
From Distributed Processing
Systems to the buzz word of

the day and back

Miron Livny

Wisconsin Institutes for Discovery

Madison-Wisconsin

While I do not know (or
understand) your

problem, I am sure that
my XYZ software will

solve it!

The words of Koheleth son of David, king in

Jerusalem ~ 200 A.D.

Only that shall happen

Which has happened,

Only that occur

Which has occurred;

There is nothing new

Beneath the sun!

Ecclesiastes Chapter 1 verse 9

Ecclesiastes, (, קהֶֹלֶת Kohelet, "son

of David, and king in Jerusalem"

alias Solomon, Wood engraving

Gustave Doré (1832–1883)

Perspectives on Grid Computing

Uwe Schwiegelshohn Rosa M. Badia Marian Bubak Marco Danelutto
Schahram Dustdar Fabrizio Gagliardi Alfred Geiger Ladislav Hluchy

Dieter Kranzlmüller Erwin Laure Thierry Priol Alexander Reinefeld
Michael Resch Andreas Reuter Otto Rienhoff Thomas Rüter Peter Sloot Domenico

Talia Klaus Ullmann Ramin Yahyapour Gabriele von Voigt

We should not waste our time in redefining terms or
key technologies: clusters, Grids, Clouds... What is in
a name? Ian Foster recently quoted Miron Livny
saying: "I was doing Cloud computing way before
people called it Grid computing", referring to the
ground breaking Condor technology. It is the Grid
scientific paradigm that counts!

6

HTCondor Team 2013

Project Established 1985

7

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 1978 1983 1985 1992 1993

“Over the last 15 years, Condor has evolved from a concept to
an essential component of U.S. and international
cyberinfrastructure supporting a wide range of research,
education, and outreach communities. The Condor team is
among the top two or three cyberinfrastructure development
teams in the country. In spite of their success, this proposal
shows them to be committed to rapid development of new
capabilities to assure that Condor remains a competitive
offering. Within the NSF portfolio of computational and data-
intensive cyberinfrastructure offerings, the High Throughput
Computing Condor software system ranks with the NSF High
Performance Computing centers in importance for supporting
NSF researchers.”

An anonymous NSF review (04/2013)

RACF Overview
 Main HTCondor pools

◦ PHENIX—12.2kCPU

◦ STAR—12.0kCPU

◦ ATLAS—13.1kCPU

 STAR/PHENIX are RHIC detectors
◦ Loose federation of individual users

 ATLAS—tightly controlled,
subordinate to PANDA workflow
management, strict structure

HTCONDORWEEK 2014 9

 Smaller Experiments
◦ LBNE

◦ Dayabay

◦ LSST

Migration to HTCondor

• Torque/Maui had been used for many years

– Many issues

– Severity & number of problems increased as size of farm increased

• Migration

2012 Aug Started evaluating alternatives to Torque/Maui

 (LSF, Grid Engine, Torque 4, HTCondor, SLURM)

2013 Jun Began testing HTCondor with ATLAS & CMS

2013 Aug Choice of HTCondor approved by management

2013 Sep HTCondor declared production service

 Moved 50% of pledged CPU resources to HTCondor

2013 Nov Migrated remaining resources to HTCondor

10

Services (2)

Batch:

• SLC6 migration: SLC5 CEs decommissioned, no

grid job submission to SLC5

– SLC5 WNs final migration ongoing

• Batch system migration, from LSF to HTCondor

– Goals: scalability, dynamism, dispatch rate, query scaling

– Replacement candidates:

• SLURM feels too young

• HTCondor mature and promising

• Son of Grid Engine fast, a bit rough

– More details of selection process:

https://indico.cern.ch/event/247864/session/5/contribution

/22/material/slides/0.pdf

 11

https://indico.cern.ch/event/247864/session/5/contribution/22/material/slides/0.pdf
https://indico.cern.ch/event/247864/session/5/contribution/22/material/slides/0.pdf
https://indico.cern.ch/event/247864/session/5/contribution/22/material/slides/0.pdf
https://indico.cern.ch/event/247864/session/5/contribution/22/material/slides/0.pdf
https://indico.cern.ch/event/247864/session/5/contribution/22/material/slides/0.pdf
https://indico.cern.ch/event/247864/session/5/contribution/22/material/slides/0.pdf
https://indico.cern.ch/event/247864/session/5/contribution/22/material/slides/0.pdf
https://indico.cern.ch/event/247864/session/5/contribution/22/material/slides/0.pdf
https://indico.cern.ch/event/247864/session/5/contribution/22/material/slides/0.pdf
https://indico.cern.ch/event/247864/session/5/contribution/22/material/slides/0.pdf
https://indico.cern.ch/event/247864/session/5/contribution/22/material/slides/0.pdf

It is all (mainly) about automation

“Do what I told you to do and let me know when you are
done!”

Automation requires dependable, capable and affordable
mechanisms that are controlled by software that
implements the policies of the end user. This is why
mechanisms determine what a computing system can do
for you and it is much harder to change/improve
mechanisms then policies.

We prefer to talk and do policies. However, it is critical that
we talk and understand mechanisms. This requires an
understanding of principals and problems not solutions.

Computer Science problems do not
die

The good (bad) news about these problems is
that they have many non-optimal solutions as
they are all based on tradeoffs that cannot be
(easily) quantified and are affected by frequent
changes in how computers are used and the
technologies (hardware and software) that is
used to implement/build them.

Problems that do not go way

• Name spaces – when you say “give me foo” how do I
know what “foo” is?

• Caching – what should I remove when the cache is full?
• Co-scheduling – which resource should I hold while I

am waiting for to other resource to become available?
• Error propagation – how do I tell you that I failed?
• Verification of a computing system – How do I know

that the system does what it is supposed to do?
• Checkpoint restart of applications – How much would

it cost to allocate the resource you are using now to
someone else?

Multiprogramming

Maximize throughput by overlapping CPU and
I/O, can lead to thrashing due to virtual memory
contention (poor locality of reference) and
therefore requires inter-application protection.

Maximize utilization of all resources. Individual
running time is not the focus (objective).

What is fair?

• How long should I wait?

• How much should I pay?

• How fast will I run?

• How predictive will the service be?

• How will I know that I am treated fairly?

• How will I know that my resources are
allocated fairly?

In 1978 I fell in love with
the problem of load

balancing in distributed
systems

The paradigm shift of
70’s – computing

hardware sold in small
units.

Claims for “benefits” provided by Distributed
Processing Systems

– High Availability and Reliability

– High System Performance

– Ease of Modular and Incremental Growth

– Automatic Load and Resource Sharing

– Good Response to Temporary Overloads

– Easy Expansion in Capacity and/or Function

P.H. Enslow, “What is a Distributed Data Processing
System?” Computer, January 1978

Definitional Criteria for a Distributed
Processing System

– Multiplicity of resources

– Component interconnection

– Unity of control

– System transparency

– Component autonomy

P.H. Enslow and T. G. Saponas “”Distributed and
Decentralized Control in Fully Distributed Processing
Systems” Technical Report, 1981

Multiplicity of resources

The system should provide a number of

assignable resources for any type of service
demand. The greater the degree of replication
of resources, the better the ability of the
system to maintain high reliability and
performance

Component interconnection

A Distributed System should include a
communication subnet which interconnects
the elements of the system. The transfer of
information via the subnet should be
controlled by a two-party, cooperative
protocol (loose coupling).

System transparency

From the users point of view the set of
resources that constitutes the Distributed
Processing System acts like a “single virtual
machine”. When requesting a service the
user should not require to be aware of the
physical location or the instantaneous load of
the various resources

Unity of Control

All the component of the system
should be unified in their desire to
achieve a common goal. This goal
will determine the rules according to
which each of these elements will be
controlled.

Component autonomy

The components of the system, both the
logical and physical, should be autonomous
and are thus afforded the ability to refuse a
request of service made by another element.
However, in order to achieve the system’s
goals they have to interact in a cooperative
manner and thus adhere to a common set of
policies. These policies should be carried out
by the control schemes of each element.

Challenges

• Race Conditions…
• Name spaces …
• Distributed ownership …
• Heterogeneity …
• Object addressing …
• Data caching …
• Object Identity …
• Trouble shooting …
• Circuit breakers …

One centralized
queue or many

distributed
queues?

Or, the Wait
while Idle
problem.

BASICS OF A M/M/1 SYSTEM

l

m

Expected # of customers

is 1/(1-r), where (r =

l/m) is the utilization

When utilization is 80%,

you wait on the average 4 units

for every unit of service

M/M/2 – One queue 2 servers

Number

Of

Customers

In the Queue

Utilization

What about 2*M/M/1 ?

l

m

l

m

When utilization is 80%,

you wait on the average 4 units

for every unit of service

When utilization is 80%,

25% of the time a customer is

waiting for service while

a server is idle

Wait while Idle (WwI)
in m*M/M/1

0

m = 2

m = 5

m = 10

m = 20

Prob

(WwI)

1

0 1 Utilization

In 1983 I wrote
a Ph.D. thesis –

“Study of Load Balancing

Algorithms for Decentralized
Distributed Processing Systems”

http://www.cs.wisc.edu/condor/doc/livny-dissertation.pdf

Should I stay and
wait or should I

move to another
queue?

 “ … Since the early days of mankind the primary
motivation for the establishment of communities
has been the idea that by being part of an
organized group the capabilities of an individual
are improved. The great progress in the area of
inter-computer communication led to the
development of means by which stand-alone
processing sub-systems can be integrated into
multi-computer ‘communities’. … “

Miron Livny, “ Study of Load Balancing Algorithms for Decentralized Distributed

Processing Systems.”,

Ph.D thesis, July 1983.

 In 1984 we introduced the concept of
“distributed ownership”, developed our first
checkpointing capability and started to
implement the first version of Condor leveraging
a remote I/O capability (split execution) that
was developed at our CS department in 1982.

First version of Condor was installed on 20 DEC2
(desk top) workstations to serve our CS
department in 1985.

Submit Locally
and run Globally

(Here is the work and here are the

resources I bring to the table)

D. H. J Epema, Miron Livny, R. van Dantzig, X. Evers, and Jim Pruyne, "A Worldwide Flock of Condors :

Load Sharing among Workstation Clusters" Journal on Future Generations of Computer Systems,

Volume 12, 1996

10

Dubna/Berlin

Amsterdam

3

Warsaw

3

1994 Worldwide Flock of Condors

200

3

Madison

Delft

10

3

Geneva

30
10

Use resource and job management “gateways”
to connect the Condor pools.

Established a Peer to Peer relationship between
the pools to support full local control.

Followed the routing approach of message
passing networks to establish a connection
between the source (owner of the work) and
the destination (resource).

In 1996 I introduced the distinction between High

Performance Computing (HPC) and High

Throughput Computing (HTC) in a seminar at the

NASA Goddard Flight Center in and a month later at the
European Laboratory for Particle Physics (CERN). In June
of 1997 HPCWire published an interview on High
Throughput Computing.

Why HTC?

For many experimental scientists, scientific progress
and quality of research are strongly linked to
computing throughput. In other words, they are less
concerned about instantaneous computing power.
Instead, what matters to them is the amount of
computing they can harness over a day, a month or a
year --- they measure computing power in units of
scenarios per day, wind patterns per week,
instructions sets per month, or crystal configurations
per year.

High Throughput Computing
is a 24-7-365 activity and

therefore requires
automation

FLOPY  (60*60*24*7*52)*FLOPS

Obstacles to HTC

• Ownership Distribution

• Customer Awareness

• Size and Uncertainties

• Technology Evolution

• Physical Distribution

(Sociology)

(Education)

(Robustness)

(Portability)

(Technology)

www.cs.wisc.edu/~miron

Resource Allocation
(resource -> job)

vs.
Work Delegation

(job -> resource)

www.cs.wisc.edu/~miron

www.cs.wisc.edu/~miron

Resource Allocation

A limited assignment of the “ownership” of
a resource
Owner is charged for allocation regardless of

actual consumption
Owner can allocate resource to others
Owner has the right and means to revoke an

allocation
Allocation is governed by an “agreement”

between the client and the owner
Allocation is a “lease”
Tree of allocations

www.cs.wisc.edu/~miron

 “We present some principles that we believe should
apply in any compute resource management system.
The first, P1, speaks to the need to avoid “resource
leaks” of all kinds, as might result, for example,
from a monitoring system that consumes a nontrivial
number of resources.

P1 - It must be possible to monitor and control all
resources consumed by a CE—whether for
“computation” or “management.”

Our second principle is a corollary of P1:
P2 - A system should incorporate circuit breakers to

protect both the compute resource and clients. For
example, negotiating with a CE consumes resources.
How do we prevent an eager client from turning into a
denial of service attack? “

Ian Foster & Miron Livny, "Virtualization and Management of Compute
Resources: Principles and Architecture ", A working
document (February 2005)

www.cs.wisc.edu/~miron

Garbage collection
is the

cornerstone
 of

resource allocation

www.cs.wisc.edu/~miron

Work Delegation

A limited assignment of the
responsibility to perform the work
Delegation involved a definition of these

“responsibilities”
Responsibilities my be further delegated
Delegation consumes resources
Delegation is a “lease”
Tree of delegations

www.cs.wisc.edu/~miron

HTCondor Job Submission
Options

› leave_in_queue = <ClassAd Boolean Expression>
› on_exit_remove = <ClassAd Boolean Expression>
› on_exit_hold = <ClassAd Boolean Expression>
› periodic_remove = <ClassAd Boolean Expression>
› periodic_hold = <ClassAd Boolean Expression>
› periodic_release = <ClassAd Boolean Expression>
› noop_job = <ClassAd Boolean Expression>

The Grid Movement

Enable (limited) work delegation and remote
(distributed) authorization that is based on a
global identity namespace and a (small)
group of trusted certificate authorities.

Introduced authentication to Distributed
Processing Systems.

www.cs.wisc.edu/~miron 55

The grid promises to fundamentally change the way we

think about and use computing. This infrastructure will

connect multiple regional and national computational

grids, creating a universal source of pervasive

and dependable computing power that

supports dramatically new classes of applications. The

Grid provides a clear vision of what computational

grids are, why we need them, who will use them, and

how they will be programmed.

The Grid: Blueprint for a New

Computing Infrastructure
Edited by Ian Foster and Carl Kesselman

July 1998, 701 pages.

www.cs.wisc.edu/~miron 56

 “ … We claim that these mechanisms, although
originally developed in the context of a cluster
of workstations, are also applicable to
computational grids. In addition to the
required flexibility of services in these grids,
a very important concern is that the system
be robust enough to run in “production mode”
continuously even in the face of component
failures. … “

Miron Livny & Rajesh Raman, "High Throughput Resource
Management", in “The Grid: Blueprint for
a New Computing Infrastructure”.

www.cs.wisc.edu/~miron 57

 “ … Grid computing is a partnership between
clients and servers. Grid clients have more
responsibilities than traditional clients, and
must be equipped with powerful mechanisms
for dealing with and recovering from
failures, whether they occur in the context
of remote execution, work management, or
data output. When clients are powerful,
servers must accommodate them by using
careful protocols.… “

Douglas Thain & Miron Livny, "Building Reliable Clients and Servers",
in “The Grid: Blueprint for a New Computing
Infrastructure”,2nd edition

www.cs.wisc.edu/~miron

The Ethernet Protocol

IEEE 802.3 CSMA/CD - A truly
distributed (and very effective)
access control protocol to a
shared service.
Client responsible for access control
Client responsible for error detection
Client responsible for fairness

www.cs.wisc.edu/~miron

Client

Server

Master

Worker

www.cs.wisc.edu/~miron

min
p aijbp(i)p(j)

30

i=1



The NUG30 Quadratic
Assignment Problem (QAP)

30

j=1



www.cs.wisc.edu/~miron

NUG30 Personal Grid (06/2000)

Managed by one Linux box at Wisconsin

Flocking: -- the main Condor pool at Wisconsin (500 processors)

 -- the Condor pool at Georgia Tech (284 Linux boxes)

 -- the Condor pool at UNM (40 processors)

 -- the Condor pool at Columbia (16 processors)

 -- the Condor pool at Northwestern (12 processors)

 -- the Condor pool at NCSA (65 processors)

 -- the Condor pool at INFN Italy (54 processors)

Glide-in: -- Origin 2000 (through LSF) at NCSA. (512 processors)

 -- Origin 2000 (through LSF) at Argonne (96 processors)

Hobble-in: -- Chiba City Linux cluster (through PBS) at Argonne

 (414 processors).

www.cs.wisc.edu/~miron

Solution Characteristics.

Scientists 4
Workstations 1
Wall Clock Time 6:22:04:31
Avg. # CPUs 653

Max. # CPUs 1007

Total CPU Time Approx. 11 years

Nodes 11,892,208,412

LAPs 574,254,156,532

Parallel Efficiency 92%

www.cs.wisc.edu/~miron

W
ork

e
rs

The NUG30 Workforce

Condor crash

Application
Upgrade

System
Upgrade

www.cs.wisc.edu/~miron

Being a Master

 Customer “delegates” task(s) to the master
who is responsible for:
Obtaining allocation of resources

Deploying and managing workers on allocated
resources

Delegating work unites to deployed workers

Receiving and processing results

Delivering results to customer

www.cs.wisc.edu/~miron

Master must be …

› Persistent – work and results must be safely recorded on
non-volatile media

› Resourceful – delegates “DAGs” of work to other masters

› Speculative – takes chances and knows how to recover from
failure

› Self aware – knows its own capabilities and limitations

› Obedience – manages work according to plan

› Reliable – can mange “large” numbers of work items and
resource providers

› Portable – can be deployed “on the fly” to act as a “sub

master”

www.cs.wisc.edu/~miron

Master should not do …

› Predictions …

› Optimal scheduling …

› Data mining …

› Bidding …

› Forecasting …

www.cs.wisc.edu/~miron

Dear Master,

Never assume that what
you know is still true and
that what you ordered
did actually happen!

www.cs.wisc.edu/~miron

Every Community
can benefit from the

services of

Matchmakers!
eBay is a matchmaker

www.cs.wisc.edu/~miron

Why? Because ...

.. someone has to bring together
community members who have
requests for goods and services with
members who offer them.
Both sides are looking for each other

Both sides have constraints

Both sides have preferences

www.cs.wisc.edu/~miron

Being a Matchmaker

› Symmetric treatment of all parties
› Schema “neutral”
› Matching policies defined by parties
› “Just in time” decisions
› Acts as an “advisor” not “enforcer”
› Can be used for “resource allocation”

and “job delegation”

The paradigm shift of
00’s – computing

capacity sold on demand
for short time periods.

In other words, computing
capacity is assumed to be
unbounded as long as you

have an unbounded CC.

www.cs.wisc.edu/~miron 73

Miron Livny
Center for High Throughput Computing

Computer Sciences Department
University of Wisconsin-Madison

Condor
in the

Clouds

www.cs.wisc.edu/~miron 75

The words of Koheleth son of David, king in

Jerusalem ….

Only that shall happen

Which has happened,

Only that occur

Which has occurred;

There is nothing new

Beneath the sun!

Ecclesiastes Chapter 1 verse 9

www.cs.wisc.edu/~miron 76

An autonomous computing (processing,
storage and networking) resources with an
interface that supports remote invocation
of “jobs” and staging of input/output data.

Looks and feels like any other grid site
Likely to have proprietary APIs
Likely to have different cost models
Likely to have different SLAs
Likely to have different usage policies

Our view of a cloud

www.cs.wisc.edu/~miron 77

What do we do with clouds?

› Turn VMs into “first class citizens” in the Condor framework
› Interact with users in academia and industry who express

interest in using computing resources offered by clouds
› Add EC2+S3 to the (long) list of remote resources Condor

can harness (or delegate work to)
› Explore possible enhancements to our matchmaking and

workflow technologies to support provisioning of cloud
resources (including inter-cloud migration)

› Understand the semantics of the EC2+S3 services, protocols
and infrastructure so that we can provide a Condor “overlay”
that expend local capabilities to include these resources

› Monitor new cloud “formations”

www.cs.wisc.edu/~miron 78

How can I use Condor?

› As a job manager and resource scheduler for a
dedicated collection of rack mounted computers

› As a job manager and resource scheduler for a
collection of desk-top computers

› As a job manager and a resource scheduler for a
collection of batch/grid/cloud systems

› As a job manager and resource scheduler for all of
the above

Everything “looks” and is treated like a job

April 19, 2012, 9:02 a.m. EDT

Cycle Computing Ramps Global 50,000-Core Cluster for
Schrodinger Molecular Research Utility Supercomputing
Leader Facilitates Massive Cluster for Computational Drug
Discovery

NEW YORK, NY, Apr 19, 2012 (MARKETWIRE via COMTEX) -- Cycle Computing
provisioned a 50,000-core utility supercomputer in the Amazon Web Services
(AWS) cloud for Schroedinger and Nimbus Discovery to accelerate lead
identification via virtual screening. This milestone -- the largest of its kind -- is
Cycle Computing's fifth massive cluster in less than two years on the heels of a
30,000 cluster in October 2011, illustrating Cycle's continued leadership in
delivering full-featured and scalable cluster deployments. Cycle Computing
revealed the cluster creation during today's opening keynote at the AWS Summit
in New York City.

Are EC2 Spot instances a Grid, a
Cloud or just a Distributed
Processing System where
resources come and go at

(local) will?

The Open
Science Grid

(OSG)

“The members of the OSG are
united by a commitment to promote
the adoption and to advance the
state of the art of distributed
high throughput computing (DHTC)
– shared utilization of autonomous
resources where all the elements
are optimized for maximizing
computational throughput.”

The OSG addresses these challenges
by following a framework that is
based on four underlying principles:

 •Resource Diversity

•Dependability

•Autonomy

•Mutual Trust

“This dependability needs to
be maintained while the
services and their software
implementations change to
meet new needs and
incorporate new technologies”

You may have ONE
local submit machine
managing 100K jobs

on 10K remote
machines

In HTCondor we use a two phase
matchmaking process to first

allocate a collection of resources
to a requestor and then to select a

task to be delegated for
execution within the constraints of

these resources

I am D and
I am willing
to offer you
resources

I am S and
am looking
for
resources

Match! Match!

W3

Wi Wi Wi Wi

MM

SchedD StartD

User Code/
DAGMan

SchedD

G-app G-app G-app

Local

Remote

HTCondor

MM

Grid CE

H
T

C
o

n
d

o
r

StartD StartD StartD

PBS LSF HTCondor

MM C-app

C-app

SSH CondorC

Factory
Front End

OSG

Factory

SchedD

MM

HTCondor

MM

C-app C-app C-app

The OSG GildeIn factory uses the
SchedD as a resource provisioning

agent on behalf of the (local)
SchedD. It decides when, from

where and for how long to keep
an acquired resource.

User Code/
DAGMan

SchedD

Local

Remote

HTCondor

MM

EC2
HTCondor

MM

C-app

C-app

OpSt Spot

Factory
Front End

OSG
Cloud

Factory

SchedD

VM VM VM

H
T

C
o

n
d

o
r

StartD StartD StartD

MM

C-app C-app C-app

The main challenge is to know
in advance how much an

application needs, to monitor
how much an application

actually consumes to know
how much is available and to

react accordingly

We use networks for control,
we use networks to move
executables and we use

networks to move data. The
application may use networks

internally to its work.

 When talking about networks,
everyone always thinks of

"bandwidth", but indeed there
is much more to consider....

DEFINITIONS

"Intermediary" - Anyone between the client and the
server. Could the operating systems on either side,
the network cards on either side, routers, switches,
NATs, and more.
"server" - The side listening for an inbound TCP
connection or UDP packet. A given process might be
both a server and a client.
"client" - The side initiating a TCP connection or
sending a UDP packet. A given process might be both
a server and a client.

Bandwidth - Can you transmit required data

quickly enough to meet your needs? You might be
constrained by the physical links as well as any
intermediaries. For example, many firewalls process
packets more slowly than their network connections
otherwise support. Various layers of the system itself
may limit bandwidth; security (encryption,
decryption, checksums) in particular can easily be
expensive. Security can also increase the amount of
traffic necessary; authentication of both sides can
easily add multiple messages to ultimately send a
single small message.

CPU - Can your system make requests

quickly enough? Can your system take
advantage of multiple CPU cores in a single
system to manage load? How much CPU does
your security subsystem require; security
(encryption, decryption, checksums) can use a
lot.

Memory – May be limited by physical RAM and

swap, kernel configuration, user-level limits, cgroup
limits, or per-process limits. Adding a security
subsystem will require more memory.

 - Process memory - Each network connection requires some
 memory in your process. Your library providing the
 networking interface is almost certainly doing memory
 allocation on your behalf.
 - Kernel memory - Each network connection, including
 pending, requires some memory from the kernel.

File descriptors - Each connection

requires an FD, and listening for incoming
connections is another FD. FDs are a finite
resource on the client and server.

Multiple layers can impose limits: per process limits
(ulimit), per user limits, per process group limits (by
cgroups or similar), configurable system-wide limits
(/proc/sys/fs/file-max on Linux), or technical limits
(Only 2^32 FDs can be described in a single program on
Linux. We believe Linux can only manage 2^32 total
FDs).

Ports - Only 65535 are available on a given network

interface. In practice, the available number will be much
smaller: some will be in use by other processes, some are
unavailable to non-root processes, and the system
configuration will likely limit the range further
(/proc/sys/net/ipv4/ip_local_port_range on Linux controls the
ephemeral ports). Closed connections may continue to hold
ports for a while to reduce the risk of port-reuse (TCP's
TIME_WAIT state). In some cases ports can be shared, but this
necessitates adding additional identifying information for each
TCP connection or UDP packet.
 All computers behind a NAT share a finite number of ports for
all connections to hosts outside of the NAT.

Firewall state - A firewall/router/NAT has

limited resources to manage connections that
traverse it. It might have limits on simultaneous
connections, simultaneous connections being
initiated, bandwidth, RAM, or others. If the
intermediary runs out of resources, a wide
variety of undesirable things might happen: the
intermediary may stop processing anything,
blocking all traffic; it may break existing
connections; it may reject new connections; it
may stop processing firewall rules.

What does HTCondor
offer today for

network resoures

The SchedD can manage
the allocation of data

transfer connections to
users/jobs while

monitoring overall I/O
and networking activity

The SharedPort
daemon reduces the

number of ports used
by an HTCondor
machine to one

by reversing TCP
connections the Condor
Connection Broker (CCB)
reduces the number of

(outgoing) Ports used by
a SchedD

HTCondor monitors FD
consumption and

collects HostName
resolution statistics

Know what you
need, what you
use and what is

available!

Using the power of
Directed Acyclic Graphs

(DAGs) to support
declarative automation

of interdependent tasks.

Example of a LIGO Inspiral

DAG (Workflow)

 From: Stuart Anderson <anderson@ligo.caltech.edu>

 Date: February 28, 2010 11:51:32 PM EST

 To: Condor-LIGO mailing list <condorligo@aei.mpg.de>

 Subject: [CondorLIGO] Largest LIGO workflow

Pete,

 Here are some numbers you ask about for LIGO's use of DAGs to

manage large data analysis tasks broken down by the largest number of

jobs managed in different categories:

1) DAG Instance--one condor_dagman process: 196,862.

2) DAG Workflow--launched from a single condor_submit_dag but

may include multiple automatic sub- or spliced DAGs: 1,120,659.

3) DAG Analysis--multiple instances of condor_submit_dag to

analyze a common dataset with results combined into a single

coherent scientific result: 6,200,000.

4) DAG Total--sum over all instances of condor dagman run:

O(100M).

P.S. These are lower bounds as I did not perform an exhaustive

survey/search, but they are probably close.

Thanks.

mailto:anderson@ligo.caltech.edu
mailto:condorligo@aei.mpg.de

Using the power of the
“data-flow” model

support planning and
enable automation

Homework –
Mechanisms to

manage
opportunistic

storage.

