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Why artificial magnetism?

Orbital and/or spin magnetisms are at the origin of many fundamental
phenomena and practical devices in condensed matter physics:

Ferromagnetism or anti-ferromagnetism
Aharonov-Bohm effect

Superconductivity and Meissner effect
Quantum Hall effect (integer or fractional)
Spintronics

Topological insulators and superconductors

Can one address some of them, at least partially, with cold atomic gases?



Orbital magnetism

A AN\ 2
Hamiltonian : H = (p qA(r)) B=VxA
2M

Lorentz force: F  =qv X B

Program for the three lectures:

How can one generate such a Hamiltonian and its non-Abelian generalizations?

What are its key features, either for a homogeneous system or a lattice gas?

spectrum, eigenstates,...

What are the combined effects of orbital magnetism and interactions?

Introductory lectures, to themes that will appear
in several other presentations during the school



Outline of the first lecture

1. The essential aspects of orbital magnetism

Length and energy scales, spectrum, Aharonov-Bohm effect

2. A first approach: rotation of the fluid

Analogy between Coriolis and Lorentz force, critical rotation

3. A second approach: use of geometric phases

Berry’s phase, adiabatic following of a dressed state

4. Generalisation to non-Abelian potentials

Spin-orbit coupling
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Natural scales for energy and length B

qB
Natural frequency scale: w. = 53

. Vo
cyclotron motion 719 = —
Energy scale: hw, We
Length scale: /¢, = ho_ i tic length
g ST A e T Mz magnetic leng
electron, B=1T : w.,/2r =28GHz /{n~26nm
How does this length scale appear:
v
Classically: 79 = w_o The extension r, decreases with the velocity v,
C

Quantum mechanics : Ar;Ap; > h/2

The magnetic length represents the minimal size of a cyclotron
orbit that is compatible with Heisenberg inequality



The energy spectrum for a single particle

Equidistant levels (like a harmonic oscillator): Landau levels

hwe E,=(n+1/2)hw.
Y ee e
hw.
M sse Lowest Landau level = LLL

Macroscopic degeneracy for each level. Number of independent states in an area A:

A P ® =AB flux of B across the area A

B 27'('672,,% B ‘I)()

N
dg = h/q flux quantum

Electron in a 1 Tesla field: 240 states in 1 um? area



Aharonov-Bohm (1959)
The Aharonov-Bohm effect Ehrenberg-Siday (1949)

screen

Can one detect that a current runs in the
solenoid even though the particles do not
enter the zone B #£ 0 ?

Yes, in a two-wave interference. The magnetic field creates a phase difference ~(C) :

& d :flux of B across a closed contour

1(€) — 27{ A(r)-dr = — encircling the solenoid
2T h C @O
®y =h/q :flux quantum

e (0), gauge-invariant, measurable quantity



Outline of the lecture

2. A first approach: rotation of the fluid

Analogy between Coriolis and Lorentz force

A.L. Fetter, Rev. Mod. Phys. 81, p. 647 (2009)
N.R. Cooper, Advances in Physics, 57, p. 539 (2008)



A first approach: orbital magnetism and rotation

Hamiltonian in a rotating frame

S ; %%ﬁt
H=—+V(r)—-QL, L, =xp, —yps >

2M

= P22 ) 4 Vi (1)

. J . J

! —_— X

qA = MQ(—yuy, + xuy) Veentrit. (1) = —§Mﬂ2r2

Vector potential (symmetric gauge)
for a uniform field ¢B = 2M¢)

FLOI‘entZ — qv X B < > FCOI‘iOliS — 2M’U >< ﬂ

2
Fcentrif. = MQ"r

Rotation : uniform magnetic field + quadratic deconfining potential



Rotating a cold atom gas

Start from a trap as round as possible in the lab frame: %M (w2x2 + wz?f) Wy R Wy

x

Add a stirrer with controlled amplitude and frequency

* Auxiliary laser beams

* Magnetic potential

It works, as shown by the nucleation of vortices in a superfluid ...

ENS, 10° atoms MIT, 5x107 atoms
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Critical rotation

Choose a quadratic stirring potential /@

1 €
Vo(r) = §Mw2(x2 + y2) oV(x,y) = 5]\4(,‘12 (y2 — :1:2)

isotropic In the rotating frame

Can one reach the Hamiltonian of a free particle in a uniform magnetic field?

. . ? A AN\ 2
. (P—qA(R)’ : : L (- qAW)
H = centrif. —
N + Vo(7) + 0V (7) + Veentrit. (7) Wi
1 2.2 2
‘/;entrif.(r) — _§MQ (.CB + Yy )
_ ) —w (vanishing confinement)
We must choose simultaneously
e —0 (vanishing stirring)



Possible paths towards the critical rotation

ENS: add a positive quartic potential to ensure confinement even when ) = w

Boulder: “evaporative spin-up”
* Prepare a cloud rotating at a "moderate” velocity with a stirrerat 2 ~ 0.7 w

 Switch off the stirrer and evaporate the particles along the trap axis

Evaporated particles have less angular momentum than average




Outline of the lecture

3. A second approach: use of geometric phases

Berry’s phase, adiabatic following of a dressed state

Dalibard, Gerbier, Juzeliunas, Ohberg, Rev. Mod. Phys. 83, p.1523 (2011)
Goldman, Juzeliunas, Ohberg, Spielman, arXiv:1308.6533



Adiabatic approximation and geometric phase Berry, 1984

Hamiltonian ﬁ()\) A :continuous external parameter

For each A, the eigenstates |¢,,(A)) and their energies F,(\) are known

Start at = 0 in a given eigenstate : [1/(0)) = |1¢[No])

Suppose that the parameter A, controlled from outside (for the moment) slowly varies in time

State of the system: |¢) = ch [V [A]) = ¢ [1e]A]) lce(t)| =1 Vit

-
o
s
3

Equation for the coefficient ¢y :
ihép = [Eg(t) — A Wwwﬂ co

------------------------------------------- £, = |E(t) = A AN e
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Berry’s connection (real) : A¢(A) = ik (1| V)



Berry’s phase and Berry’s curvature AdRX) =i (el Vipe)

Atany time: [1(1)) & cr(t) [l AO]) e = |[Bu(t) = A AN e

Closed contour C .~ dyn. .+ geom.
Cg(T) _ el<I>d (T) el(IDg (T) CE(O>

A(t)
T e (T) = —% /0 E,(t) dt
}\(O) (I)geom.(T) _ %/O )\ Ag fAe -d\

The two phases ®3Y™ et ®8°°™ are gauge invariant: physical quantities

Restrict to the case where A evolves in a 2D or 3D space

* position of a particle
e guasi-momentum in the Brillouin zone

B, =V x A, deeom-(C %Ag — // B,-d?S
S

Berry curvature:
real, gauge-invariant Full analogy with Aharonov-Bohm phase



Full guantum treatment for an atom moving in a light field

External degrees of freedom: center-of-mass position and momentum =, p

Internal degrees of freedom: electronic energy levels

.2
Hamiltonian :  f, .. = Qp—M@)iim + Hing(7)
\ ) \ )
Y
CoM Coupling between the

kinetic energy  atomic dipole and the field

Dressed states : I 'T ~~~~~~~~~~~~~
T T b3
Hint (7)1 (7)) = Epn(7) [0 (7)) \_/Ez
What happens if the atom moves | e o)
slowly enough to follow adiabatically .
: 5 position
a given dressed state >




Geometrical gauge fields

center of mass
r, p
slow

o

~

internal degrees
of freedom |¢n, (7))

fast

> bl ) (r))

Adiabatic approximation:
only one state |1y(7))

Q

Ge(r;1)[e(r))

is populated
v
[ Schrodinger equation for the }
probability amplitude ¢y (7, 1)
5 2 A, (r) : vector potential
ih% = (p —Z\lj(’r)) + Eo(r) + Vg(fr')] Go(r, 1)
Ve(r) : scalar potential

Ag(r) = 1h(1pe| V)

h2
Ve(r) = o S (V)
n#L

Dum & Olshanii, 1996



The two-level atom model (no spontaneous emission)

Narrow line: two-electron atoms Mg, Sr, Yb

Laser of frequency w
Rabi frequency

9)

Dynamics in the subspace

{lg),le)}

Raman transition: alcali, Er, Dy

91)
Elimination of the excited state |e) to restrict
the dynamics to the subspace {|g1), |g2)}

Ko Kj,

2A,

KR =

Atom-laser coupling is characterized by the detuning A and the Rabi frequency

A

Hint — 3

(5 )



— Dressed states and geometric potentials

_ A h (A K*
Look for the eigenstates of  Hint = BY (m —A)

B @ cos e ?gind
— 2 \e?sinfd  —cosf

where we set: () = (A2_|_|,<;’2)1/2 tan @ = ]ﬁ;\/A K = ‘,{‘eicb
V)
91)
coupling O = \/AQ + |2 EL = i@
A T 2
: with light
|92) ,

[—) = cos(0/2)|g2) — ™' sin(60/2)|g1)
A_ =ik (Y_|Vy_) = gV(b (1 — cos )

h
B_.=VxA_ = —§V(cos 0) x V¢ : need for a gradient of phase and mixing angle
(detuning or laser intensity)



Use a gradient of detuning

Raman transition with two plane waves along x

k(1) = Ko 27 tanf = |k|/A

Gradient of detuning Aalongy: A(r) = A'y

91)

Characteristic length : ¢ = ko /A’

/ y Artificial magnetic field
| ’ B(r) = By 53/2(9) U,

1
o 1




How large is this magnetic field?

How big should a contour C be to reach a Aharonov-Bohm-Berry phase of the order of 2 ?

hk 1
A B("’) = By 53/2@) U, By = A E(y) - 1+ y2/€2
Y
C
ﬂzl//l’a’-ud%,
27'(' h S
criterion reached for a rectangle 2¢ x A

(C) 1 hk
o  h / 26 !

Spielman’s team, NIST 2009
Raman transition with a 8’Rb BEC

limitation due to the residual scattering of photons



Validity of the adiabatic approximation

angular velocity of eigenstate 1)y
Bohr frequency for vy,

General criterion:

<1

Here: * angular velocity of the eigenstate |<¢_ |¢_>| ~v[{(Y_|VY_)| ~ kv
« Bohr frequency Q = (k2 + A2)1/2

The approximation is valid if the velocities are low enough: kv < (2

Relevant velocities are at least of the order of the recoil velocity: v, = hk/M

Necessary condition: E, < hf) E. = h’k*/2M

Large artificial magnetic fields? B ~ AV (cosf) x V¢
If both gradients are |V(cos )| ~ |V | ~ k (typically in an optical lattice), then B ~ hk?

Corresponding cyclotron frequency w. = B/M = hw.~ E;



Outline of the lecture

4. Generalisation to non-Abelian potentials

Spin-orbit coupling

Galitski & Spielman, Nature 494, p. 49 (2013)
Goldman, Juzeliunas, Ohberg, Spielman, arXiv:1308.6533



Non Abelian gauge fields
(oA

We are still interested in H = i + ..., but .fl(f“) is now an operator with
respect to the internal degrees of freedom.

In particular two components of A(#) may not commute: [A, (r), fly('r)] # 0

dr 1 - b — A(7
Velocity operator: & = — — - H,#) = p— Alr)

dt M
. do i, L/ s s
Force operator: F' = ME = ﬁ[H’ Mwv] = 3 (v x B —B x v) Lorentz

Example: 2D case with A, =0 and A, functions of x,y

Then: B=B,u, B, OA _ 0Ay _ 1

1
dy Ox h Az, Ay

A

3. can be non-zero even if A, and. A, are uniform



Adiabatic approximation and
non Abelian gauge potentials

Wilczek & Zee, 1984,
in @ Quantum Optics version

laser S —_ 5q

coupling

bare levels

dressed levels

An atom prepared in the (quasi) degenerate subspace 5 will stay there if its velocity is small

= > on(r,t) [Un(r))

neéy

The g coupled equations for the amplitudes ¢,, (r, t) contain a matrix vector potential

= il (7)|[ V(7))

Important in molecular and condensed matter physics

(n,m)

A



Juzeliunas,

Example: symmetric tripod configuration Ruseckas,
Dalibard, 2010

91) 92) |93) ,__
Jg =1 |B(r))

Only one linear combination of {|g1),|g2),|g3)} is coupled at any point to |e)

1 . . . .
|B(r)) = — (e_lk’l'r]gﬁ + e_1k2'r|gg> + e_lk’i”'r\gg)) bright state
V3
Adiabatic evolution in the orthogonal “dark” subspace ( &9 of dimension 2)
~ hk . .
A=— (6,u, +d,uy) ; : Pauli matrices

2

. 2
. o (23 — A(T)) PP hk
Corresponding Hamiltonian : = oM T oM oM

spin-orbit coupling

(PzOz + Dyby) + ...



I”

Physical origin of “usual” spin-orbit coupling

Essentially a relativistic phenomenon

A charged particle (electron) moves with velocity v in a region with an electric field € .

In the frame of the particle, a motional magnetic field appears: B x v X &€

Spin-orbit coupling results from the interaction between the motional magnetic

field and the intrinsic magnetic moment of the particle, proportional to its spin

nw=vS Coupling between v and S

Atomic physics: (r x p)- S =L-S

Solid materials : & uniform, coupling p,S; Rashba, Dresselhaus



Physics of spin-orbit coupling Galitski & Spielman, 2013

Applications: Spintronics

Control of the interaction between spins and linear momentum with an external electric field

Fundamental physics:

* Topological insulators, analogous to Quantum Hall effect (at least in 2D), but which do
not require the breaking of time-reversal symmetry and which should be more robust
with respect to thermal excitations.

* For a Fermi gas in contact with a superconductor, it can lead to the creation of
Majorana particles

* Single atom physics: massive degeneracy of the ground state of the Hamiltonian

(j) — 7757) ’ Zero-energy state for all momenta

H = such that |p| = nS
o7 pl=n




1D version of spin-orbit coupling

Realised with a Bose gas (NIST, 2011), a Fermi gas (MIT, Tsinghua 2012)
+ lattice version (Munich 2013, MIT 2013)

Raman transition with two plane waves: translation-invariant problem

Family: F(p) = {|lg1,p — hk), |g2,p + hk)}
globally stable under the action of the atom-light coupling

= ((p—hk)?/2M + hA /2 fiko /2
H(p) = ( g fiko /2 (p + hk)?/2M — hA/2)

1 2\ 2 hAA hliOA
= o7 (P A) + o e

with A = hké,

Physical origin: recoil // Doppler effect



1D spin-orbit coupling
Abelian gauge field: A = hké, —» [./le(r),fly(r)] =0

However one keeps a non-unique ground state,
at least for small values of the atom-laser coupling

E/E|

Choose a zero-detuning A=0 ]

=« ((p—hk)?/2M hig /2 2
H(p) = ( hro/2 (p + hk)?/2M

Double minimum if hAkxkg < 4E;

T Tk /E, = 0,1,4,6

Opposite from the situation where the adiabatic approximation is valid



Experimental results for E/E,
1D spin-orbit coupling “ ]

+2

Tk /B, = 0,1,4,6

|91) c . . o d
}J | | | 0 —2k
L1 3 g a5 |7 &K &
. L] T - !
Spielman, NIST 2012 3 o} © lo < =_2k K—
87Rb condensate _% 3l O‘(‘)\ O/O || .‘/. . \;I.
S af 0O : k=0 R =2k,
5 o | "
§ 6L ((?C)) do 1 < | \l/> K;_ZKL . Ii/; 0
7 | | | | ] ] ] |

]
-1.0 -05 00 05 1.0 -1.0 0.0 1.0
Minima location (k) Quasimomentum, q/k



Conclusions

Two routes for the simulation of orbital magnetism in a quasi-uniform system

Time dependent Hamiltonian (rotations)

Geometric phases for laser-dressed states

* Possibility to generate non uniform magnetic field

* Possibility to generate non-Abelian gauge fields, in particular
2D or 3D spin-orbit coupling

1D spin-orbit coupling, although quite simple at the single atom level,
is promising from the many-body point of view

Stringari et al., Das Sarma et al., Hui Zhai et al., T.-L. Ho et al., ...

Need to control the heating due to spontaneous emission .

Next time: gauge fields in a lattice



