ELECTROCHEMICAL STORAGE SYSTEMS

Maria Assunta Navarra

Department of Chemistry

FOCUS

Electrode and electrolyte materials for storage and conversion of energy in electrochemical devices (i.e., lithium-ion batteries and polymer electrolyte membrane fuel cells / electrolyzers)

Research group of Sapienza University of Rome, at the Department of Chemistry.

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

CONTENTS of the **LECTURE**

- □ Introduction to electrochemical storage systems
- □ Lithium-based batteries: constituent materials and functional properties
- □ Different types of electrolytes: liquid, polymer and solid-state conductors
- □ Focus on ionic liquid additives and gel polymer electrolytes
- □ Perspectives and alternative chemistries (calcium-based batteries)

2

mariassunta.navarra@uniroma1.it

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

A CONVENTIONAL ELECTRIC GRID

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

SMART GRID

mariassunta.navarra@uniroma1.it

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

ENERGY STORAGE SYSTEMS

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

A TYPICAL LI-ION BATTERY

Can store twice the energy of conventional accumulators (Pb-acid batteries)

mariassunta.navarra@uniroma1.it

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

mariassunta.navarra@uniroma1.it

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

mariassunta.navarra@uniroma1.it

Electrochemistry and Nanotechnologies for Advanced Materials

https://www.youtube.com/watch?v=VxMM4g2Sk8U

 $\Delta E = 4,1 V$ Energy density: ~ 80 Wh kg⁻¹ (gravimetric) e ~ 200 Wh L⁻¹ (volumetric)

Níshí, Y. The Development of Lithium Ion Secondary Batteries. Chem. Rec. 2001, 1, 406-413

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

The NOBEL PRIZE 2019 in Chemistry

for the development of Li-ion Batteries!

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

©Johan Jarnestad/The Royal Swedish Academy of Sciences

- Whittingham, M. S. Batterie à Base de Chalcogénures. Belgian patent no. 819672, 1975.
- Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. *Science* 1976, 192 (4244), 1126–1127.

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

©Johan Jarnestad/The Royal Swedish Academy of Sciences

 Mízushíma, K.; Jones, P. C.; Wíseman, P. J.; Goodenough, J. B. LíxCoO2 (0<x<1): A New Cathode Material for Batteries of High Energy Density. Mater. Res. Bull. 1980, 15 (6), 783-789.

mariassunta.navarra@uniroma1.it

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

- Yoshino, A.; Sanechika, K.; Nakajima, T. Japanese patent no. 1989293, 1985.
- Yoshíno, A.; Sanechíka, K.; Nakajíma, T. Secondary Battery. US patent no. 4,668,595, May 26, 1987.

Electrochemistry and Nanotechnologies – for Advanced Materials

Why Lithium?

It is the lightest metal: 0,53 g cm⁻³ It has the lowest redox potential: E° = -3,05 V vs SHE

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

Why (not) Lithium?

mariassunta.navarra@uniroma1.it

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

INTERNATIONAL SCHOOL ON ENERGY

mariassunta.navarra@uniroma1.it

Electrochemistry and Nanotechnologies for Advanced Materials

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

19

mariassunta.navarra@uniroma1.it

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

Electrolytes for Li-ion batteries: stability

(+)(e-P)Mat / el. / (e-N)Mat (-)

The electrochemical stability window limits of the electrolyte should exceed the cathodic and the anodic thermodynamic potentials of the electrodes

EPS-SIF

INTERNATIONAL SCHOOL ON ENERGY

mariassunta.navarra@uniroma1.it

Electrochemical stability window of a good electrolyte

(+) Carbon | electrolyte | Lithium (-)

Lectrochemistry and Nanotechnologies for Advanced Materials

Electrolyte decomposition over graphite

Courtesy of Prof. S. Brutti

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

Lithium plating and stripping

for Advanced Materials

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

Dendrite problems were solved with 99.5 % efficiency

Not good enough: One dendrite may be crucial!

Problems with Dendrite Formation:

Short-Circuit

Thermal Runaway

Explosion

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

Electrolytes: general requirements and types

Suitable ionic conductivity >1 mS/cm @ RT

High chemical & electrochemical stability on electrodes

Stable & functionally active in a wide T range (-20°C and 60°C) Low cost (simple and cost-effective synthetic routes)

High safety and low hazard (low toxicity, high flesh points)

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

Liquid electrolytes

26

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

SAFETY and RELIABILITY ISSUES of LIQUID ELECTROLYTES

Conventional liquid electrolytes, based on LiPF₆ salt and alkyl carbonate solvents, suffer from:

- incompatibility with the environment and human health (manipulation hazards)
- high vapor pressure and flammability
- narrow thermal stability domain

EPS-SIF

INTERNATIONAL SCHOOL ON ENERGY

A Dell computer went on fire in a conference in Osaka in June 2006. Sony and Dell announced recall of Sony's lithium ion batteries packs (more than 4.5 million).

27

Ionic Liquid additives in liquid electrolytes

Pictures of the flammability performances of LP30 at starting time (a), after 10 s (b), after 15 s (c) and after 20 s (d); of LP30/Py₁₄TFSI 70/30 wt/wt at starting time (e), after 10 s (f), after 15 s (g) and after 20 s (h); and of LP30/Py₁₄TFSI 50/50 wt/wt at starting time (i), after 10 s (j), after 15 s (k) and after 20 s (l). LP30: EC-DMC (ethylene carbonate-dimethyl carbonate), 1M LiPF₆

L. Lombardo, S. Brutti, M.A. Navarra, S. Panero, P. Reale, *J. Power Sources*, 227 (2013) 8

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

Ionic Liquid additives in liquid electrolytes

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

mariassunta.navarra@uniroma1.it

and Nanotechnologies for Advanced Materials

Li | IL50 | LiNi_{0.5}Mn_{1.5}O₄

A. Tsurumaki et al., Electrochimica Acta, 2019, 316, 1-7

 PF_6

mariassunta.navarra@uniroma1.it

for Advanced Materials

Why Ionic Liquids?

EPS-SIF

INTERNATIONAL SCHOOL ON ENERGY

Lectrochemistry and Nanotechnologies for Advanced Materials

SYNTHESIS OF ILs

and

and

New cations:

M_{1,3}: *N*-methyl-*N*-propylmorpholinium

M_{1,201}: *N*-methoxyethyl-*N*-methylmorpholinium

Anions:

TFSI: bis(trifluoromethanesulfonyl)imide

P_{1,202}: *N*-ethoxyethyl-*N*-methylpiperidinium

M_{1,202}: *N*-ethoxyethyl-*N*-methylmorpholinium

FSI: bis(fluorosulfonyl)imide

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

ILs thermal properties – from DSC

mariassunta.navarra@uniroma1.it

EPS-SIF NAL SCHOOL ON ENERGY

ILs ionic conductivity at 40 °C

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

Cycling performance: Li | P_{1,202}FSI - LiFSI | LiFePO₄ (LFP)

Akiko Tsurumaki, Hiroyuki Ohno, Stefania Panero, and Maria Assunta Navarra, *Electrochimica Acta*, 2018, 293, 160-165: "Novel bis(fluorosulfonyl)imide-based and ether-functionalized ionic liquids for lithium batteries with improved cycling properties"

mariassunta.navarra@uniroma1.it

EPS-SIF

TIONAL SCHOOL ON ENERGY

Further Improvements in SAFETY and RELIABILITY of BATTERIES

Gel Polymer Electrolytes (GPEs)

Lit Ionic liquid (IL) Electrolyte soln. Polymer

- ✓ Negligible leakage of liquid
- No flammability
- Stability and versatility in geometry
- Electronic insulation

mariassunta.navarra@uniroma1.it

for Advanced Material

Gel Polymer Electrolytes (GPEs): preparation

Ar-filled DRY BOX

Gel Polymer Electrolytes (GPEs): flammability test

	LP30 soaked in a Whatman [®] separator	G-LP	G-IL50
Pristine GPE			B
During ignition (2 sec)			-
After ignition			

GPE samples:

- G-LP (polymer matrix activated by LP30)
- **G-IL50** (polymer matrix activated by LP30:IL 50:50 mixture)

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

Gel Polymer Electrolytes (GPEs): ionic conductivity

All GPEs exhibit a room temperature ionic conductivity higher than 10⁻³ S cm⁻¹.

The conductivities of G-LP and G-IL30 are similar and higher than that of G-IL50.

GPE samples:

- **G-LP** (polymer matrix activated by LP30)
- G-IL30 (polymer matrix activated by LP30:IL 70:30 mixture)
- G-IL50 (polymer matrix activated by LP30:IL 50:50 mixture)

Ruggero Poiana, Ernestino Lufrano, Akiko Tsurumaki, Cataldo Simari, Isabella Nicotera and Maria Assunta Navarra, *Electrochimica Acta*, 401 (**2022**) 139470: "Safe Gel Polymer Electrolytes for High Voltage Li-Batteries".

EPS-SIF International School on Energy

A polymer-electrolyte lithium-ion «pouch-cell»

mariassunta.navarra@uniroma1.it

European Technology and Innovation Platform on Batteries – Batteries Europe, supported by the European Commission Strategic Research Agenda

Battery Generation	Electrodes active materials	Cell Chemistry / Type	Forecast market deployment
Gen 1	Cathode: LFP, NCAAnode: 100% carbon	Li-ion Cell	current
Gen 2a	Cathode: NMC111Anode: 100% carbon	Li-ion Cell	current
Gen 2b	Cathode: NMC523 to NMC 622Anode: 100% carbon	Li-ion Cell	current
Gen 3a	 Cathode: NMC622 to NMC 811 Anode: carbon (graphite) + silicon content (5-10%) 	Optimised Li-ion	2020
Gen 3b	 Cathode: HE-NMC, HVS (high-voltage spinel) Anode: silicon/carbon 	Optimised Li-ion	2025
Gen 4a	 Cathode NMC Anode Si/C Solid electrolyte 	Solid state Li-ion	2025
Gen 4b	Cathode NMCAnode: lithium metalSolid electrolyte	Solid state Li metal	>2025
Gen 4c	 Cathode: HE-NMC, HVS (high-voltage spinel) Anode: lithium metal Solid electrolyte 	Advanced solid state	2030
Gen 5	 Li O₂ – lithium air / metal air Conversion materials (primarily Li S) new ion-based systems (Na, Mg or Al) 	New cell gen: metal-air/ conversion chemistries / new ion-based insertion chemistries	>2030

41

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

Room-temperature total Li-ion conductivity in crystal structures.

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

The performance comparisons of liquid, polymer, inorganic and composite electrolytes in Lithium batteries

> Song Li, Shi-Qi Zhang, Lu Shen, Qi Liu, Jia-Bin Ma, Wei Lv, Yan-Bing He,* and Quan-Hong Yang, *Adv. Sci.* 2020, 7, 1903088

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

Ca-BATTERIES: an emerging storage technology

Why not multivalent elements (Mg, Ca, Al and Zn)

where the ability to drive multiple electron exchange for every charge transfer event counterbalances the larger atomic weight?

Lorenzo Stievano, Iratxe de Meatza, Jan Bitenc, Carmen Cavallo, Sergio Brutti, Maria Assunta Navarra, Emerging Calcium Batteries, *Journal of Power Sources*, 2021, 482, 228875

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

mariassunta.navarra@uniroma1.it

Ca-metal: properties

Metal/ion redox potential vs SHE

Ionic radius (pm)

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

Ca-metal: properties

Theoretical capacities of metal electrodes

ATIONAL SCHOOL ON ENERGY

Abundance on earth-crust and mean commodity costs

Element	Abundance on earth crust	Commodity quotes	
	mg kg ⁻¹	US\$ mton ⁻¹	
Li	20	7000-8000	
Na	23600	150-200	
K	20900	200-300	
Mg	23300	300-1000	
Ca	41500	200-500	
Zn	70	1500-2500	
Al	82300	1000-2000	

Ca-based electrode materials: theoretical properties

Thermodynamic redox potential and specific capacities for calcium redox couples

Even though calcium has an atomic weight 7 times larger than lithium, the specific capacities of the **oxides** vary in the 100-250 mAhg⁻¹ range. Their capacity and thermodynamic potentials match the figures of lithium intercalation positive electrodes!

Silicon, **phosphorus** and **carbon** negative electrodes can reach large theoretical capacities at relatively low redox potentials.

To date: calcium carbide is expected to suffer great kinetic limitation/overpotentials being the crystal structures of all CaC_2 polymorphs remarkably different from graphite.

In conversion electrodes, outstanding theoretical performance is achievable for **Ca-O₂** and for **Ca-S**!

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

Ca-based single cells: theoretical properties

Estimates of the theoretical energy densities for calcium-based batteries compared to lithium-based analogues

EPS-SIF

INTERNATIONAL SCHOOL ON ENERGY

CaMn₂O₄|**Si** Ca-ion battery (CIB) can disclose a theoretical energy density of about 520 mWh g⁻¹, overcoming the benchmark LiCoO_2 |C LIB (360 Wh kg⁻¹) and approaching the theoretical figures of the $\text{LiMn}_{1.5}\text{Ni}_{0.5}\text{O}_4$ |Si and LiFePO₄|Li formulations.

Both Sulphur battery chemistries, i.e. **Ca**|**S** and Li|S, have a comparable theoretical performance (approximately 1800-2000 Wh kg⁻¹) that is, in both cases, exceeded by the Ca $|O_2$ and Li $|O_2$ ones (~2400 and ~3500 Wh kg⁻¹, respectively).

49

In the case of **Li**, the Solid-Electrolyte Interface (SEI) layer has beneficial effects and a relatively facile diffusion of the Li⁺ ions through the passive film is found.

EPS-SIF

INTERNATIONAL SCHOOL ON ENERGY

D. Aurbach, R. Skaletsky, Y. Gofer, The Electrochemical Behavior of Calcium Electrodes in a Few Organic Electrolytes, *J. Electrochem. Soc.* 138 (1991) 3536–3545

Electrochemistry and Nanotechnologies for Advanced Materials

50

Ca-metal electrodes: a practical challenge

The revesible Ca plating/stripping was demonstrated only very recently!

In 2016 from solutions of $Ca(BF_4)_2$ in a mixture of ethylene carbonate (EC) and propylene carbonate (PC) at 75 and 100 °C.

Coulombic efficiency around 80% and oxidative stability up to 4 V

A. Ponrouch, C. Frontera, F. Bardé, M.R. Palacín, Towards a calcium-based rechargeable battery, Nature Mater. 15 (2016) 169–172. In 2018 from 1.5 M **Ca(BH₄)₂** in tetrahydrofuran (**THF**) at room T on precious metal surfaces (Au or Pt).

Coulombic efficiency between 94-96 % and oxidative stability up to 3 V

D. Wang, X. Gao, Y. Chen, L. Jin, C. Kuss, P.G. Bruce, Plating and stripping calcium in an organic electrolyte, Nature Mater. 17 (2018) 16–20.

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

Ca metal and the electrolytes

Different **electrolytes** used for Ca stripping/plating

Electrolyte	Coulombic efficiency	Working electrode	Year
Ca(AlCl ₄) ₂ SOCl ₂	Only stripping	Ni	1980
Ca(AlCl ₄) ₂ SOCl ₂	<10%, indirect evidence	Stainless steel	1982
Ca(BF ₄) ₂ EC:PC	85%, above 75 °C	Stainless steel	2016
Ca(BH ₄) ₂ THF	95%	Au	2018
Ca(B(hfip) ₄) ₂ DME	80%	Pt	2019
Ca(B(hfip) ₄) ₂ Bu ₄ NCl DME	90%	Au	2019
Ca(BH ₄) ₂ LiBH ₄ THF	99%	Au	2020

Only a very small number of Ca salts are available commercially!

Ca salt solubility is a major issue, stating the need for development of new highly dissociative salts.

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

Techno-economic modelling of Ca batteries

Volumetric (a) and gravimetric (b) energy densities for Li based batteries (blue circles) and Ca battery technologies (red triangles). The straight lines are calculated energy densities of hypothetical Ca metal batteries as a function of operation potential and cathode specific capacities (on the right of each line).

EPS-SIF INTERNATIONAL SCHOOL ON ENERGY

mariassunta.navarra@uniroma1.it

Features of Ca-batteries from the techno-economic analysis and OUTLOOK 54

Combinations of 3.0 V / 250 mAh·g⁻¹ or 3.5 V / 200 mAh·g⁻¹ can yield **gravimetric energy densities** above the 400 Wh·kg⁻¹ targeted by the Strategic Energy Technology (SET) Plan for year 2030, and high **volumetric energy densities** >1000 Wh·L⁻¹, even higher than any of the estimated sulfur-cathode-based battery technologies and exceeding the 750 Wh·L⁻¹ target in the SET Plan.

In terms of **power density**, expecting that 2C current rates are feasible without energy loss, most of the Ca metal-based batteries estimated here could achieve > 1500 W·L⁻¹ and >700 W·kg⁻¹ (SET Plan targets).

Ca-based batteries may disclose remarkable innovations and technological breakthrough, either from a fundamental science point of view or from an application perspective!

Electric vehicles powered by **solid-polymer electrolyte lithium batteries**: Li | Li⁺-polymer | LiFePO₄