Single Site Addressing

Ch. Weitenberg et al., Nature 471, 319-324 (2011)

 \bigcirc F=1,m_F=-1 Atoms \bigcirc F=2,m_F=-2 Atoms

Differential light shift allows to coherently address single atoms! Landau-Zener Microwave sweep to coherently convert atoms between spin-states.

D.S. Weiss et al., PRA (2004), Zhang et al., PRA (2006)

Differential light shift allows to coherently address single atoms! Landau-Zener Microwave sweep to coherently convert atoms between spin-states.

D.S. Weiss et al., PRA (2004), Zhang et al., PRA (2006)

Differential light shift allows to coherently address single atoms! Landau-Zener Microwave sweep to coherently convert atoms between spin-states.

$$(2,-2) (2,-2)$$
D.S. Weiss et al., PRA (2004),
Zhang et al., PRA (2006) (1,-1)

Differential light shift allows to coherently address single atoms! Landau-Zener Microwave sweep to coherently convert atoms between spin-states.

$$(2,-2) (2,-2)$$
D.S. Weiss et al., PRA (2004),
Zhang et al., PRA (2006) (1,-1)

Tuesday 8 July 14

 $F=1,m_F=-1$ Atoms $F=2,m_F=-2$ Atoms

Differential light shift allows to coherently address single atoms! Landau-Zener Microwave sweep to coherently convert atoms between spin-states.

$$(2,-2) (2,-2)$$
D.S. Weiss et al., PRA (2004),
Zhang et al., PRA (2006) (1,-1)

Tuesday 8 July 14

 $F=1,m_F=-1$ Atoms $F=2,m_F=-2$ Atoms

Differential light shift allows to coherently address single atoms! Landau-Zener Microwave sweep to coherently convert atoms between spin-states.

$$(2,-2) (2,-2)$$
D.S. Weiss et al., PRA (2004),
Zhang et al., PRA (2006) (1,-1)

Tuesday 8 July 14

 $F=1,m_F=-1$ Atoms \bigcirc $F=2,m_F=-2$ Atoms

Differential light shift allows to coherently address single atoms! Landau-Zener Microwave sweep to coherently convert atoms between spin-states.

$$(2,-2) (2,-2)$$
D.S. Weiss et al., PRA (2004),
Zhang et al., PRA (2006) (1,-1)

Tuesday 8 July 14

Coherent Spin Flips - Positive Imaging

Subwavelength spatial resolution: 50 nm

Ch. Weitenberg et al., Nature **471**, 319-324 (2011)

Arbitrary Light Patterns

Digital Mirror Device (DMD)

Arbitrary Light Patterns

Digital Mirror Device (DMD)

Measured Light Pattern

Arbitrary Light Patterns

Digital Mirror Device (DMD)

Measured Light Pattern

Exotic Lattices

Quantum Wires

Box Potentials

Almost Arbitrary Light Patterns Possible!

Single Spin Impurity Dynamics, Domain Walls, Quantum Wires, Novel Exotic Lattice Geometries, ...

Spin impurity dynamics

 $|2\rangle = |F=2, m_F=-2\rangle$ $|1\rangle = |F=1, m_F=-1\rangle$

Line-shaped light field created with DMD SLM

T. Fukuhara et al., Nature Physics 9, 235 (2013)


```
|| > = |F=|, m_F=-| >
```


Line-shaped light field created with DMD SLM

T. Fukuhara et al., Nature Physics 9, 235 (2013)

Ultimate Size Control in 2D

Digital Mirror Device (Size Control)

Fluctuating Size and non-perfect shape

Ultimate Size Control in 2D

Digital Mirror Device (Size Control)

Fluctuating Size and non-perfect shape

Ultimate Size Control in 2D

Digital Mirror Device (Size Control)

Fluctuating Size and non-perfect shape

Size & atom number perfectly controlled

Ultimate Size Control in 2D

Fluctuating Size and

• Sub Shot Noise Atom Number Preparation

•Geometric & atom number control (crucial e.g. for quantum criticality)

•Hard wall potentials realized (crucial for edge states)

Size & atom number perfectly controlled

Ultimate Size Control in 2D

Digital Mirror Device (Size Control)

Initial MI

Single Atom

Ultimate Size Control in 2D

Digital Mirror Device (Size Control)

Initial MI

Single Atom

U

Tunneling of a Single Atom

Position (lattice site)

$$H = -J^{(0)} \sum_{\langle i,j \rangle} \hat{a}_i^{\dagger} \hat{a}_j + \sum_i \frac{1}{2} m \omega^2 a_{\text{lat}}^2 i^2 \hat{n}_i$$

Tunneling of a Single Atom

$$H = -J^{(0)} \sum_{\langle i,j \rangle} \hat{a}_i^{\dagger} \hat{a}_j + \sum_i \frac{1}{2} m \omega^2 a_{\text{lat}}^2 i^2 \hat{n}_i$$

Tunneling of a Single Atom

$$H = -J^{(0)} \sum_{\langle i,j \rangle} \hat{a}_i^{\dagger} \hat{a}_j + \sum_i \frac{1}{2} m \omega^2 a_{\text{lat}}^2 i^2 \hat{n}_i$$

Single Atom Tunnelling

Single Atom Tunnelling

Motional State Affected?

see exp:Y. Silberberg (photonic waveguides), D. Meschede & R. Blatt (quantum walks)...

see exp:Y. Silberberg (photonic waveguides), D. Meschede & R. Blatt (quantum walks)...

Higher Band Tunneling

Excellent agreement with simulation.

Excellent agreement with simulation.

meling

Controlling Superexchange Interactions

www.quantum-munich.de

Origin of Spin-Spin Interactions – Exchange Interactions

Important ionic solids with no direct exchange between magnetic ions show magnetic ordering (MnO, CuO)!

"Super"-exchange interactions must be at work!

P.W. Anderson, Phys. Rev. 79, 350 (1950)

Deriving the Effective Spin Hamiltonian (1)

How do we get from
$$-J\sum_{\langle i,j \rangle} \hat{a}_i^{\dagger} \hat{a}_j + \frac{1}{2}U\sum_i \hat{n}_i(\hat{n}_i - 1)$$
 to $H = -J_{ex}\sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$?

U

Deriving the Effective Spin Hamiltonian (1)

How do we get from
$$-J\sum_{\langle i,j \rangle} \hat{a}_i^{\dagger} \hat{a}_j + \frac{1}{2}U\sum_i \hat{n}_i(\hat{n}_i - 1)$$
 to $H = -J_{ex}\sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$?

Deriving the Effective Spin Hamiltonian (1)

Deriving the Effective Spin Hamiltonian (2)

Second order hopping can be written as

$$H = -2\frac{J^2}{U}\left(1 + \hat{X}_{LR}\right)$$
Deriving the Effective Spin Hamiltonian (2)

Second order hopping can be written as

$$H = -2\frac{J^2}{U}\left(1 + \hat{X}_{LR}\right)$$

$$\hat{X}_{LR} \begin{bmatrix} |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \\ \sqrt{2} \end{bmatrix} = -\begin{bmatrix} |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \\ \sqrt{2} \end{bmatrix}$$
$$\hat{X}_{LR} \begin{bmatrix} |\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \\ \sqrt{2} \end{bmatrix} = +\begin{bmatrix} |\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \\ \sqrt{2} \end{bmatrix}$$

Deriving the Effective Spin Hamiltonian (2)

Second order hopping can be written as

$$H = -2\frac{J^2}{U}\left(1 + \hat{X}_{LR}\right)$$

$$\hat{X}_{LR} \left[\frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}} \right] = - \left[\frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}} \right]$$
$$\hat{X}_{LR} \left[\frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}} \right] = + \left[\frac{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}{\sqrt{2}} \right]$$

$$H = -J_{ex} \hat{P}_{triplet}$$

$$0 \text{ Singlet}$$

$$I = -J_{ex} \hat{P}_{triplet}$$

$$I = -J_{ex} \hat{P}_{triplet}$$

Deriving the Effective Spin Hamiltonian (3)

$$\hat{P}_{\text{triplet}} = \hat{P}_{S=1}$$

$$\mathbf{S}_{L} \cdot \mathbf{S}_{R} = \frac{(\mathbf{S}_{L} + \mathbf{S}_{R})^{2}}{2} - \frac{3}{4}$$

$$= \frac{S(S+1)}{2} - \frac{3}{4}$$

$$= \hat{P}_{S=1} - \frac{3}{4}$$

$$H = -J_{ex} \left(\mathbf{S}_L \cdot \mathbf{S}_R + \frac{3}{4} \right)$$

Direct Detection of Superexchange Interactions

Direct Detection of Superexchange Interactions (2)

Direct Detection of Superexchange Interactions (2)

Superexchange Coupling in Quantum Dots

Local control of spin states & interactions between spin states.

J.R. Petta et al., Science **309**, 2180 (2005)

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots

Superexchange induced flopping

$$\int \frac{4J^2/U}{\sqrt{2}}$$

$$\begin{aligned} H_{eff} &= -J_{ex}\vec{S}_i \cdot \vec{S}_j \\ &= -\frac{J_{ex}}{2} \left(\hat{S}_i^+ \hat{S}_j^- + \hat{S}_i^- \hat{S}_j^+ \right) - J_{ex}\hat{S}_i^z \hat{S}_j^z \end{aligned}$$

Mapping the Spins

Mapping the Spins

Initial AF order verified in the experiment!

Superexchange induced flopping

Superexchange induced flopping

Quantum Dynamic of Mobile Single Spin Impurity

T. Fukuhara, M. Endres, M. Cheneau P. Schauss, Ch. Gross, I. Bloch, S. Kuhr, U. Schollwöck, A. Kantian, Th. Giamarchi

Sherson et al. Nature 467, 68 (2010), see also Bakr et al. Nature (2009) & Bakr et al. Science (2010)

www.quantum-munich.de

Tuesday 8 July 14

 $|2\rangle = |F=2, m_F=-2\rangle$ $|1\rangle = |F=1, m_F=-1\rangle$

Line-shaped light field created with DMD SLM

||> = |F=|, m_F=-|>

Line-shaped light field created with DMD SLM

Heisenberg Hamiltonian

$$H = -J_{ex} \sum \mathbf{S}_i \cdot \mathbf{S}_j = -J_{ex} \sum \left(S_i^x S_j^x + S_i^y S_j^y + S_i^z S_j^z \right)$$
$$= -\frac{J_{ex}}{2} \sum \left(S_i^+ S_j^- + S_i^- S_j^+ \right) - J_{ex} \sum S_i^z S_j^z \qquad \qquad J_{ex} = 4 \frac{J^2}{U}$$

$$H=-J\sum\left(\hat{a}_{i}^{\dagger}\hat{a}_{j}+\hat{a}_{i}\hat{a}_{j}^{\dagger}
ight)\;$$
 single particle tunneling

Heisenberg Hamiltonian

$$H = -J_{ex} \sum \mathbf{S}_i \cdot \mathbf{S}_j = -J_{ex} \sum \left(S_i^x S_j^x + S_i^y S_j^y + S_i^z S_j^z \right)$$
$$= -\frac{J_{ex}}{2} \sum \left(S_i^+ S_j^- + S_i^- S_j^+ \right) - J_{ex} \sum S_i^z S_j^z \qquad \qquad J_{ex} = 4 \frac{J^2}{U}$$

$$H=-J\sum\left(\hat{a}_{i}^{\dagger}\hat{a}_{j}+\hat{a}_{i}\hat{a}_{j}^{\dagger}
ight)\;$$
 single particle tunneling

Our detection is not spin-resolved.

Positive image

Negative image

Our detection is not spin-resolved.

Our detection is not spin-resolved.

Positive image Remove the other spin component (bath spin) before detection

Negative image Measure spin impurities as empty sites by pushing out the impurities

Our detection is not spin-resolved.

Positive image Remove the other spin component (bath spin) before detection

Negative image

Measure spin impurities as empty sites by pushing out the impurities

Our detection is not spin-resolved.

Positive image Remove the other spin component (bath spin) before detection

Negative image

Measure spin impurities as empty sites by pushing out the impurities

Coherent quantum dynamics of single spin at zero temperature

$$H = -\frac{J_{ex}}{2} \sum_{\langle i,j \rangle} \left(S_i^+ S_j^- + S_i^- S_j^+ \right)$$

$$P_{j}(t) = \left[\mathscr{J}_{j}\left(\frac{J_{\text{ex}}t}{\hbar}\right) \right]^{2}$$

Bessel function of the first kind

Quantum Magnetism

Effect from hole excitations

- Only visibility goes down
- Spreading speed almost independent of holes

Temperature Effects

Propagation speed almost constant, Coherence affected!

Propagation velocty

Reference value:

$$v = rac{2Ja_{lat}}{\hbar}$$
 Free particle tunneling

Quantum Dynamics of Interacting Atoms/Spins

- Effect of Temperature/Holes on Dynamics
- Dynamics of Magnon bound states
- Domain Walls
- Higher Dimensions (ID, 2D, 3D)
- Entropy Transport
- Probe for Quantum Critical Transport
- Direct measurement of Green's function

$$G(x_i, x_j, t) \propto \langle \Uparrow | \hat{S}^{\dagger}(x_j, t) \hat{S}^{-}(x_i, 0) | \Uparrow \rangle$$

Direct Observation of Magnon Bound States

T. Fukuhara, P. Schauss, S. Hild, J.Zeiher, M. Cheneau, M. Endres, I. Bloch, Ch. Gross

T. Fukuhara et al., Nature **502**, 76 (2013) for photons: O. Firstenberg et al., Nature **502**, 71 (2013)

www.quantum-munich.de

Magnon Bound States

There can be bound states in a Heisenberg spin chain! Development of Bethe Ansatz.

$$H = -J_{ex} \sum_{i} \left(\hat{S}_{i}^{x} \hat{S}_{i+1}^{x} + \hat{S}_{i}^{y} \hat{S}_{i+1}^{y} \right) - \Delta \sum_{i} \hat{S}_{i}^{z} \hat{S}_{i+1}^{z}$$

Hans Bethe (1906-2005)

H. Bethe, Z. Phys. (1931)
M. Wortis, Phys Rev. (1963)
M. Takahashi & M. Suzuki Prog. Th. Phys. (1972)
M. Karbach, G. Müller (1997)
see also: **repulsively bound pairs & interacting atoms**K. Winkler et al. Nature (2006); S. Fölling et al. Nature (2007); Y Lahini et al. PRA (2012)

H. Bethe, Z. Phys. (1931)

M. Wortis, Phys Rev. (1963)

There can be bound states in a Heisenberg spin chain! Development of Bethe Ansatz.

$$H = -J_{ex} \sum_{i} \left(\hat{S}_{i}^{x} \hat{S}_{i+1}^{x} + \hat{S}_{i}^{y} \hat{S}_{i+1}^{y} \right) - \Delta \sum_{i} \hat{S}_{i}^{z} \hat{S}_{i+1}^{z}$$

Hans Bethe Ge (1906-2005) |-string b

General I-string bound states

M.Takahashi & M. Suzuki Prog.Th. Phys. (1972) M. Karbach, G. Müller (1997)

see also: repulsively bound pairs & interacting atoms

K.Winkler et al. Nature (2006); S. Fölling et al. Nature (2007); Y Lahini et al. PRA (2012)

Magnon Bound States

Hans Bethe (1906-2005)

There can be bound states in a Heisenberg spin chain! Development of Bethe Ansatz.

$$H = -J_{ex} \sum_{i} \left(\hat{S}_{i}^{x} \hat{S}_{i+1}^{x} + \hat{S}_{i}^{y} \hat{S}_{i+1}^{y} \right) - \Delta \sum_{i} \hat{S}_{i}^{z} \hat{S}_{i+1}^{z}$$

 $H = -\frac{J_{ex}}{2} \sum_{i} \left(\hat{S}_{i}^{+} \hat{S}_{i+1}^{-} + \hat{S}_{i}^{-} \hat{S}_{i+1}^{+} \right) - \Delta \sum_{i} \hat{S}_{i}^{z} \hat{S}_{i+1}^{z}$

H. Bethe, Z. Phys. (1931)
M. Wortis, Phys Rev. (1963)
M. Takahashi & M. Suzuki Prog. Th. Phys. (1972)
M. Karbach, G. Müller (1997)
see also: **repulsively bound pairs & interacting atoms**K. Winkler et al. Nature (2006); S. Fölling et al. Nature (2007); Y Lahini et al. PRA (2012)

Tuesday 8 July 14

Bound I-string

Excitation spectrum:

M. Karbach & G. Müller (1997)

Very difficult to observe in spectroscopic data in real materials!

theory **without** bound states

M. Kohno, Phys. Rev. Lett. **102**, 037203 (2009)

Magnon Bound States

Initial State Decomposition

Ansatz

$$|\Psi\rangle = \sum_{1 \le i < j \le N} a(i,j) |i,j\rangle$$

$$|i,j\rangle = \hat{S}_i^- \hat{S}_j^- | \dots \uparrow \uparrow \uparrow \uparrow \dots \rangle$$

Initial State Overlap with Bound Magnon and Free Magnon States Spin Correlations in Bound Magnon Wavefunction

Dynamical Evolution

Bound Magnon Motion

M. Ganahl et al., Phys. Rev. Lett. (2012)
Bound Magnon Motion

M. Ganahl et al., Phys. Rev. Lett. (2012)

Bound Magnon Motion

M. Ganahl et al., Phys. Rev. Lett. (2012)

Bound Magnon Motion

M. Ganahl et al., Phys. Rev. Lett. (2012)

Bound Magnon Motion

M. Ganahl et al., Phys. Rev. Lett. (2012)

Bound Magnon Motion

Breakup and Single Spin Motion

Bound Magnon Motion

Breakup and Single Spin Motion

Bound Magnon Motion

Breakup and Single Spin Motion

Bound Magnon Motion

Breakup and Single Spin Motion

M. Ganahl et al., Phys. Rev. Lett. (2012)

Bound Magnon Motion

Breakup and Single Spin Motion

M. Ganahl et al., Phys. Rev. Lett. (2012)

Two-spin excitation in FM

0.4

0.3

0.2

0.1

10

02 time

30

10

30

position

40

50

20

- New lower branch is bound state
- It dominates at large J_z, with decreasing velocity
- Low entanglement entropy (see below)

From: H.G. Evertz

M. Ganahl et al., Phys. Rev. Lett. (2012)

Dynamical Evolution

Initial State:

Pair distribution evolution

 $P(x_1, x_2)$

$\Delta=0$ Non-Interacting

 x_1

 x_2

see also: two interacting atoms Y. Lahini et al., PRA 86, 011603 (2012)

Dynamical Evolution

Initial State:

Pair distribution evolution

$$P(x_1, x_2)$$

 x_2

see also: two interacting atoms Y. Lahini et al., PRA 86, 011603 (2012)

Dynamical Evolution

Initial State:

Pair distribution evolution

 $P(x_1, x_2)$

$\Delta = 1$ Interacting Isotropic Heisenberg

 x_1

Dynamical Evolution

Initial State:

Pair distribution evolution

$$P(x_1, x_2)$$

 $\begin{array}{l} \Delta = 1 \\ \text{Interacting} \\ \text{Isotropic Heisenberg} \end{array}$

Dynamical Evolution

Initial State:

Pair distribution evolution

 $P(x_1, x_2)$

 $\Delta = 1.6$ Interacting Heisenberg

 x_1

Dynamical Evolution

Initial State:

Pair distribution evolution

Experimental Results

 $C(x_1, x_2) = P(x_1, x_2) - P(x_1)P(x_2)$

Propagation Velocity

Propagation Velocity

Quantum Dynamics of Interacting Atoms/Spins

- Effect of Temperature/Holes on Dynamics
- Dynamics of I-string bound states
- Domain Walls
- Higher Dimensions (ID, 2D, 3D)
- Entropy Transport
- Probe for Quantum Critical Transport
- Direct measurement of Green's function

$$G(x_i, x_j, t) \propto \langle \Uparrow | \hat{S}^{\dagger}(x_j, t) \hat{S}^{-}(x_i, 0) | \Uparrow \rangle$$

M. Knap et al. PRL **III**, 147205 (2013)

Controlling and Detecting Spin Correlations

S. Trotzky et al., Phys. Rev. Lett 105, 265303 (2010)

www.quantum-munich.de

Splitting a spin pair

- Spin pairs in $|F = 1, m_F = \pm 1\rangle = |\uparrow\rangle, |\downarrow\rangle$ (repulsive)
- Barrier raised *slowly* to split
 - \rightarrow Crossing a miniature Mott-transition: $n_{\text{Left}} = n_{\text{Right}} = 1$
 - J. Sebby-Strabley et al., PRL **98** (2007)

Details on the loading of the Spin-pairs: S.T., P. Cheinet et al., Science **319** (2008)

Splitting a spin pair

- Spin pairs in $|F = I, m_F = \pm I \rangle = |\uparrow\rangle, |\downarrow\rangle$
- Barrier raised *slowly* to split \rightarrow Crossing a miniature Mott-transition: $n_{\text{Left}} = n_{\text{Right}} = 1$

• **Bosons**: Symmetric wavefunction \rightarrow Triplet $|t_0\rangle$

(Fermions: Antisymmetric wavefunction \rightarrow Singlet $|s^{>}$)

Details on the loading of the Spin-pairs: S.T., P. Cheinet et al., Science **319** (2008)

Driving Triplet-Singlet oscillations

 $\Delta_B \propto a \cdot \partial_x B_x$

• Magnetic field gradient lifts degeneracy:

Driving Triplet-Singlet oscillations

• Magnetic field gradient lifts degeneracy:

• Triplet-Singlet oscillations with frequency $~\Delta_B/\hbar$

$$|t_0\rangle \iff |S\rangle$$

How to detect triplets and singlets

- Barrier lowered slowly to merge double-wells
 - → **Triplet**: both atoms reach the **ground state**

How to detect triplets and singlets

- Barrier lowered slowly to **merge** double-wells
 - → **Triplet**: both atoms reach the **ground state**

→ Singlet: needs anti-symm. spatial wavefunction (Bosons) One atom transferred to higher vibrational band

How to detect triplets and singlets

- Barrier lowered slowly to **merge** double-wells
 - → **Triplet**: both atoms reach the **ground state**

→ Singlet: needs anti-symm. spatial wavefunction (Bosons) One atom transferred to higher vibrational band

Band-mapping reveals singlet-contribution in higher Brillouin-Zone

A sensitive probe of next-neighbor spin-correlations in Mottinsulator type many-body systems

	band excitations		STO amplitude	
	bosons	fermions	bosons	fermions
$ t\rangle$	0%	50%	50%	50%
$ s\rangle$	50%	0%	50%	50%
\downarrow , \uparrow >	25%	25%	0%	0%
$ \uparrow,\downarrow\rangle$	25%	25%	0%	0%
$ \uparrow,\uparrow\rangle$	0%	50%	0%	0%
$ \downarrow,\downarrow\rangle$	0%	50%	0%	0%

→ Capable of probing spin-order in strongly correlated phases at low temperatures

Band-mapping reveals singlet-contribution in higher Brillouin-Zone

Singlet-Triplet oscillations

- Load system and create spin pairs
- Split pairs into triplets
- Induce STO via gradient
- Merging and band-mapping for detection
- → Traces of STO versus holdtime with gradient
- Vary gradient coil current

Singlet-Triplet oscillations

- Linear increase in Frequency with gradient strength
- Frequency = 2x single particle shift (independently meas.)
 → confirms 2-particle nature of oscillations

An Optical Lattice of Plaquettes

Array of plaquettes using two superlattices

Single plaquette

RVB

At half-filling, t≪U:

$$\hat{H} = -J_X \left(\mathbf{S}_A \cdot \mathbf{S}_B + \mathbf{S}_C \cdot \mathbf{S}_D \right) - J_Y \left(\mathbf{S}_A \cdot \mathbf{S}_D + \mathbf{S}_B \cdot \mathbf{S}_C \right)$$

S. Nascimbene et al., Phys. Rev. Lett. **108**, 205301 (2012)

B. Paredes and I. Bloch, Phys. Rev. A **77**, 023603 (2008)

with Rydbergs: A. Nielsen and K. Mølmer Phys. Rev. A **82**, 052326 (2010)

Resonating Bonds

3

→ X

$$\hat{H} = -J_X \left(\mathbf{S}_1 \cdot \mathbf{S}_2 + \mathbf{S}_3 \cdot \mathbf{S}_4 \right) - J_Y \left(\mathbf{S}_1 \cdot \mathbf{S}_4 + \mathbf{S}_2 \cdot \mathbf{S}_3 \right)$$

$$\hat{X}_{ij} = 2\mathbf{S}_i \cdot \mathbf{S}_j + 1/2$$

$$\hat{H} = -J_x \hat{X}_x - J_y \hat{X}_y$$

$$\hat{X}_x = (\hat{X}_{12} + \hat{X}_{34})/2$$

$$\hat{X}_y = (\hat{X}_{23} + \hat{X}_{14})/2$$
in S=0 subspace
and $J_x = J_y = J$

$$\left(\hat{H} = -J\hat{X}_{xy} \right)$$

 $\hat{X}_{xy} = (\hat{X}_{13} + \hat{X}_{24})/2$

Exchange along diagonals!

Valence Bond Resonance

 $\{|00\rangle, |\Xi\rangle\}$ Basis States (but non-orthogonal!)

- We prepare valence bond states along y.
- At t=0, we suddenly set $J_x = J_y = 120(10)$ Hz

Oscillations observed with almost maximum contrast!

- ✓ Generation of Minimum Instances of Topologically Ordered Quantum States
- ✓ Direct Time-Resolved Observation of Resonating Bonds

\checkmark Use of s- and d-wave RVB states as (minimally) **topologically**

protected qubits

✓ Generation of **larger RVB states** by connecting Valence Bond Solids on

Lattice

S. Trebst et al. PRL 96, 250402 (2006), A.-M. Rey et al. EPL 87, 60001 (2009)

Quantum Magnetism in Tilted Lattices

J. Simon et al. Nature (2011) S. Sachdev et al., PRB (2002) & S. Pielawa et al. PRB (2011)

Dynamical Crystallization of Rydberg Atoms P. Schauss, M. Cheneau, M. Endres, T. Fukuhara, T. Macri, Th. Pohl, I.B. & C. Gross P. Schauss et al. Nature **491**, 87 (2012) P. Schauss et al. (arXiv:1404.9480)

Tuesday 8 July 14

Rydberg atoms

- hydrogen-like wave function
 - quantum defect

$$E_{nlj} = -\frac{\mathrm{Ry}}{[n - \delta_{lj}(n)]^2}$$

Strong switchable interactions

⁸⁷Rb 43S_{1/2}

Ø 0.5nm

⁸⁷Rb 5S_{1/2}

Ø 250 nm

Property	Scaling	⁸⁷ Rb 43S
Radius	(n*) ²	2400 a ₀ = 127nm
Lifetime (dominated by black body radiation for large n)	(n*) ²	45 μs @ 20°C
van der Waals coefficient	(n*) ¹¹	$C_6 = -1.7 \times 10^{19} a.u.$
Blockade radius ($\Omega=2\pi 200 \text{ kHz}$)	(n*) ²	~ 5 µm

Saffman, Walker, & Mølmer Rev. Mod. Phys. (2010)

see work in: Paris, Madison, Palaiseau, Stuttgart, Heidelberg, Durham, Michigan....

Tuesday 8 July 14

M. Lukin et al. PRL **87**, 037901 (2001)

Tuesday 8 July 14

Blockade radius **larger** than cloud size!

Each superatom:

$$\frac{1}{\sqrt{N}}(|r,0,0,0,...\rangle+|0,r,0,0,...\rangle+|0,0,0,...,r\rangle)$$

M. Lukin et al. PRL **87**, 037901 (2001)

Tuesday 8 July 14

see work by A. Browaeys & Ph. Grangier, M.

Saffman, A. Kuzmich, T. Pfau...

 $\sqrt{N\Omega_1}$ Rabi Oscillations speed up!

Each superatom:

$$\frac{1}{\sqrt{N}}(|r,0,0,0,...\rangle+|0,r,0,0,...\rangle+|0,0,0,...,r\rangle)$$

M. Lukin et al. PRL 87, 037901 (2001)

Tuesday 8 July 14

see work by A. Browaeys & Ph. Grangier, M.

Saffman, A. Kuzmich, T. Pfau

DMD Adressing

Ultimate Size Control in 2D

Digital Mirror Device (Size Control)

Initial MI

Single Atom

DMD Adressing

Ultimate Size Control in 2D

Digital Mirror Device (Size Control)

Initial MI

Single Atom

U

Rydberg

Collective Many-Body Rabi Oscillations

Rydberg

Collective Many-Body Rabi Oscillations

Single atom non-linearity controls dynamics of >50 atoms!

Preliminary Raw Data

Rydberg Crystal The frozen Rydberg gas - long range QM

no mechanical motion on the timescale of the internal dynamics

This work: $\alpha = 6$, repulsive

 $m_{J}=-1/2$ 43S_{1/2} 480 nm σ^+ **↓** 700 MHz 5P_{3/2} F=3, m_F=-3 780 nm σ 5S_{1/2} F=2, m_F=-2

- two-photon Rabi frequency: $\Omega/2\pi = 170(20) \text{ kHz}$
- resonant excitation: $\Delta = 0$
- blockade radius:
 R_b = 4.9(1) μm

- two-photon Rabi frequency: $\Omega/2\pi = 170(20) \text{ kHz}$
- resonant excitation: $\Delta = 0$
- blockade radius: $R_b = 4.9(1) \ \mu m$

- removal pulse duration: 10 μs
- survival probability: 0.1 %

- deexcitation pulse duration: 2 µs
- detection efficiency: 75(10) %
- overall resolution: ~ 500 nm

- deexcitation pulse duration: 2 µs
- detection efficiency: 75(10) %
- overall resolution: ~ 500 nm

Energy spectrum of the Rydberg gas

Rydberg

Pulsed Excitation

Superposition of different many-body Rydberg states!

Post selection according to atom number!

Post selection according to atom number!

centre onto the barycenter

Correlation functions

Deviations due to:

- hopping during the fluorescence imaging probability ~ 1 %
- imperfect removal of the ground state atoms 0.2 atoms per image
- residual motion of the Rydberg atoms before imaging $-\pm 0.5 \ \mu m$

Blockade radius measurement, see also: Schwarzkopf et al. PRL (2011)

Tuesday 8 July 14

Dynamical Crystallization

$$H = \frac{\hbar\Omega}{2} \sum_{i} \left(\sigma_{eg}^{(i)} + \sigma_{ge}^{(i)} \right) + \sum_{i \neq j} \frac{V_{ij}}{2} \sigma_{ee}^{(i)} \sigma_{ee}^{(j)} - \Delta \sum_{i} \sigma_{ee}^{(i)}$$

Frozen Gas Phase Diagram

Dynamical Crystallization in the Dipole Blockade of Ultracold Atoms

T. Pohl,^{1,2} E. Demler,^{2,3} and M. D. Lukin^{2,3}

¹Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany ²ITAMP-Harvard-Smithsonian Center for Astrophysics, Cambridge Massachusetts 02138, USA ³Physics Department, Harvard University, Cambridge Massachusetts 02138, USA (Received 26 July 2009; revised manuscript received 23 October 2009; published 27 January 2010)

Coherent Control of Many-Body System through Adiabatic Sweeps

Theory see:

T. Pohl et al. PRL 2010; G. Pupillo et al. PRL 2010, R.M.W van Bijnen et al. J. Phys. B:At. Mol. Opt. Phys. (2011) **see also:** H.Weimer et al., PRL 2008

Energy spectrum of the Rydberg gas

Tuesday 8 July 14

DMD: Keep 3xN lattice sites

Constant sweep, different length

Measure excitation number vs length

 Longer system
 Try to squeeze in more excitations

Measure excitation number vs length

 Longer system
 Try to squeeze in more excitations

Compressibility

$$\kappa = \frac{\partial n_e}{\partial \Delta} = \frac{\partial n_e}{\partial \ell} \frac{\partial \ell}{\partial \Delta}$$

Rydberg Crystal

Ultimate Size Control in 2D

Digital Mirror Device (Size Control)

Fluctuating Size and non-perfect shape

Rydberg Crystal

Ultimate Size Control in 2D

Digital Mirror Device (Size Control)

Fluctuating Size and non-perfect shape

Rydberg Crystal

Ultimate Size Control in 2D

Digital Mirror Device (Size Control)

Fluctuating Size and non-perfect shape

Size & atom number perfectly controlled

Rydberg Crystal

Ultimate Size Control in 2D

Fluctuating Size and

•Sub Shot Noise Atom Number Preparation

•Geometric & atom number control (crucial e.g. for quantum criticality)

•Hard wall potentials realized (crucial for edge states)

Size & atom number perfectly controlled

Adiabatic Sweeps in 2D

Pulsed vs sweeped excitation - localization of excitations to border of system!

Adiabatic Sweeps in 2D

Pulsed vs sweeped excitation - localization of excitations to border of system!

Rydberg

Single-Shot Rydberg Crystal Configurations

8

Rydberg Crystal configurations

6

Rydberg Crystals

Configurational Change

Smaller Blockade/Larger Cloud

- ✓ Larger Rydberg Crystals
- ✓ Larger Rydberg Atoms cp. to Lattice Spacing
- ✓ Adiabatic Sweeps to Deterministically Prepare Crystal Structures
- ✓ Show Coherence of Crystalline Superpositions! a Quantum Crystal?

T. Pohl et al, (2010), van Bijnen et al. (2011), Gärtner et al. (2012),...

Larger Blockade/Smaller Cloud

- ✓ Collectively enhanced Rabi oscillations
- ✓ Large Entangled states (e.g. EIT schemes)

M. Lukin et al. (2001), D. Moller et al. (2008), M. Müller et al. (2009), H. Weimer et al. (2009)...

Dressed Rydberg Atom Regime

✓ Admix controlled long range interactions

G. Pupillo et al, (2010), Henkel et al. (2010), Schachenmeyer et al. (2010), Honer et al. (2010), Cinti et al. (2010), Johnson & Rolston (2010)...

