Illuminating the dark: searches for dark matter in the Milky Way

PASSION FOR PHYSICS

24 June 201

20th Anniversary

Laura Baudis University of Zurich

.....

UREICHU

NASA and ESA image

When you look at the sky in a dark, clear night...

1 light year = 9.5 trillion kilometres

Andromeda, our neighbour, 2 million light years away

Mapping the visible Universe

Most of the matter (85%) is *invisible or dark*

Dark Matter Map in Galaxy Cluster Abell 1689 Hubble Space Telescope ACS/WFC NASA, ESA, and D. Coe (JPL/Caltech and STScI)

Fritz Zwicky: Coma cluster

Dark matter in galaxies

Vera Rubin: "In a spiral galaxy, the ratio of dark-to-light matter is about a factor of 10. That's probably a good number for the ratio of our ignorance-to-knowledge. We're out of kindergarten, but only in about third grade."

Vera Rubin, Kent Ford, Norbert Thonnard, The Astrophysical Journal 1978

100%

Dark matter in clusters of galaxies

Dark energy 68%

Dark matter 27% Pandora's cluster of galaxies

3.5 billion light years

Blue: dark matter

Red: hot Xray gas

Optical: galaxies

4 clusters involved in the collision

Baryons 5% 2 arcmin

Dark matter forms structures and galaxies

But: what is it made of?

HST COSMOS survey; Nature 445 (2007), 268

The Standard Model of Particle Physics

http://www.symmetrymagazine.org

galaxies, stars, planets, people,...

Particles from a very early phase of our Universe

• A 'thermal relic' from an early period in our Universe

when the average temperature was $T \sim 10^{15} \text{ K} \sim 100 \text{ GeV}$

- No particle in the Standard Model is a viable candidate
- Our young Universe was hot enough to create new, massive particles

These dark matter particles make up the halo of our Milky Way

Produce such new particles at the LHC, in p-p collisions

Produce such new particles at the LHC, in p-p collisions

Look for their *annihilation products* in the Galactic Halo, Galactic Centre or in the Sun

The AMS experiment on the ISS

The Antares experiment in the Mediterranean sea

Indirect detection

GC halo Galactic Centre dSph Extragalactic Galaxy clusters diffuse Galactic diffuse

Nature physics, March 2017

The Fermi-LAT instrument

The Cherenkov Telescope Array

Constraints on the annihilation cross section

Indirect detection

After Nature physics, March 2017

Constraints on the annihilation cross section

Look for very rare collisions of such particles with atomic nuclei

Flux of dark matter particles:

~ 10 millions through your hand, every second

Direct detection experiments

XENON100 LUX DarkSide-50

 $E_R = \frac{q^2}{2m_N} < 100 \,\mathrm{keV}$

v/c ~10⁻³

X

Evis

The WIMP landscape (before May 18, 2017)

Nature physics, March 2017

XENON1T at LNGS

The XENON1T TPC

127 PMTs in the top array

121 PMTs in the bottom array

3.2 t LXe @180 K

The XENON1T TPC: first assembly

Xenon1T chasse la matière noire

La découverte de la matière noire est-elle enfin proche? C'est en tout cas le grand espoir des astrophysiciens et physiciens des particules, tant l'instrument inauguré le 11 novembre dans le laboratoire sous-terrain de Gran Sasso, en Italie, paraît prometteur. Plus gros, plus précis, plus isolé que tous ses concurrents, Xenon 1 tonne devrait se lancer dans la grande chasse en février afin de mettre la main sur la fameuse particule fantôme. Voilà en effet trente ans que l'on sait que 80 % de la matière de l'Univers n'est pas «normale». Mais de quoi est-elle faite? Réponse, peut-être, au printemps.

xenon1t.org

XENON1T: first results arXiv:1705.06655 (Science Run 0)

- Electronic recoils (²²⁰Rn calibration)
- Nuclear recoils (²⁴¹AmBe calibration, currently also D-D fusion generator)

ta selection

- Signal region blinded until selection fixed
- Single-scatter, event quality, peak quality, fiducial volume (1042 kg)

XENON1T: backgrounds

 ER rate prediction: 0.2 events/(ton y keV)

reduced to predicted level

^{nat}Kr concentration
 reduced from 2.6 ppt
 to 0.36 ppt

XENON1T: signal & backgrounds

50 GeV/c², 10⁻⁴⁶ cm²
 WIMP

 background dominated by radon

 ²²²Rn reduced to 10 µBq/kg, further
 reduction possible

XENON, Eur. Phys. J. C (2017) 77: 358

XENON1T: first results

- Unbinned profile
 likelihood analysis
- no post-unblinding changes to event selection
- ER/NR shape determined from calibration fits

XENON, arXiv:1705.06655

Direct, indirect & LHC

Adapted after Nature physics, March 2017

Direct detection evolution

Constraints on the scattering cross section on nucleons

Summary & Outlook

- Cold dark matter is (still) a viable paradigm that explains all cosmological & astrophysical observations
 - It could be made WIMPs thermal relics from an early phase of our Universe
 - this hypothesis is testable: direct detection, indirect detection, accelerators
 - so far, no convincing detection of a dark matter particle in the laboratory
- But: direct detection experiments offer excellent prospects for discovery
 - increase in WIMP sensitivity by 2 orders of magnitude in the next few years
 - reach neutrino background (measure neutrino-nucleus coherent scattering from solar/atm/SN neutrinos!) this & next decade
 - high complementarity with indirect searches (AMS, IceCube, CTA, Fermi...) & with the HL-LHC

 Of course, "the probability of success is difficult to estimate, but if we never search, the chance of success is zero"

G. Cocconi & P. Morrison, Nature, 1959

The End