

Symmetries in Optics

Demetri Christodoulides

\mathcal{PT} symmetry in Optics

Recent developments in new optical structures and materials

Photonic crystals

Negative index materials

Photonic crystal fibers

Recent developments in new optical structures and materials

Negative index materials

The structures proposed here exploit the ± imaginary part of the dielectric constant

[©] Mark Parisi, Permission required for use.

\mathcal{PT} -symmetric potentials in Quantum Mechanics

Quantum mechanics is based on Hermitian operators associated with real eigenvalues. The question is:

Should a Hamiltonian be Hermitian in order to have real eigenvalues?

Volume 80, Number 24

PHYSICAL REVIEW LETTERS

15 JUNE 1998

Real Spectra in Non-Hermitian Hamiltonians Having \mathcal{PT} Symmetry

Carl M. Bender¹ and Stefan Boettcher^{2,3} ¹Department of Physics, Washington University, St. Louis, Missouri 63130 ²Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 ³CTSPS, Clark Atlanta University, Atlanta, Georgia 30314 (Received 1 December 1997; revised manuscript received 9 April 1998)

The condition of self-adjointness ensures that the eigenvalues of a Hamiltonian are real and bounded below. Replacing this condition by the weaker condition of \mathcal{PT} symmetry, one obtains new infinite classes of complex Hamiltonians whose spectra are also real and positive. These \mathcal{PT} symmetric theories may be viewed as analytic continuations of conventional theories from real to complex phase space. This paper describes the unusual classical and quantum properties of these theories. [S0031-9007(98)06371-6]

Parity-time (\mathcal{PT}) symmetric Hamiltonian share common eigenfunctions with the \mathcal{PT} operator. As a result they can exhibit entirely <u>real spectra</u>.

Pseudo-Hermitian quantum mechanics?

PT-symmetric potentials

$$\hat{P} = \begin{cases} \hat{p} \rightarrow -\hat{p} \\ \hat{x} \rightarrow -\hat{x} \end{cases} \qquad \hat{T} = \begin{cases} \hat{p} \rightarrow -\hat{p} \\ \hat{x} \rightarrow \hat{x} \\ i \rightarrow -i \end{cases}$$
$$PT - Hamiltonian \Leftrightarrow V^*(x) = V(-x)$$

In Quantum Mechanics

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + V(x)\psi$$

Schrödinger equation

$$PT - Potential \Leftrightarrow V^*(x) = V(-x)$$

Real part: even Imaginary part: odd

stationary solution $\psi(x,t) = U(x) \exp(-iEt/\hbar)$ eigenvalue

A complex PT-potential, below threshold, has real eigenvalues!

Some peculiar PT algebra

PT systems are described by a special algebra (PT algebra). The mathematical properties of the inner products (bra-kets), Hamiltonians, etc has to be reworked and redefined!

$$i\frac{\partial\Psi}{\partial z} + \frac{\partial^2\Psi}{\partial x^2} + V(x)\Psi = 0, \qquad \Psi(x,z) = u(x)\exp(i\lambda z) \qquad \frac{\partial^2 u}{\partial x^2} + V(x)u = \lambda u$$

Examples:

If u_n, u_m are different eigenmodes of a \mathcal{PT} -potential, the <u>**new**</u> orthogonality condition is:

(a)
$$\int_{-\infty}^{+\infty} t \vartheta_m^*(-x) t \vartheta_m(x) dx = d_n \delta_{n,m} \qquad d_n = \{\pm 1\} \quad \text{instead of} \quad \int_{-\infty}^{\infty} u_m^*(x) u_n(x) dx = \delta_{mn}$$

(b)
$$\int_{-\infty}^{\infty} \Psi^*(-x) \Psi(x) dx = \text{constant} \quad \text{as opposed to} \quad \int_{-\infty}^{\infty} \Psi^*(x) \Psi(x) dx = \text{constant}$$

C. M. Bender, D. C. Brody, and H. F. Jones, . Phys. Rev. Lett. 89, 270401 (2002)

\mathcal{PT} symmetric potentials (ix)^N

$$V = x^2$$

Quantum mechanical oscillator

A $\mathcal{PT} or$ pseudo-Hermitian oscillator

Christian E. Rüter¹, Konstantinos G. Makris², Ramy El-Ganainy², Demetrios N. Christodoulides², Mordechai Segev³ and Detlef Kip¹*

Transparent \mathcal{PT} waveguide

$\mathcal{PT}\xspace$ symmetry in optics

Diffraction from a normal waveguide

Propagation distance

Waveguide

Diffraction from a \mathcal{PT} waveguide

Waveguide

Symmetry breaking in \mathcal{PT} synthetic materials

Light can distinguish left from right.

Non-reciprocal propagation!

Non-reciprocity in \mathcal{PT} synthetic structures

Optical non-reciprocity is possible irrespective of the state of polarization

\mathcal{PT} Phase transitions

Index guiding VS gain guiding

Coupled mode theory of \mathcal{PT} symmetric systems

The \mathcal{PT} -eigenmodes have a unique algebra, as a result of their non-orthogonality. For this reason the conventional coupled mode equations cannot describe the \mathcal{PT} -coupler. New equations must be derived by using a **Lagrangian density approach**.

$$L = \frac{i}{2} \Big[\phi(\eta) \phi_{\xi}^*(-\eta) - \phi_{\xi}(\eta) \phi^*(-\eta) \Big] + \phi_{\eta}(\eta) \phi_{\eta}^*(-\eta) - V(\eta) \phi(\eta) \phi^*(-\eta) \Big]$$

R. El-Ganainy et al., "Theory of coupled optical PT-symmetric structures," Opt. Lett. 32, 2632-2634 (2007)

Wave propagation in \mathcal{PT} -synthetic waveguide arrays and lattices

Real periodic potentials and Floquet-Bloch theorem

$$i\frac{\partial U}{\partial z} + \frac{\partial^2 U}{\partial x^2} + V(x)U = 0$$

Floquet Bloch mode $\phi_{kn}(x) \exp[i\beta_n(k)z]$

k : Bloch wavenumber n : nuber of band

Band-stucture of a \mathcal{PT} optical lattice

 $V(\eta) = 4 \left[\cos^2(\eta) + iV_0 \sin(2\eta) \right] \begin{cases} If & V_0 \le 0.5 \text{ real eigenvalues} \\ If & V_0 > 0.5 \text{ complex eigenvalues} \end{cases}$

K. G. Makris et al, Phys. Rev. Lett. 100, 103904 (2008)

2D *PT* optical lattices

 $V(x, y) = \cos(x) + \cos(y) + iV_0(\sin(x) + \sin(y)) \qquad V(x, y) = V^*(-x, -y)$

Real part of cell

Imaginary part of cell

 $\begin{cases} If & V_0 \leq 1 \ real \ eigenvalues \\ If & V_0 > 1 \ complex \ eigenvalues \end{cases}$

(top view)

Below PT threshold

Above PT threshold

Non-reciprocity in \mathcal{PT} -waveguide arrays

Beam dynamics *PT* waveguide arrays

Double refraction

Power Oscillation

Wide beam at normal incidence

Wide beam at an angle

Two-level \mathcal{PT} systems

 S_0

 S_3

Bender C.M. et al, Faster than Hermitian quantum mechanics, Phys. Rev. Lett. 98 (2007)

 $Z = \kappa z$

Two-level \mathcal{PT} systems-supermodes below phase transition

$$i\frac{da}{dz} - i\frac{g}{2}a + \kappa b = 0$$
$$i\frac{db}{dz} + i\frac{g}{2}b + \kappa a = 0$$
$$g/2\kappa = \sin\theta < 1$$
$$\theta = \sin^{-1}(g/2\kappa)$$

$$\lambda_{1,2} = \pm \cos \theta$$

$$1\rangle = \begin{pmatrix} 1\\ e^{i\theta} \end{pmatrix} , \quad |2\rangle = \begin{pmatrix} 1\\ -e^{-i\theta} \end{pmatrix}$$

$$|\Psi\rangle = \begin{pmatrix} a \\ b \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ e^{i\theta} \end{pmatrix} e^{iZ\cos\theta} + c_2 \begin{pmatrix} 1 \\ -e^{-i\theta} \end{pmatrix} e^{-iZ\cos\theta}$$

$$i\frac{da}{dZ} - i\sin\theta \ a + b = 0$$
$$i\frac{db}{dZ} + i\sin\theta \ b + a = 0$$

From initial conditions c_1 and c_2 can be determined

Two-level \mathcal{PT} systems-supermodes below phase transition

$$\binom{a}{b} = \frac{1}{\cos\theta} \binom{\cos(Z\cos\theta - \theta) & i\sin(Z\cos\theta)}{i\sin(Z\cos\theta) & \cos(Z\cos\theta + \theta)} \binom{a_0}{b_0}$$

Example: Let $Z \cos \theta + \theta = \pi / 2$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2\sin\theta & i \\ i & 0 \end{pmatrix} \begin{pmatrix} a_0 \\ b_0 \end{pmatrix}$$

Two-level \mathcal{PT} systems-supermodes above phase transition

$$i\frac{da}{dz} - i\frac{g}{2}a + \kappa b = 0$$
$$i\frac{db}{dz} + i\frac{g}{2}b + \kappa a = 0$$

$$\left|1\right\rangle = \begin{pmatrix}1\\ie^{-\theta}\end{pmatrix} , \quad \left|2\right\rangle = \begin{pmatrix}1\\ie^{\theta}\end{pmatrix}$$

$$g/2\kappa = \cosh\theta > 1$$

 $Z = \kappa z$

$$\left|\Psi\right\rangle = \begin{pmatrix}a\\b\end{pmatrix} = c_1 \begin{pmatrix}1\\ie^{-\theta}\end{pmatrix} e^{Z\sinh\theta} + c_2 \begin{pmatrix}1\\ie^{\theta}\end{pmatrix} e^{-Z\sinh\theta}$$

From initial conditions c_1 and c_2 can be determined

$$i\frac{da}{dZ} - i\cosh\theta \, a + b = 0$$
$$i\frac{db}{dZ} + i\cosh\theta \, b + a = 0$$

 $\lambda_{1,2} = \pm \sinh \theta$

\mathcal{PT} –passive systems

A passive PT directional coupler

Kramers-Kronig relations must be taken into account

Experimental observation of spontaneous passive \mathcal{PT} -symmetry breaking.

The transmission of a passive \mathcal{PT} complex system after the \mathcal{PT} -symmetry breaking inceases even though the absorption in the lossy waveguide arm is higher.

 \mathcal{PT} -symmetry breaking point

Active PT structures: Two- wave mixing gain

Ruter, Kip, Makris, El-Ganainy, Segev, Christodoulides, Nature Physics 6, 192 - 195 (2010)

Active PT structures: Two- wave mixing gain

Optical isolators and circulators

High-bandwidth Integrated Photonic Circuits

High-speed, integrated photonic platforms will play a crucial role in a broad range of applications

For this to materialize, all important components for light generation, switching, processing, and detection must be integrated on the *same wafer*.

Optical isolators are such indispensable components !

Optical isolators

Optical isolators involve magneto-optic materials between polarizers or birefringent plates. Typically garnets are used with high Verdet constants.

Existing technologies

wafer direct bonding

Mizumoto et al.

magnetooptic garnets on III-V compound semiconductors

Existing technologies

Non-Reciprocal Phase Shift in Magneto-Optic Thin Films

wafer direct bonding

magnetooptic garnets on III-V compound semiconductors

Mizumoto et al.

Existing a

W. Van Parys et al, IEEE PTL, 19, pp 659, 2007

Existing approaches for optical isolators

Kimerling's group, MIT, Nature Photonics 5, 758 (2011)

Are magneto-optic approaches necessary for optical isolation ?

Alternative routes for non-reciprocity

R. G. Smith, JQE 9, 545 (1973)

Heavily p-doped

 $V_0 \cos(\omega_m t)$

Lightly,

n-doped

Input

Vias and electrical

wiring

electro-optic

Ibrahim, S.K. et al, Electronics Letters, 40, 1293 (2004) S. Bhandare et al, IEEE Sp. Top. Quant. Electron. (2005) 30 dB on III-V, 4.0 GHz

inter-band photonic transitions on a silicon chip

Yu & Fan, NP 3, 91 (2009) Lira, Yu, Fan, Lipson, PRL 109, 033901 (2012)

CREOL - The College of Optics and Photonics

Output

 $V_0 \cos(\omega_m t - \pi/2)$

Lightly

p-doped

Heavily

n-doped

Undoped

Si

Alternative routes for non-reciprocity

Nonlinear approaches

PPLN

1-3 Watts K. Gallo, G. Assanto, M. Fejer, APL 79, 314 (2001)

Kang, Butsch, Russell, NP 5, 549 (2011)

Minghao Qi , Weiner et al., Science 335, 447 (2012)

Requirements for on chip isolators

and circulators

- Must be compact
- Broad-bandwidth
- Retain the color of the signal
 - Polarization insensitive
- Use processes "indigenous" to the wafer itself

CREOL - The College of Optics and Photonics

Nonlinear non-Hermitian unidirectional optical structures

To achieve a high degree isolation nonlinearity is used in conjunction with gain/loss

The power in the system is forced to follow a non-linear roller-coaster

CREOL - The College of Optics and Photonics

Non-Hermitian nonlinear isolators

Semiconductor nonlinearities

Giant bandgap resonant nonlinearities resulting from

- Exciton saturation
- Band filling effects

$$n_2 = 1.4 \times 10^{-7} \ cm^2 / W$$

The large absorption associated with the nonlinearity is in this case advantageous !

Silica glass:
$$n_2 = 2 \times 10^{-16} \ cm^2 \ / W$$

InGaAs quantum wells on InGaAsP Wavelength: 1.55 μ m Typical Losses: 20 cm⁻¹ L ~ 1mm Power Response: ~50 μ W Coupling lengths: ½ mm

$$i\frac{dE_{n}}{dz} + c(E_{n+1} + E_{n-1}) = 0$$

Jones, J. Opt. Soc. Am. 55, 261 (1965). Somekh, Garmire, Yariv, Garvin, Hunsperger, APL 22, 46 (1973). Christodoulides, Lederer, Silberberg, Nature 424, 817 (2003)

Linear operation of the array: discrete diffraction

$$J_0(2cz) = 0$$

 $2cz = 2.4, 5.52,...$

$$E_n = A_0(i)^n J_n(2cz) \exp(i\beta z)$$

Non-Hermitian optical isolator

Isolation ratio: ~25 dB

FORWARD:	BACKWARD:
L= 1.0 mm	
Pin = 2 mW	Pin = 0.5 mW
Pout = 0.5 mW	Γουι – Ι μν

Principle of operation

Principle of operation

Light is blocked when launched from the other side

Photograph of Output Facet of the Directional Coupler

mode-locked Er-fiber laser

Coupled Arrayed Waveguides Fabricated on InGaAsP MQW Structure

InGaAsP multiple quantum well structures

Non-Hermitian optical isolator waveguide array

Array: 11 waveguides, 2.5 μ m wide with 2 μ m separation. The array is 950 μ m long.

The gain section (6-7 dBs) is 910 μm long and it is separated from the front of the array by 20 $\mu m.$

- Broadband: ~20 nm
- Negligible ASE
- Both InGaAsP and AlGaAs systems tested
- Pulsed 1-10 ps

Isolation ratios obtained so far:

InGaAsP: 14 dBs

AlGaAs: 11 dBs

In principle 20-30 dBs should be possible by optimizing device fabrication tolerances and characterization

CREOL - The College of Optics and Photonics

Non-Hermitian circulators

\mathcal{PT} periodic tructures

CREOL - The College of Optics and Photonics

Passive cavity

Lin, Eichelkraut, Ramezani, Kottos, Cao, and Christodoulides, PRL (2011)

\mathcal{PT} gratings

Nature 488, 167 (2012)

Max Planck Erlangen/CREOL

 \mathcal{PT} -symmetric Optical Structures: Unidirectional Invisibility

Nature Materials, 12, 108 (2013) (realization in silicon, Caltech)

PT-symmetric micro-ring lasers

Passive micro-ring resonators

H. L. R. Lira, C. B. Poitras, M. Lipson, Opt. Express **19**, (2011)

O. Scheler, et. al., *Biosensors & Bioelectronics*, 36, (**2012**)

+ High quality factor
+ High confinement
+ Small footprint
+ Simple fabrication

ideal components for realization of integrated photonic networks and sensing

How about ring resonators as laser cavities?

Micro-ring lasers

Stamataki, I. et al., " Quantum Electronics, IEEE Journal of , vol.42, no.12, pp.1266,1273, 2006

Drawback: Multi longitudinal mode operation within the broad gain bandwidth (over 300 nm for InGaAsP system)

Possible solutions:

1- spatially modulating the pump 2- external cavity tuning (like Vernier effect between coupled resonators) **3- DFB or DBR arrangements**

761¹(2010)

Opt. Express 18, 22 Can we find a simple yet robust method for enforcing single mode operation in micro-ring lasers?

Single micro-ring laser

Maximum achievable gain maintaining single mode operation: $g_{max} = g_0 - g_1$

Two coupled micro-ring lasers

PT-symmetric micro-ring arrangement

Eigenfrequencies of the supermodes for generic two coupled resonators

Eigenfrequencies of the super modes in PT-symmetric case

$$\omega_n^{(1,2)} = \omega_n + i \frac{\gamma_{a_n} + \gamma_{b_n}}{2} \pm \sqrt{\kappa_n^2 - (\frac{\gamma_{a_n} - \gamma_{b_n}}{2})^2}$$

$$\omega_n^{(1,2)} = \omega_n \pm \sqrt{\kappa_n^2 - \gamma_n^2}$$

68

PT-symmetric micro-ring arrangement

Maximum achievable gain while maintaining single mode operation in PTsymmetric arrangement

$$g_{max,PT} = \sqrt{g_0^2 - g_1^2} = (g_0 - g_1), \quad \frac{g_0/g_1 + 1}{g_0/g_1 - 1}$$

Enhancement Factor

Differential gain contrast

Example

 $\frac{\text{PT gain differential}}{\sqrt{4.1^2 - 4^2}} = 0.9 \ cm^{-1}$

 g_0 = 4.1 cm^{-1}

 $g_1 = 4 \ cm^{-1}$

 $g_0 - g_1 = 0.1 \ cm^{-1}$

Traditional gain differential

Experimental platform

- Semiconductor quantum well system
- Gain material PL spectrum

Sample preparation

Results

(Log Scale)

10° (a) (b) Single ring gain 10-1 10 µm 500 nm 10-2 10-3 20 µm ↑_{Modes}↑ 10-4 10⁰ (d) (c) Normalized Intensity **Evenly pumped** double ring Single 10-1 gain ring gain 11 11 11 200 nm 10-2 10-3 10-4 10[°] (e) (f) 4 PT-symmetric double ring Single 14 10-1 1.1 loss gain ring 11 1.1 1 11 10-2 10-3 10-4 1560 1570 1580 1590 1600 1610 1620 1630 Wavelength λ (nm)

7.4 mW pump power at 1064 nm for each

The dead/lossy resonator plays the role of a keel in balancing a sailboat

Parity-Time Synthetic Laser

Zhang's group, Berkeley, arXiv:1405.2863.

Cylindrical scatterers

$$N = 2 \qquad \qquad N = 6 \qquad \qquad N = 10$$

For PT symmetry
$$N = 4n + 2$$

 $n = 0, 1, 2, ...$

$\mathcal{PT}\textbf{scatterers}$ and cavities

Spherical scatterers or galleries

Whispering galleries

Supersymmetry (SUSY)

What is supersymmetry (SUSY) ?

Conventional symmetries:

- Translation
- Rotation
- Parity

PT-symmetry

 Simultaneous reversal of *parity* and gain/loss (*time*)

Supersymmetry in quantum field theory

- Unified treatment of Bosons and Fermions
- SUSY particles as dark matter candidates?
- Key ingredient of a Grand Unified Theory?
- No experimental evidence to this day

Standard model particles

SUSY particles?

Supersymmetry in quantum mechanics

- Relation between two potentials and their sets of eigenstates
- Identical
 eigenvalue spectra
- Ground state energy missing in SUSY partner

Cooper et al., "Supersymmetry in Quantum Mechanics," World Scientific (2001)

OPTICAL SUSY

- Refractive index as "optical potential"
- TE waves in the Helmholtz regime:

$$\beta^2 \psi = \left(\partial_x^2 + k_0^2 n^2(x)\right) \psi$$

- Factorization of Hamiltonian ${\cal H}$

 $A = \partial_x - \partial_x \ln \psi_1^{(1)}$

 \mathcal{X}

z

Fundamental mode

Propagation constant of the fundamental mode

Miri et al., "Supersymmetric optical structures," Phys. Rev. Lett. **110**, 233902 (2013)

- Refractive index as "optical potential"
- TE waves in the Helmholtz regime:

$$\beta^2 \psi = \left(\partial_x^2 + k_0^2 n^2(x)\right) \psi$$

V

Optical potential

$$V^{(1)} = \left(\beta_1^{(1)}\right)^2 - W^2 + \partial_x W$$
$$V^{(2)} = \left(\beta_1^{(1)}\right)^2 - W^2 - \partial_x W$$

$$W = -\partial_x \ln \psi_1^{(1)}$$

z

Superpotential

S.

 \mathcal{X}

Miri et al., "Supersymmetric optical structures," Phys. Rev. Lett. **110**, 233902 (2013)

Miri et al., "Supersymmetric optical structures," Phys. Rev. Lett. **110**, 233902 (2013)

- Elimination of fundamental mode
- Perfect global phase matching

Scattering at SUSY structures

Reflectivity/tr/ansinsistionityoefficients:

$$|r^{(2)}| \stackrel{2}{=} \Rightarrow \frac{W_{\infty} + ik_x}{W_{\infty} - ik_x} \cdot |r^{(1)}|^2$$
$$|t^{(2)}| \stackrel{2}{=} = \frac{W_{\infty} + ik_x}{W_{\infty} - ik_x} \cdot |t^{(1)}|^2$$

Angle of incidence [rad]

Scattering at SUSY structures

 Identical intensity scattering behavior

 \boldsymbol{z}

 Superpartners only distinguishable by direct interferometric measurements

Miri et al., "Supersymmetric optical structures," Phys. Rev. Lett. **110**, 233902 (2013)

> 𝒴

SUSY Mode Converters

Maximizing the amount of data in an optical channel

Established multiplexing techniques:

- Wavelength
- Polarization
- Amplitude / phase

What about multimode structures?

Mode division multiplexing

Benefits

- Compatible to existing approaches
- No crosstalk between channels
- Larger mode area, reduced intensity

Challenges

- Design: Structures allow only indirect control over modes
- Integration: Selective population/interrogation

Suppression of higher order modes

Suppression of higher order modes

Suppression of higher order modes

Selective lasing in large-area multimode systems

SUSY Ladder

SUSY mode division multiplexing

Example: State removal

lattice

SUSY Ladder: Mode conversion

SUSY Ladder: Mode isolation

Observed output distributions

SUSY FIBERS

Digression: OAM multiplexing

Wang *et al.*, Nature Photon. **6**, 488 (2012)

An integrated solution?

Multimode fibers:

 High order modes carry angular momentum

$$U = e^{i\mu z} e^{i\ell\phi} R_{\ell,m}(r)$$

 Is there a systematic way to populate and interrogate them individually?

Extension of SUSY to fibers

- Factorization requires 1D problem
- 2D system with cylindrical symmetry:

$$\left(-\frac{\partial^2}{\partial r^2} - \frac{1}{r}\frac{\partial}{\partial r} - \frac{1}{r^2}\frac{\partial^2}{\partial \phi^2} - 2n_0k_0^2\Delta n(r)\right)U = i\frac{\partial}{\partial z}U$$

• Effective potential:

$$V_{\rm eff}(r) = 2n_0 k_0^2 \Delta n(r) + \frac{1/4 - \ell^2}{r^2}$$

for the modes

$$U = e^{i\mu z} e^{i \ell \phi} R_{\ell,m}(r)$$

Azimuthal mode number

Radial mode number

r

Extension to fibers

ID effective eigenvalue equation:

$$\left(-\frac{d^2}{dr^2} - V_{\rm eff}(r)\right)u = -\mu u$$

SUSY partner fibers:

Link between azimuthal mode subsets

Link between azimuthal mode subsets

- Perfect SUSY phase matching for $|\ell^{(2)}| = |\ell^{(1)}| + 1$
- Eigenvalues of other modes remain disjoint

Integrated angular momentum multiplexing

Collaborative groups

- Mercedeh Khajavikhan, CREOL
- Patrick LiKamWa and Ayman Abouraddy-CREOL/UCF
- Ulf Peschel, Max Planck, Erlangen, Germany
- Detlef Kip-Hamburg University, Germany
- Alex Szameit , Jena
- Roberto Morandotti, INRS
- Moti Segev Technion, Israel
- Greg Salamo University of Arkansas
- Tsampikos Kottos, Wesleyan University
- Hui Cao, Yale

CREOL - The College of Optics and Photonics
Thank you for your attention!

