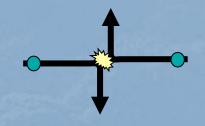


Theory of dipolar gases (I)

Luis Santos Institute of Theoretical Physics and Center of Excellence QUEST Leibniz Universität Hannover

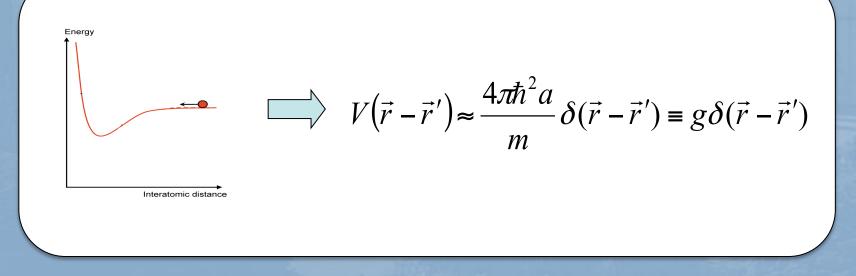
Varenna, July, 2014

Contact interaction



In typical experiments up to now the atoms interact via <u>short-range isotropic</u> <u>interactions</u>

The interaction is given by the s-wave scattering length "a"



 \boldsymbol{e}_1

r

θ

 e_2

Dipole-dipole interaction

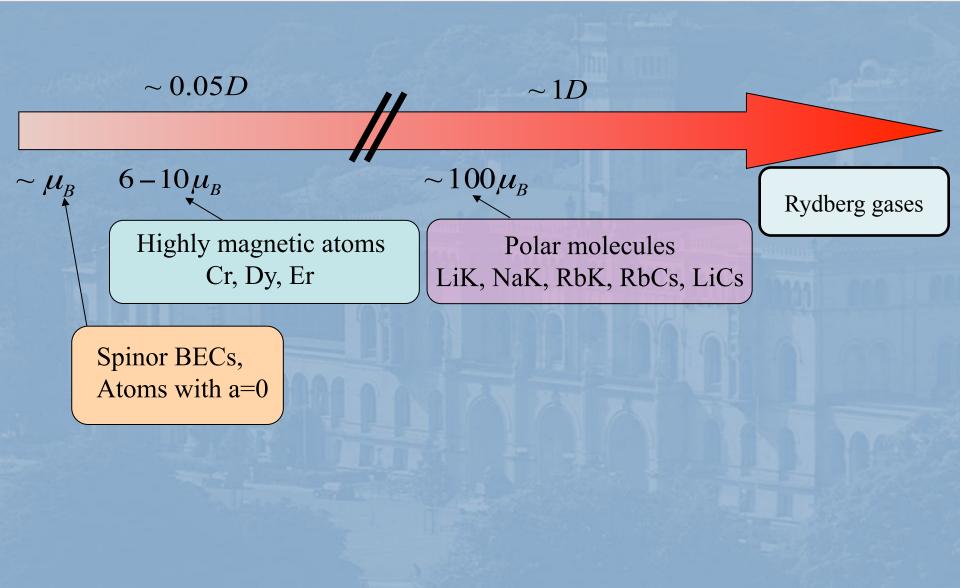
$$U_{\rm dd}(\boldsymbol{r}) = \frac{C_{\rm dd}}{4\pi} \frac{(\boldsymbol{e}_1 \cdot \boldsymbol{e}_2) r^2 - 3 (\boldsymbol{e}_1 \cdot \boldsymbol{r}) (\boldsymbol{e}_2 \cdot \boldsymbol{r})}{r^5}$$

 $C_{
m dd}$ < $\frac{\mu_0 \mu^2}{d^2 / \varepsilon_0}$ (magnetic dipoles) d^2 / ε_0 (electric dipoles)

$$U_{\rm dd}(\boldsymbol{r}) = \frac{C_{\rm dd}}{4\pi} \frac{1 - 3\cos^2\theta}{r^3}$$

Dipolar gases: all the way from very weak to huge

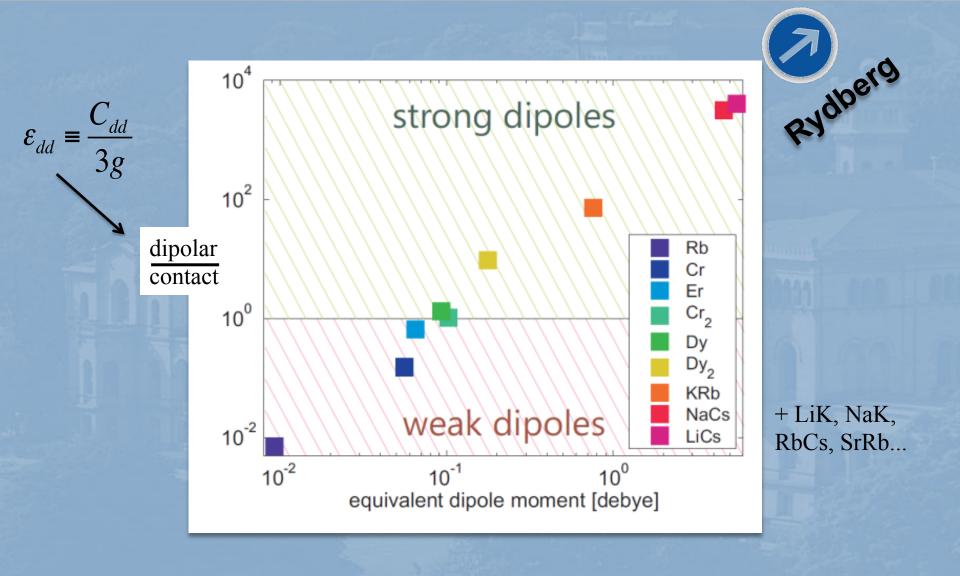
l l Leibniz l o 2 Universität l o 0 4 Hannover



Dipolar gases: all the way from very weak to huge

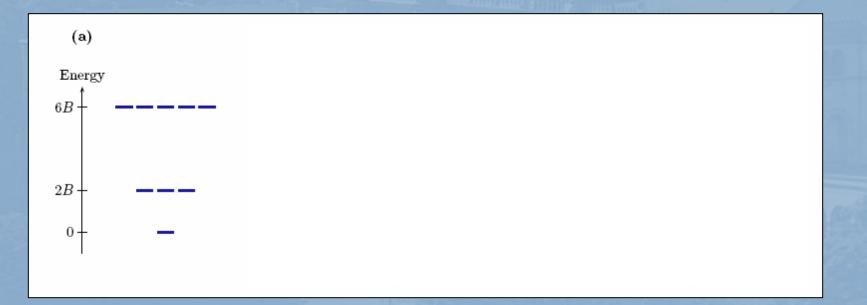
102

Leibniz Universität

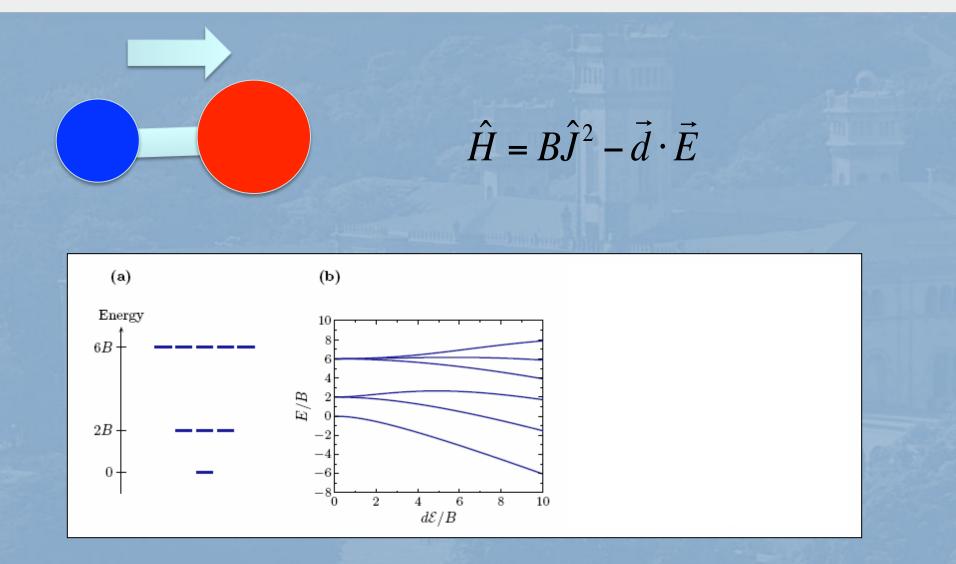


Polar molecules

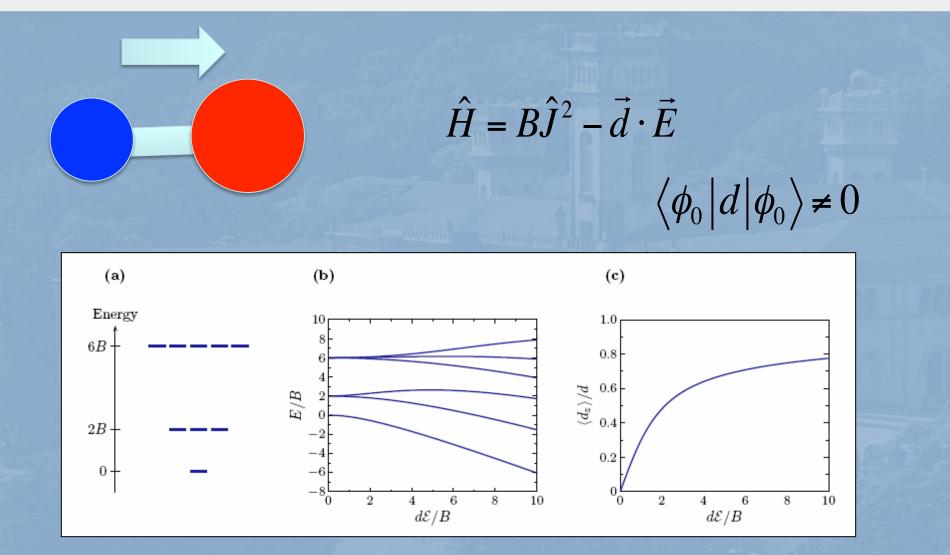
$\hat{H} = B\hat{J}^2 \qquad |J,M\rangle \Rightarrow BJ(J+1)$ $\langle 0,0|d|0,0\rangle = 0 \quad \langle 1,M|d|0,0\rangle \neq 0$



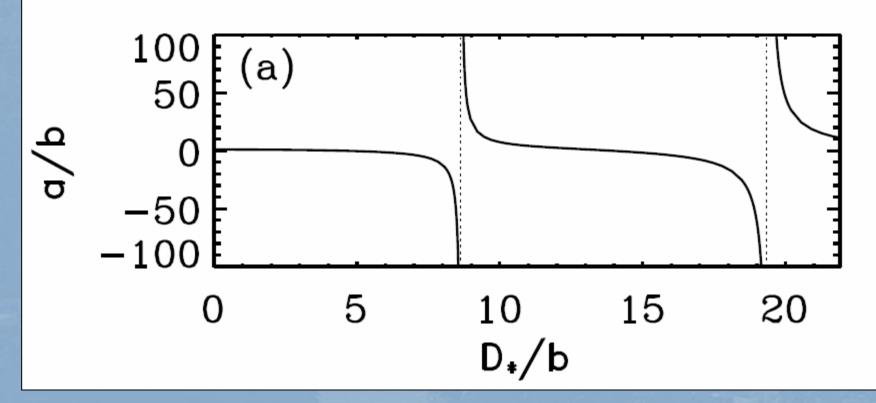
Polar molecules



Polar molecules



Pseudopotential



[From Bortolotti et al., PRL 97, 160402 (2006)]

Dipolar BECs: Nonlocal Gross-Pitaevskii equation

$$H = \int dr \hat{\psi}^{\dagger}(\vec{r}) \left[-\frac{\hbar^2}{2m} \nabla^2 + V_T(r) - \mu \right] \hat{\psi}(\vec{r})$$
$$+ \frac{1}{2} \iint dr dr' \hat{\psi}^{\dagger}(\vec{r}) \hat{\psi}^{\dagger}(\vec{r}') U(\vec{r} - \vec{r}') \hat{\psi}(\vec{r}') \hat{\psi}(\vec{r}')$$
$$U(\vec{r}) = g\delta(r) + U_{dd}(\vec{r})$$

Dipolar BECs: Nonlocal Gross-Pitaevskii equation

$$\begin{split} \hat{H} &= \int d\mathbf{r} \hat{\psi}^{\dagger}(\mathbf{r}) \left[-\frac{\hbar^2}{2m} \nabla^2 + V_T(\mathbf{r}) - \mu + \frac{1}{2} g \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}(\mathbf{r}) \right] \hat{\psi}(\mathbf{r}) \\ &+ \frac{1}{2} \int d^3 r d^3 r' \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}') U_{\rm dd}(\mathbf{r} - \mathbf{r}') \hat{\psi}(\mathbf{r}') \hat{\psi}(\mathbf{r}), \\ \hat{\psi}(\vec{r}) &\cong \psi(\vec{r}) \end{split}$$

Dipolar BECs: Nonlocal Gross-Pitaevskii equation

$$\begin{split} i\hbar \frac{\partial}{\partial t} \psi(\mathbf{r},t) &= \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) - \mu + g |\psi(\mathbf{r},t)|^2 \right. \\ &+ \left. \frac{C_{dd}}{4\pi} \int d\mathbf{r}' \frac{1 - 3\cos^2\theta}{|\mathbf{r} - \mathbf{r}'|^3} |\psi(\mathbf{r}',t)|^2 \right] \psi(\mathbf{r},t) \end{split}$$

Stability: homogeneous space

$$\hat{\psi}(\mathbf{r}) = \sum_{p} \hat{a}_{p} \exp[i\mathbf{p} \cdot \mathbf{r}/\hbar] \sqrt{V}$$

$$\hat{H} = \sum_{p} \frac{p^{2}}{2m} \hat{a}_{p}^{\dagger} \hat{a}_{p} + \frac{1}{2V} \sum_{p_{1}, p_{2}, q} (g + \tilde{U}_{dd}(q)) \hat{a}_{p_{1}+q}^{\dagger} \hat{a}_{p_{2}-q}^{\dagger} \hat{a}_{p_{2}} \hat{a}_{p_{1}}$$

$$\tilde{U}_{dd}(q) = \frac{C_{dd}}{3} (3 \cos^{2} \theta_{q} - 1)$$

$$\hat{a}_{0}, \hat{a}_{0}^{\dagger} \simeq \sqrt{N}$$

$$\hat{H} = \sum_{p \neq 0} \frac{p^{2}}{2m} \hat{a}_{p}^{\dagger} \hat{a}_{p} + \frac{n_{0}}{2} \sum_{p} (g + \tilde{U}_{dd}(q)) (2 \hat{a}_{p}^{\dagger} \hat{a}_{p} + \hat{a}_{p}^{\dagger} \hat{a}_{-p}^{\dagger} + \hat{a}_{p} \hat{a}_{-p})$$

$$\epsilon(\mathbf{p}) = \sqrt{\frac{p^{2}}{2m}} \left[\frac{p^{2}}{2m} + 2n_{0} \left(g + \tilde{U}_{dd}(\mathbf{p}) \right) \right]$$

Stability: homogeneous space

$$\varepsilon(\vec{p}) = \sqrt{\frac{p^2}{2m}} \left[\frac{p^2}{2m} + 2gn_0 \left(1 + \frac{C_{dd}}{3g} \left(3\cos^2\theta_p - 1 \right) \right) \right]$$

For a short-range interacting gas with a<0

$$\varepsilon(\vec{p}) = \sqrt{\frac{p^2}{2m}} \left[\frac{p^2}{2m} - 2|g|n_0\right] \approx p\sqrt{\frac{-|g|n_0}{m}} = ip|c_s$$

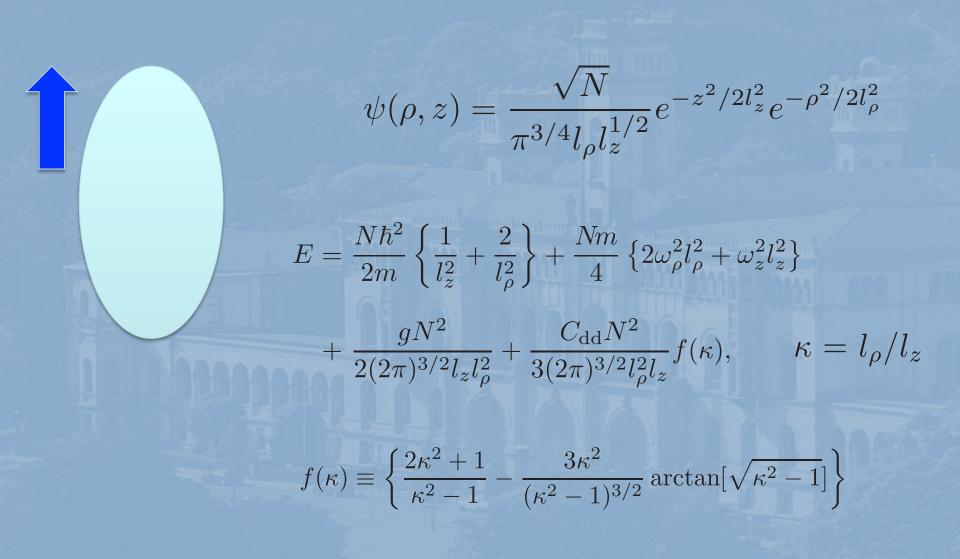
Stability: homogeneous space

$$\varepsilon(\vec{p}) = \sqrt{\frac{p^2}{2m}} \left[\frac{p^2}{2m} + 2gn_0 \left(1 + \frac{C_{dd}}{3g} \left(3\cos^2\theta_p - 1 \right) \right) \right]$$

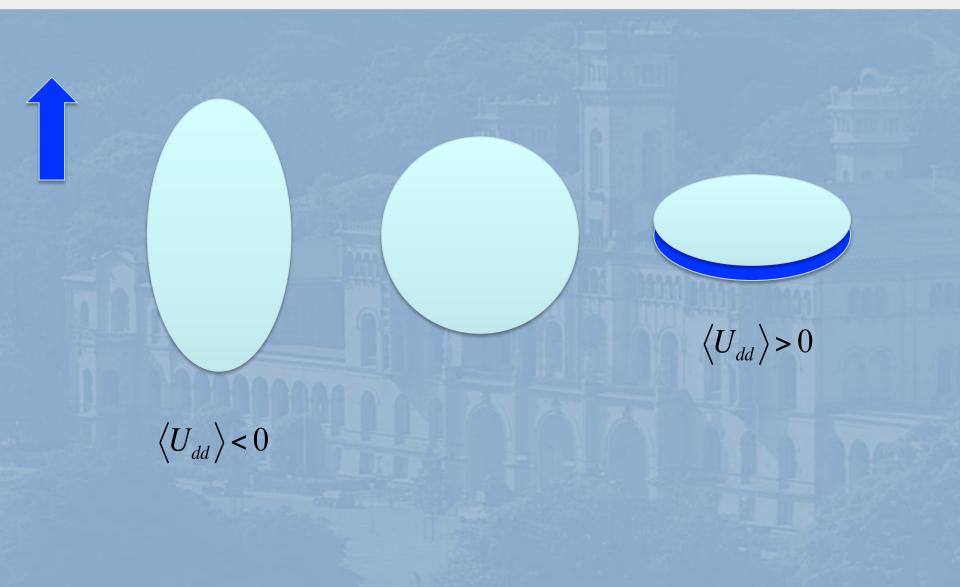
$$\varepsilon(\vec{p}) \cong p \sqrt{\frac{gn_0}{m}} \sqrt{1 + \frac{C_{dd}}{3g} \left(3\cos^2\theta_p - 1\right)}$$

If ε_{dd} >1 one has dynamical instability (phonon instability) but only in some directions

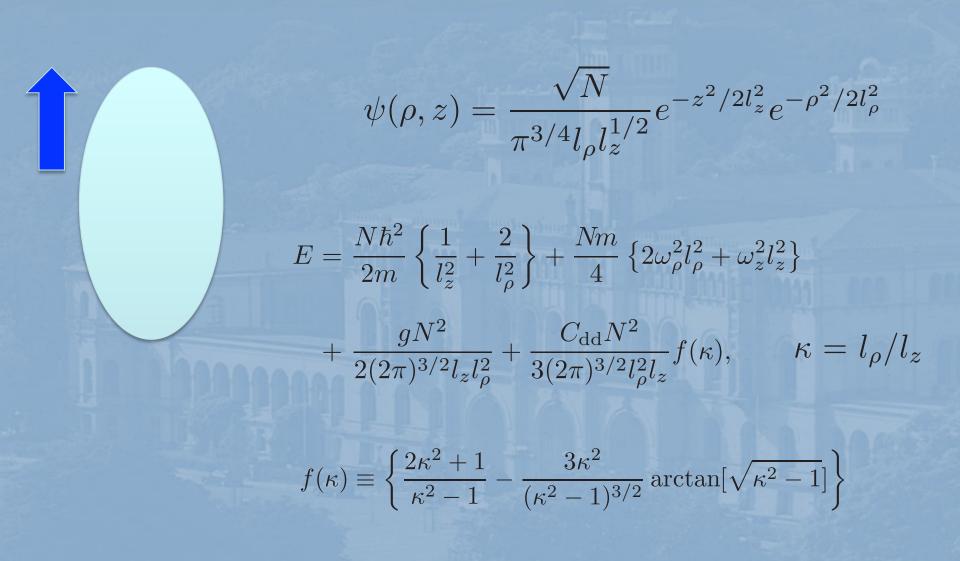
Stability: trapped case



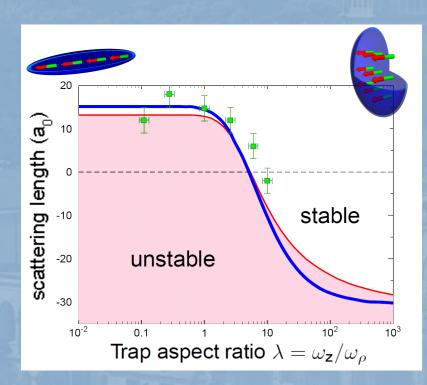
Stability: trapped case



Stability: trapped case

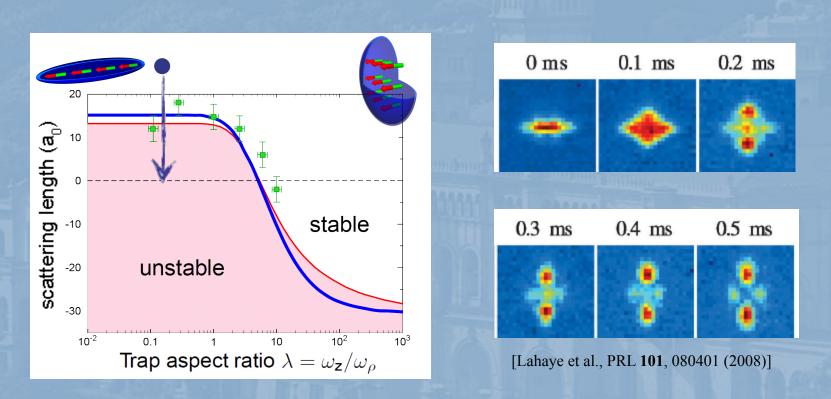


Geometry-dependent stability



[T. Koch et al., Nat. Phys. 4, 218 (2008); J. L. Bohn, R. M. Wilson and S. Ronen, Laser Physics 19, 547 (2008)]

Trap-dependent stability and d-wave collapse



[T. Koch et al., Nat. Phys. 4, 218 (2008);J. L. Bohn, R. M. Wilson and S. Ronen, Laser Physics 19, 547 (2008)]

l i i Z l o z i i Universität Hannover

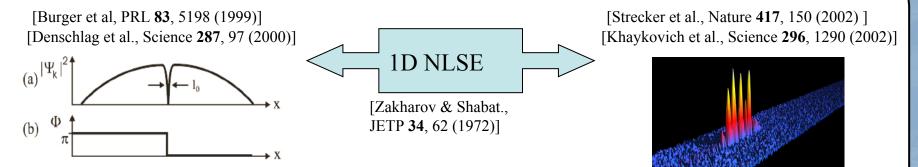
2D solitons

Gross-Pitaevskii equation

$$i\hbar\frac{\partial}{\partial t}\psi(\vec{r},t) = \left\{\frac{-\hbar^2}{2m}\nabla^2 + V(\vec{r},t) + \frac{4\pi\hbar^2 a}{m}N|\psi(\vec{r},t)|^2\right\}\psi(\vec{r},t)$$

Dark Solitons (a>0)

Bright solitons (a<0)



Continuous solitons become unstable in 2D and 3D

2D solitons

[Pedri and Santos, PRL **95**, 200404 (2005); Tikhonenkov, Malomed, and Vardi, PRL **100**, 090406 (2008)]

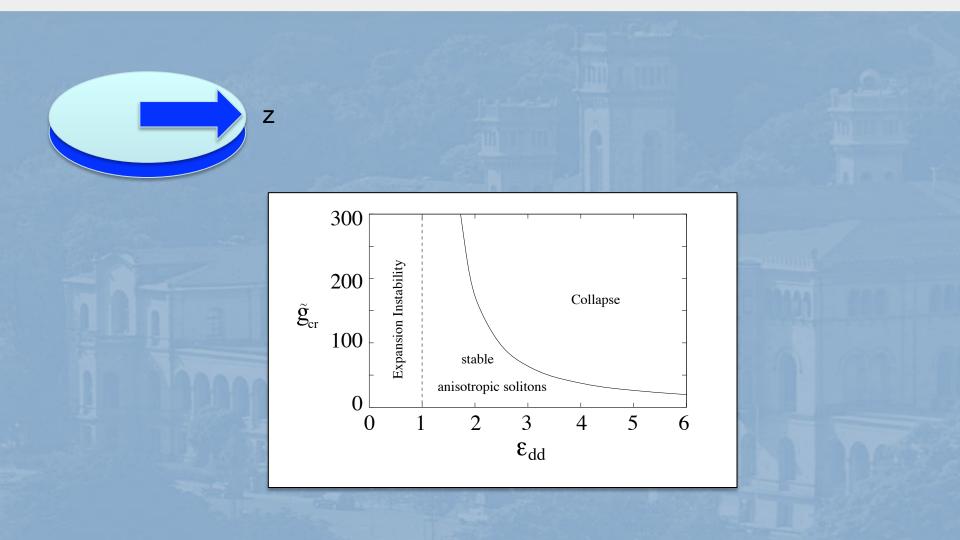
$$\psi(\mathbf{r}) = \frac{1}{l_y^{3/2}} \frac{1}{\pi^{3/4} \Lambda_x \Lambda_z} e^{\frac{1}{2l_y^2} \left(\frac{x^2}{\Lambda_x^2} + \frac{x^2}{\Lambda_z^2} + y^2\right)}$$

$$\epsilon \equiv \frac{E}{N\hbar\omega_y} = \frac{1}{4(\Lambda_x^2 + \Lambda_z^2)} + \frac{\tilde{g}}{4\pi\Lambda_x\Lambda_z} \left[1 + \epsilon_{dd}h\left(\frac{\Lambda_x}{\Lambda_z}, \frac{1}{\Lambda_z}\right)\right]$$

$$\tilde{g} = \frac{m}{\hbar^2} \frac{Ng}{\sqrt{2\pi l_y}}$$

$$h(\alpha, \beta) = -1 + 3\int_0^1 ds \frac{3\alpha\beta s^2}{[1 + \alpha^2 - 1)s^2]^{1/2} [1 + \beta^2 - 1)s^2]^{1/2}}$$
Without dipole
$$\epsilon(\Lambda = \Lambda_x = \Lambda_z) = \frac{(1 + \tilde{g}/2\pi)}{2\Lambda^2}$$

2D solitons



2D solitons

