Innovation The much needed science

Developed and developing regions Numbers, cases, issues, solutions 2012-2018

779-page Ebook Download at http://bioenfapesp.org

72

SCOPE • FAPESP • BIOEN • BIOTA • FAPESP CLIMATE CHANGE

Bioenergy & Sustainability: bridging the gaps

EDITED BY Glaucia Mendes Souza Reynaldo L. Victoria Carlos A. Joly Luciano M. Verdade

SCOPE

The IEA Bioenergy Technology Collaboration Programme (TCP) is organised under the auspices of the International Energy Agency (IEA) but is functionally and legally autonomous. Views, findings and publications of the IEA Bioenergy TCP do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries.

Technology Collaboration Programme

https://www.ieabioenergy.com

Energy = Development

OurWorldInData.org/energy • CC BY

THE GLOBAL GOALS For Sustainable Development

Bioenergy can play a critical role in supporting sustainable development

Bioenergy is critical to secure a renewable energy matrix

Bioenergy is a clean source of energy produced from biomass – wood, energy crops and organic wastes and residues. **Biogenic carbon, captures CO2**

Biomass can directly or indirectly be converted into biofuels which can be of solid, liquid or gaseous forms. **Flexibility, different applications**

Currently, over 85% of biomass energy is consumed as solid fuels for cooking, heating and lighting, often with low efficiency. Traditional bioenergy (fuel wood, charcoal which can only deliver heat) dominate bioenergy consumption in developing countries.

Big transition that affects energy access

On the other hand, modern bioenergy relies on efficient conversion technologies increased over recent years, especially in OECD Countries.

New more efficient tech available with high TRL and low costs

The production of biomass implies cultivating land with the use of best management practices to increase environmental and climate benefits while avoiding negative impacts.

Opportunity for modernization of agriculture and land use innovation

What is Bioenergy?

Current status

World total energy supply by source

1971 – 230 EJ

2021 – 594 EJ

World demand includes international aviation and international marine bunkers. Peat and oil share are aggregated with coal. Other includes solar, wind, tidal, geothermal, and others.

Source: IEA (Key World Energy Statistics 2021, Statistical Review of World Energy - BP (2022)

How much do we need

World total energy supply by source to keep under 1.5oC

Substantial growth in the use of bioenergy by 2050 towards sustainability and modern applications

World Energy Transitions Outlook 2022

SO IRENA

International Renewable Energy Agency

https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook-2022

Needed energy for transportation

World total energy supply by source to keep under 1.5oC

Biofuels in transport (EJ) 30 25 Rail Shipping Aviation 20 Road 15 10 5 2019 2030 2050 1.5°C Scenario 1.5°C Scenario

Road and aviation transport will use biofuels to displace fossil fuels

World Energy Transitions Outlook 2022

International Renewable Energy Agency

https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook-2022

Needed energy for industry

World total energy supply by source to keep under 1.5oC

Chemical and petrochemical industries will play a key role in the use of modern bioenergy in the future

International Renewable Energy Agency

https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook-2022

Need to multiple by 4-6 x

World total energy supply to keep under 1.5oC

Is the role of bioenergy in the energy transition being minimized in forecasts by some agencies?

- IRENA 1.5 = IRENA 1.5°C Scenario
- IPCC = IPCC 1.5°C Special Report
- IEA NZE = IEA Net Zero Emission Scenario
- BP 1.5 = BP 1.5°C Scenario (BP, oil and gas company)
- Shell Sky 1.5 = Shell Sky 1.5°C Scenario (Shell, oil and gas company)
- ETC = Energy Transitions Commission

https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook-2022

Large Integrated Bioenergy Systems

Key material and energy flows

SCOPE, 2015 Fig. 6.1

Supply chain

Sustainability Analyses

Life-cycle analyses and integrated assessments of environmental, economic, and social factors.

Techno-Economic Analyses

waste

Biomass	Biorefinaries	 Biofuels Bioproducts 	End use	Policies
E A				
Sugar Starch Oils Sugarcane bagasse Vinasse Municipal Solid Waste Post-consumer vegetable oil Reforestation wood Rice husks Lignin Sewage Sludge Agricultural waste Agro-industrial	Chemical and biochemical processes Anaerobic digestion Peletization Pretreatment Gasification Pyrolysis Hydrothermal carbonization	Biodiesel Bioethanol Butanol Biogas Biometano Green CDR Solid fuel Electricity Syngas Hydrogen Biopolymers Biofertilizantes	Engines Heavy Vehicles Fuel Cell Aviation applications Marine Applications Stationary applications	Nacional de Resíduos Sólidos Estadual de Resíduos Sólidos Nacional de Biocombustíveis – RenovaBio Metas compulsórias anuais de redução de GEE de combustíveis Nacional sobre Mudança do Clima Estadual de Mudanças Climáticas – PEMC Programa Paulista de Biocombustíveis Estratégia para o Desenvolvimento Sustentável do Estado de São Paulo Programa Estadual de Contratações Públicas Sustentáveis

Glaucia M. Souza – FAPESP BIOEN & USP

BIOFUELS BLENDING MANDATES IN EMERGING ECONOMIES

Blending is the most common and faster way of implementing biofuels

BIOMASS

BIOFUELS

BIOREFINERY AND BIOPRODUCTS

END USE

SUSTENTAINABILITY AND IMPACTS

Table 10.1. Overview of amounts of biofuel and bioenergy that could be produced per unit land area, based on current yields of each crop in specific regions.

Feedstock **Total Dry** Grain/ Easily Cellulosic Combustion Sum of Combustion seed/sugar **Biomass** accessed (GJ/ha) of residue previous of Total Common and latin binomial name (GJ/ha) **Biomass** Yield (t/ha) yield (t/ha) biofuel three (region of measurement) (GJ/ha) (GJ/ha) columns Annuals Maize Zea mays (USA) 18.4 9.2 72.8a 40.4 27.6 140.8 331.2 Wheat Triticum aestivum (EU28) 8.8 5.3 34.9a 19.4 13.2 67.6 159.0 Rapeseed Brassica napus (EU28) 5.6 2.8 33.2b 12.3 8.4 53.9 112.9 Soybean Glycine max (USA) 4.7 2.8 21.2b 20.5 5.6 47.3 96.1 Herbaceous perennials Sugarcane Saccharum officinarum (Brazil) 38.0 12.0 156.8a 167.0 113.9 437.7 684.0 0.0 0.0 738.2 503.5 Napier Grass Pennisetum purpureum 84.0 1241.7 1512.0 (El Salvador) Miscanthus Miscanthus x giganteus (Illinois) 22.0 0.0 0.0 193.3 131.9 325.2 396.0 87.9 59.9 147.8 180.0 Switchgrass Panicum virgatum (Illinois) 10.0 0.0 0.0 Reed Canary Grass Phalaris arundinaceae 12.0 0.0 0.0 105.4 71.9 177.3 216.0 (Denmark) 3.7 0.0 32.5 22.2 54.7 66.6 Mixed Grass Prairie (Minnesota) 0.0 8.0 0.0 24.0 144.0 33.0a 35.2 92.1 Agave Agave americana (Arizona) Woody perennials 34.0 17.0 128.8b 149.4 50.9 329.2 685.4 Oil Palm Elaeis guineensis (Indonesia) 0.0 0.0 SRC Willow Salix "hybrids" (Sweden) 10.0 43.9 30.0 73.9 180.0 SRC Poplar Populus "hybrids" (Italy) 14.0 0.0 0.0 61.5 42.0 103.5 252.0 SRF Eucalyptus Eucalyptus "hybrids" (Brazil) 18.2 0.0 0.0 80.0 54.5 134.5 327.6

Energetic Output

Technical Costs and Development Time

Energy balance – Implementation costs – TRL – Environmental gains

EXERGETIC ANALYSIS

GHG EMISSIONS – Ethanol compared do gasoline

PATHWAYS FOR ETHANOL PRODUCTION

GHG EMISSIONS – Biodiesel compared do diesel

Substratos considerados nas estimativas do potencial de produção de biogás a curto prazo no Brasil.

TRADITIONAL BIOENERGY

Most of the renewable energy we use today comes from inefficient burning of biomass to produce heat

Integrated new biorefinery systems are on the way: no carbon waste!

IATA member airlines committed to achieve net-zero emissions by 2050

The path to net-zero:

Sustainable Aviation Fuel

- New technology, electricity and hydrogen
- Infrastructure and operational efficiencies
- Offsets and carbon capture

Current state of SAF development:

More than 490,000 flights	>300 million liters produced in 2022	7 technical pathways
• 2016: 500 flights	 2016: 8 million liters 2025: ~5 billion liters 	 2016: 4 pathways 2025: 11 pathways
57 offtake agreemets since 2022	>130 renewable fuel projects	70% CO ₂ reduction (average)
 40 publicly announced SAF offtake agreemets and 17 non-binding agreemets 	 Projects announced publicly by more than 85 producers across 30 countries 	 2016: 60% reduction 2025: 80% reduction

Gasification at 700-850oC, fluidized or fixed beds to create oxidant flow

Catalytic upgrading of syngas

Fermentation of syngas

URBAN MINING

Fast Pirolysis

Total global land is 13 Billion Hectares

G. Souza, 2016

Based on Woods, J. et al. (2015). Land and Bioenergy. Em: Souza, G. M., Victoria, R., Joly, C., & Verdade, L. (Eds.). (2015). Bioenergy & Sustainability: Bridging the gaps (Vol. 72, p. 258-300). Paris: SCOPE. ISBN 978-2-9545557-0-6.

Existing pastureland could support almost four times the numbers of animals.

40% of pastures have no livestock on it.

Bringing the poorest-performing pastures up to **50%** of their maximum attainable density would more than **double the global stock of grazing animals**.

LAND USE

Current land used for biofuels

Sustainability Assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala Canabarro et al. 2022; Renewable & Sustainable energy reviews

SOIL CARBON STOCKS

Guatemala → 10% of Pastureland (only ethanol)

Cherubin et al., 2022

RENOVABIO Policy Framework

Largely renewable energy mix Electricity mix: 92% renewable (year: 2022)

19% of the total consumed energy comes from sugarcane bagasse

Liquid fuel mix is 28% from ethanol or biodiesel

Brazilian Energy Mix

83% of the brazilian car fleet is flex-fuel

03

07

Small land use (7%)

01

Population: 203 million (2022) No country with more than 60 million inhabitants has an energy mix with more than 40% of renewables

Avoided CO₂ emissions in 20 years (4 billion trees)

Sugarcane is the world's highest tonnage crop but its yields could go even higher

Waclawovski et al., 2010 Plant Biotechnology Journal 8, 1-14

Domestication and early evolution of sugarcane

Interspecific breeding: a major breakthrough in modern sugarcane breeding

Solved some of the disease problems but also provided increased yields, improved ratooning ability and adaptability for growth under various stress conditions

Contributing genera: Saccharum, Erianthus, Miscanthus, Sclerostachya and Narenga

Saccharum genus (six polyploid taxonomic groups):

Wild species

S. spontaneum (2n=40 to 128) *S. robustum* (2n= 60, 80 and up to 200)

Early cultivars

S. officinarum (2n= 80) *S. barberi* (2n=81-124) *S. sinense* (2n=116-120)

Marginal species

S. edule (2n = 60 to 122))

SUGARCANE AND ENERGY-CANE

EVOLUÇÃO DA DEFICIÊNCIA HÍDRICA

Diniz et al., Int. J. Mol. Sci. 2020, 21, 9124

Monitoring and best management practices are key!

BBEST & IEA Bioenergy Conference 2024

Bioenergy and bioproducts: Accelerating the transition towards sustainability

SAVE THE DATE

October 22nd to 24th, 2024 São Paulo – Brazil The BBEST – IEA Bioenergy 2024 Conference will take place in São Paulo, the capital city of the São Paulo state, Brazil, from October 22nd to 24th, 2024.

Organized by the Bioenergy Research Program (BIOEN/FAPESP), the International Energy Agency Bioenergy Technology Collaboration Program, and the Bioenergy Society (SBE), the BBEST – IEA Bioenergy 2024 Conference will bring important topics such as responsible land use, agricultural productivity, resilient multifunctional landscapes, harvesting technology, logistics and scale, development of biorefineries and emerging advanced bioproducts and materials, bioelectricity, biofuels for air, sea and road transport, waste use for bioenergy production and strategies for the circular carbon economy.

After four successful editions in 2011, 2014, 2017, and 2020/2021, BBEST – IEA Bioenergy 2024 Conference intends to bring together the main researchers, scientists, students, and professionals interested in the topic of bioenergy.

Join us!

BIOEN FAPESP

http://glauciasouza.com

http://bioenfapesp.org

OBRIGADA!