Silicon Photonics

Michal Lipson Cornell University

Picture by N. Sherwood

Cornell University

Photonics Could Alleviate Power Dissipation in Computers

Cornell University

..and in Data Centers

Silicon Photonics for Multi-Core Interconnect

IBM

K. Bergman et al, Networks-on-Chip, pp. 53-64 (2007)

Cornell University

High Confinement Waveguides

Intensity in the waveguides can be orders of magnitude higher than the intensity in the core of single mode optical fiber.

Cornell University

Fabrication

Scanning electron micrograph of a ring resonator

Si Substrate

Cornell University

Physical Device Size

100-m highly nonlinear fiber

4-cm Si-Nanowaveguide 10 cm <u>1 mm</u>

Strong Light Confining Structures

Device is very sensitive to small perturbations in the Silicon

,

Cornell University

Ultra Low Loss Waveguides and Ring Resonators

Cornell University

Losses

Dipole approximation:

Scattering~ $\Delta n^4/\lambda^3$

Other Losses: Absorption, Interference based

Cornell University

Loss: Propagation and Bending

waveguide: 445 nm X 220 nm, wavelength 1500 nm, TE-like

propagation loss: ~1-2dB/cm _{Vlasov (IBM)}

Using oxidation methods: < 0.3 dB/cm!

Cardenas, Lipson, M. et al ,Optics Express, Vol. 17, 16 Mar 2009

Cornell University

Etchless Waveguides

Cardenas, J., Poitras, C.B., Robinson, J.T., Preston, K., Chen, L. and Lipson, M., *Low loss etchless silicon photonic waveguides, Optics Express, Vol. 17, No. 6, 4752, 16 Mar.* 2009.

Dom WORSTM Anterest Star 2000 M Super Anterest Care 25 Jan 2000 CNF Mage 15351KX Drf + 3010 Pred Star 23000 Super Time 15533 CNF Prof. Michal Lipson

13

Etchless Waveguides

Waveguides dimensions: 315-nm high by 1- μ m wide.

Results

- Etchless waveguide has a loss < 0.3 dB/cm.
- Waveguide is 1- μ m wide by 70-nm high with an 8-nm slab.

Etchless Cavities

Cornell University

Q~1M

Lian-Wee Luo, Gustavo S. Wiederhecker, Jaime Cardenas, and Michal Lipson, High quality factor etchless silicon photonic ring resonators, Optics Express, 2011

Cornell University

Electro-Optics Modulation

Cornell University

The Microelectronics Platform for Optics On Chip

Passive Devices

Massachusetts Institute of Technology, 2000

Cornell Nanophotonics Group 2003

J. S. Foresi et al. Nature 390, 143 (1997)

Need for active devices! Modulators, Amplifiers

Cornell University

Switching Light on Silicon Using Free-Carriers

Mechanism: Plasma Dispersion Effect (linear process) Refractive index change by free carrier injection

$$\Delta n = \Delta n_e + \Delta n_h = -[8.8 \times 10^{-22} \cdot \Delta N + 8.5 \times 10^{-18} \cdot (\Delta P)^{0.8}]$$

Challenge:

Weak index dependence on free carrier concentration

R.A. Soref, et al, IEEE Journal of Quantum Electronics, vol. 23, (1987)

Cornell University

Forward PIN

- Based on injection of carriers in a forward bias diode operation.
- Can achieve very high index change per applied voltage due to exponential I-V characteristic of a diode.
- Limited in speed due to carrier dynamics

Manipatruni, S. et al., "High speed carrier injection 18 gb/s silicon micro-ring electro-optic modulator" (2007)

Ring Resonator Based Electro-optic Modulator On Silicon-On-Insulator-Microns In Size

Liu, A. et al. Nature 427, 615 (2004)

Q. Xu, B. Schmidt, M. Lipson, Nature, May 19 March 2005

Fabrication Ebeam Lithography

Microscope image of fabricated optical modulator with electrical contacts

Modulation Results (DC)

Dynamic Response

0.4 Gbit/s generated with 3.3 Vpp in micron-size device!

Lifetime under junction: 0.2nsec

Q. Xu, B. Schmidt, M. Lipson, Nature, May 19 March 2005

Cornell University

Microring Modulator : Experiments

f Input

4 Gbit/s NRZ

Gate-like transfer function. Gb/s modulation with overdrive.

Q. Xu, B. Schmidt, S. Pradhan, & M. Lipson, Nature 435, 325 (2005)

Cornell University

Micrometer Scale Silicon Electrooptic Modulator At 20 Gbps

PRBS 2¹⁰-1

>9dB modulation depth!

Q. Xu, M. Lipson, Optics Express Feb 2007

Cornell University

Ultrafast Devices and Networks based on Silicon Modulators

Optical 4x4 Hitless Silicon Router for Optical Networks-on-chip

N. Sherwood-Droz, K. Bergman, and M. Lipson, Opt. Express, 16, pp. 15915, 2008.

Ultrafast low Power Modulators

25GHz w M. Watt et al, http://arxiv.org/abs/1312.2683

40-Gb/s DPSK Data Transmission Through a Silicon Microring Switch

Xu, L., Lipson, M. and Bergman, K., IEEE Phot. Tech. Lett., 24, 2012.

Silicon Photonics in Industry

Intel

IBM

Texas Instruments

F. Kärtner, H. Smith, V. Stojanović, R. Ram et al, Opt. Express 19, 2335 (2011)

Mellanox, Infinera, Luxtera..

Cornell University

Breaking the reciprocity of Light

Cornell University

Indirect Photonic Transition for Optical Isolation

3 2

Cornell University

Principle of Operation and Simulation

Modulation: f_{mod}=10 GHz

Wavelength required: $\lambda_{mod} = 450 \mu m$

Cornell University

Principle of Operation and Simulation

Simulation:

• Left to right propagation:

Lira, H., Lipson M. et al., Phys. Rev. Lett., Vol. 109, No. 3, 033901, 16 July 2012.

Lira, H., Lipson M. et al., Phys. Rev. Lett., Vol. 109, No. 3, 033901, 16 July 2012.

Cornell University

35

Isolator

Lira, H., , Lipson M. et al., Phys. Rev. Lett., Vol. 109, No. 3, 033901, 16 July 2012.

Results-Optical Isolation Measurement

	1	and a strange day of the	and the second		<mark>,</mark>	•
Isolation (backward signal divided by forward cional)	0.5	Electrical input: 15.0 dBm				
		1550	1555 Waveler	1560 ngth (nm)	1565	
		1550	1555 Waveler	1560 ngth (nm)	1565	
		1550	1555 Waveler	1560 ngth (nm)	1565	

3 dB isolation achieved with 25 dBm of electrical power

Lira, H, Lipson M. ., et al., Phys. Rev. Lett., Vol. 109, No. 3, 033901, 16 July 2012.

Prof. Michal Lipson

7

Multimode Photonics

Cornell University

Multimode Photonics

J. M. Kahn and K.-P. Ho, "Mode-Division Multiplexing Systems: Propagation Effects, Performance and Complexity", to be presented at Optical Fiber Commun. Conf., Anaheim, CA, March 17-21, 2013 (*Invited Tutorial*).

Victor Liu, David A. B. Miller, and Shanhui F, Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect, Optics Express, Vol. 20, Issue 27, pp. 28388-28397 (2012)

Cornell University

Inter-Mode Coupling

4 0

Cornell University

Transformation optics

J.B. Pendry, D. Schurig, and D. R. Smith, Science 312, (2006)

Cornell University

Transformation Optics

Y. Yang, L. K. Chin, J. M. Tsai, D. P. Tsai, N. I. Zheludev, and A. Q. Li, Transformation optofluidics for largeangle light bending and tuning, Lab Chip 12, 3785 (2012)

M. J. Grajower, G. Lerman, I. Goykhmann, B. Desiatov, A. Yanai, D. R. Smith, and U. Levy, "plasmonic graded-index planar lens based on subwavelength features in the effective index regime," in CLEO: QELS 2012, paper QM1C.3. G. Castaldi, V. Galdi, A. Alu, and N. Engheta, "Transformation-based Cloak/Anti-Cloak Interactions: A Review," a chapter in "Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications," edited by D. H. Werner and D.-H. Kwon, Springer, submitted on June 24, 2012.

(b)

Cornell University

Vladimir M. Shalaev and John Pendry, Transformation optics, Journal of Optics 13 (2) (2011).

Yongmin Liu and Xiang Zhang, "Recent advances in transformation optics", Nanoscale, 4 (17), 5277 - 5292.

Transformation optics

J.B. Pendry, D. Schurig, and D. R. Smith, Science 312, (2006)

Cornell University

TO Design

Isotropic materials

Constrained index range

Mode matching at end facets

Low Loss Platform

Grayscale patterning: well controlled scattering

Grayscale Fabrication

Gabrielli, L., Liu, D., Johnson, S.G. and Lipson, M., Nat. Comm., Vol. 3, Art. 1217, Nov. 2012

4

Cornell University

Mode Preservation

4 7

Cornell University

>14dB reduction in loss

Gabrielli, L., Liu, D., Johnson, S.G. and Lipson, M., Nat. Comm., Vol. 3, Art. 1217, Nov. 2012

Cornell University

Multimode Multiplexing

Cornell University

Silicon Photonics for Nonlinearities

High index contrast of waveguide

- Careful control of light confinement
- Ability to engineer waveguide dispersion

core area = 0.06 μ m²

core area = 0.12 μm²

core area = 0.26 μ m²

core area = 1.00 μ m²

Cornell University

Multimode Multiplexing

Cornell University

Luo, L.-W., Lipson, M., et al., WDM-compatible mode-division multiplexing on a silicon chip, **Nat. Comm**., 5, p. 3069, 15 Jan. 2014

Multimode Multiplexing-Fabrication

Optofluidics

Cornell University

High Confinement Micro/Nano Photonics

Cornell University

Demonstration of Optical Trapping on chip of Ultra Small Particles

Robinson, J.T., Chen, L. and Lipson, M., Optics Express,, 13 March 2008.

Trapping 75nm DNA using Slots: Yang, A.H.J., Moore, S.D., Schmidt, B.S., Klug, M., Lipson, M. and Erickson, D., Nature, Vol. 457, 71-75, 01 Jan. 2009.

Applications include sorting, sensing: L. C. Kimerling, G. M. Whitesides, and A. Agarwal. et al , Nano Lett. 14, 231 (2014).

Cornell University

Electro-optofluidic Platform

Cornell University

DNA Arrays Sorting and Manipulation

Cornell University

w/ Michelle Wang, Michalelipson

Optomechanics

Cornell University

Demonstration Optical Forces for Reconfigurable Objects

Wiederhecker, G.S., Chen, L., Gondarenko, A. and Lipson, M., Nature, p. 08584, (2009).

Cornell University

Demonstration Optical Forces for Reconfigurable Objects

Opt. Q $\approx 10^5$ Gap = 600 nm d ω /dy=5 GHz/nm Mech. Q ≈ 10 m_{eff}=120 pg k= 1.2 N/m

Wiederhecker, G.S., Chen, L., Gondarenko, A. and Lipson, M., Nature, 08584, 15 Nov. 2009.

300 x 200 nm spokes

Demonstration Optical forces for Reconfigurable Objects

Parametric Amplification

Vision: Light Coupling Mechanical Oscillators

Demonstration of Synchronized Optomechanical Resonators

Anang, M., Wiedernecker, G.S., Manipatruni, S., Barnard, A., McEuen, P. and Lipson, M., Phys. Rev. Lett., Vol. 109, 233906, 07 Dec. 2012

Single Cavity Result (decoupled)

Zhang, M., Wiederhecker, G.S., Manipatruni, S., Barnard, A., McEuen, P. and Lipson, M., Phys. Rev. Lett., Vol. 109, 233906, 07 Dec. 2012

Demonstration of Synchronized Optomechanical Resonators -80 -60 -40 50.45 50.40 50.35 50.30 50.25 Zhang, M., Wiederhecker, G.S., Manipatruni, S., Barnard, A., McEuen, P. and Lipson, M., Phys. Rev. Lett., 109, 233906,

0.3

0.2

Relative Detuning (GHz)

0.4

0.5

0.6

2012

Summary

Ultra high frequency modulators

Synchronization between mechanical structures using light

Platform for Multimode communication on-chip

Prof. Michelle Wang Prof. Paul Mcuen Dr. Carl Poitras Lawrence Tzuang Dr. Hugo Lira Dr. Qianfan Xu Dr. Kyle Preston Dr. Nicholas Sherwood Dr. Vilson Almedia Dr. Lucas Gabrielli Prof. Steven Johnson Prof. Keren Bergman Dr. Jaime Cardenas Dr. Lian-Wee Luo Dr. Noam Ophir Christine Chen Mian Zhang Dr. G. Wederhecker Dr. Mohammad Soltani

Prof. Alexander Gaeta

Prof. Michal Lipson

Optofluidics for control of individual molecules

