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In this chapter, we briefly review some important aspects of the theory6

of dipolar gases, focusing on those aspects in which the physics of dipolar7

gases differs qualitatively from that of non-dipolar ones.8

13.1. The Dipole–Dipole Interaction9

As discussed in the next chapter, recent experiments on magnetic atoms
and polar molecules are starting to unveil the fascinating physics of
dipolar gases, which stems from the presence of a strong dipole–dipole
interaction (DDI). For two particles with relative position r, and dipole
moments along the unit vectors e1 and e2, the DDI is:

Udd(r) =
Cdd

4π
(e1 · e2) r2 − 3 (e1 · r) (e2 · r)

r5
. (13.1)

The coupling constant Cdd is µ0µ2 for particles having a magnetic dipole
moment µ (µ0 is the vacuum permeability) and d2/ε0 for particles having
an electric dipole moment d (ε0 is the vacuum permittivity). For a polarized
sample where all dipoles point along z, this expression simplifies to

Udd(r) =
Cdd

4π
1 − 3 cos2 θ

r3
, (13.2)

where θ is the angle between r and the direction of polarization.10

For non-dipolar gases, the low-energy scattering is basically given by the11

s-wave contribution, and hence the interaction potential can be replaced12

by a pseudo-potential, 4π!2aSδ(r)/m ≡ gδ(r), having the same s-wave13

scattering length, aS . The situation is very different for the DDI. The14

r−3 decay at large distances implies that all partial waves contribute15

to the scattering amplitude. Moreover, due to its anisotropy the DDI16

mixes all partial waves with even (for bosons) and odd (for fermions)17
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Dipolar BECs: Nonlocal Gross-Pitaevskii equation 
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angular momenta. The scattering problem may be rigourously treated by1

means of a multi-channel scattering theory.1 The main conclusion is that2

one may substitute the interparticle interaction by an effective pseudo-3

potential V (r)= gδ(r)+Udd(r), where g is defined as above, but in principle4

aS = aS(d), a dependence which may manifest itself quite dramatically5

in the appearance of scattering shape resonances.1–3 The pseudo-potential6

V (r) has been shown to be valid away from these resonances.2,37

The scattering of bosonic dipoles is hence determined by both long-8

and short-range interactions, whose interplay determines the physics of9

dipolar gases. For fermions the s-wave channel is absent, and hence low-10

energy scattering is determined only by the long-range part. This is11

crucial for polarized Fermi gases, since contrary to the case of a short-12

range interaction, which freezes out at low temperature, the collisional13

cross section for identical dipolar fermions does not vanish even at zero14

temperature.15

13.2. Non-Local Gross–Pitaevskii Equation16

Using the previously discussed pseudo-potential, the second-quantized
Hamiltonian for a system of dipolar bosons reads:4

Ĥ =
∫

drψ̂†(r)
[
− !2

2m
∇2 + VT (r) − µ +

1
2
gψ̂†(r)ψ̂(r)

]
ψ̂(r)

+
1
2

∫
d3rd3r′ψ̂†(r)ψ̂†(r′)Udd(r − r′)ψ̂(r′)ψ̂(r), (13.3)

where ψ̂(r) is the bosonic field operator, VT (r) is the trapping potential,
and µ is the chemical potential. One may then obtain the corresponding
Heisenberg equation for the dynamics of ψ̂(r). For Bose–Einstein conden-
sates (BECs) far from the critical temperature, we may introduce the
Bogoliubov approximation ψ̂(r) # ψ(r), and transform the Heisenberg
equation into a non-local Gross-Pitaevskii equation (GPE) for the con-
densate wave function ψ(r):

i! ∂
∂t
ψ(r, t) =

[
− !2

2m
∇2 + V (r) − µ + g|ψ(r, t)|2

+
∫

d3r′Udd(r − r′)|ψ(r′, t)|2
]
ψ(r, t). (13.4)

In the absence of DDI the non-linearity is local, given by g|ψ(r)|2, and hence17

similar to that found in Kerr media in non-linear optics. On the contrary18

ψ̂(r ) ≅ψ(r )
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Interestingly, polar molecules in the lowest ro-vibrational and hyperfine states have
been recently achieved (Ni et al., 2008; Deiglmayr et al., 2008). I will not comment in
detail about that since a lecture was provided on this topic was provided in the Les
Houches school by D. Jin.

1.2 Dipolar Bose-Einstein condensates

We shall have a look now to the properties of dipolar bosons, and in particular of
dipolar BECs (more extensive reviews may be found in Refs. (Baranov, 2008; Lahaye
et al., 2009)). We shall focus on relatively simple scenarios, discussing some key features
including the different forms of instability, and some interesting non-linear phenomena
in dipolar BECs.

1.2.1 Non-local Gross-Pitaevskii equation

Let us consider a gas of dipolar bosons. The second-quantized Hamiltonian of the
system reads:

Ĥ =

∫

drψ̂†(r)

[

−
!2

2m
∇2 + V (r) − µ

]

ψ̂(r)

+
1

2

∫

drdr′ψ̂†(r)ψ̂†(r′)U(r − r′)ψ̂(r′)ψ̂(r), (1.8)

where ψ̂(r) and ψ̂†(r) are the particle annihilation and creation operators, which fulfil
the usual bosonic commutation relations, V (r) is the trapping potential, and µ is
the chemical potential. The interaction potential U(r) may be approximated by the
pseudo-potential (1.3), and then our Hamiltonian becomes:

Ĥ =

∫

drψ̂†(r)

[

−
!2

2m
∇2 + V (r) − µ +

1

2
gψ̂†(r)ψ̂(r)

]

ψ̂(r)

+
1

2

∫

drdr′ψ̂†(r)ψ̂†(r′)Udd(r − r′)ψ̂(r′)ψ̂(r), (1.9)

We may then obtain easily the Heisenberg equations for the dynamics of the field
operators, by employing the bosonic commutation rules. Since we are interested in
the case of BECs far from the critical condensation temperature, we may introduce
the usual Bogoliubov approximation ψ̂(r) # ψ(r). In this way we obtain that the
Heisenberg equation transforms into the following equation for the dynamics of the
condensate wavefunction:

i!
∂

∂t
ψ(r, t) =

[

−
!2

2m
∇2 + V (r) − µ + g|ψ(r, t)|2

+
Cdd

4π

∫

dr′ 1 − 3 cos2 θ

|r − r′|3
|ψ(r′, t)|2

]

ψ(r, t). (1.10)

Note that this equation is a modified version of the well-known Gross-Pitaevskii
equation (GPE), or equivalently the non-linear Schrödinger equation. In the absence
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the DDI introduces a non-local non-linearity, i.e. the wavefunction in r1

depends on the wavefunction in r′ through a kernel given by Udd(r − r′).2

Interestingly, this links the physics of dipolar condensates with other non-3

local non-linear systems, such as plasmas5 and nematic liquid crystals.64

Such a non-local non-linearity leads to novel non-linear phenomena in5

dipolar condensates compared to non-dipolar ones, as illustrated by the6

example of solitons. The 1D local GPE (with aS < 0) supports the existence7

of solitons, i.e. localized waves that travel with neither attenuation nor8

change of shape.7–9 The quasi-1D condition requires a tight transversal9

harmonic trap of frequency ω⊥ such that !ω⊥ exceeds the mean-field10

interaction energy. When this condition is violated the soliton becomes11

unstable against transversal modulations, and hence multi-dimensional12

solitons are unstable in non-dipolar BECs. Remarkably the latter is not13

necessarily true in dipolar BECs, where as a consequence of the non-local14

non-linearity 2D bright solitary waves may become stable under appropriate15

conditions.10,1116

13.3. Stability of a Dipolar Bose–Einstein Condensate17

13.3.1. Homogeneous Condensates18

Due to the partially attractive character of the DDI, dipolar gases (as non-
dipolar gases with aS < 0) may become unstable. This crucial issue is best
understood by first considering a simplified 3D homogeneous condensate
(no trapping) with density n0. Introducing in Eq. (13.3) the Fourier
transform ψ̂(r) =

∑
p âp exp[ip·r/!]

√
V , where V is a quantization volume,

we obtain the Hamiltonian in momentum space:

Ĥ =
∑

p

p2

2m
â†

pâp +
1

2V

∑

p1,p2,q

(g + Ũdd(q))â†
p1+qâ†

p2−qâp2
âp1

, (13.5)

where Ũdd(q) = Cdd
3 (3 cos2 θq − 1) is the Fourier transform of the DDI,19

with θq the angle between q and the dipole orientation. The momentum20

dependence of the DDI is crucial for the properties of dipolar gases.21

Assuming a condensate in p = 0 (homogenous BEC), we may approx-
imate â0, â

†
0 #

√
N , where N is the particle number. Expanding up to

second order in âp $=0 we get up to a constant:

Ĥ =
∑

p $=0

p2

2m
â†

pâp +
n0

2

∑

p

(g + Ũdd(q))(2â†
pâp + â†

pâ†
−p + âpâ−p). (13.6)
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†
0 #

√
N , where N is the particle number. Expanding up to
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(g + Ũdd(q))â†
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âp1

, (13.5)

where Ũdd(q) = Cdd
3 (3 cos2 θq − 1) is the Fourier transform of the DDI,19

with θq the angle between q and the dipole orientation. The momentum20

dependence of the DDI is crucial for the properties of dipolar gases.21

Assuming a condensate in p = 0 (homogenous BEC), we may approx-
imate â0, â

†
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Employing a Bogoliubov transformation for each p we obtain the spectrum

ε(p) =

√
p2

2m

[
p2

2m
+ 2n0

(
g + Ũdd(p)

)]
, (13.7)

where n0 is the condensate density. Note that due to the momentum depen-1

dence of the DDI, the dispersion has an anomalous momentum dependence.2

For p → 0 we may approximate ε(p) = pcs0

√
1 + εdd(3 cos2 θp − 1), where3

cs0 ≡
√

gn0/m is the sound velocity in absence of DDI, and εdd ≡ Cdd/3g4

characterizes the ratio between dipolar and contact interactions (see next5

chapter). For θp = π/2, i.e. for p perpendicular to the dipole orientation,6

ε(p) = pcs0
√

1 − εdd. For εdd > 1 some excitations are purely imaginary,7

and the homogeneous 3D dipolar BEC is dynamically unstable. This is the8

so-called phonon instability.9

13.3.2. Geometry-Dependent Stability of Trapped10

Condensates11

Phonon instability also occurs in homogeneous non-dipolar BECs with
aS < 0. However, the finite energy level spacing may stabilize a trapped
BEC for small atom numbers. For non-dipolar BECs the dependence of
stability on the trap geometry is weak.12 In contrast, in dipolar BECs
the trap geometry crucially determines the stability properties. This is
best illustrated by considering a cylindrically symmetric trap, with its axis
along z, the dipole orientation. The axial and radial trapping frequencies
are, respectively, ωz and ωρ =ωz/λ. We consider a Gaussian ansatz of
the form:

ψ(ρ, z) =
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N

π3/4lρl
1/2
z

e−z2/2l2ze−ρ2/2l2ρ . (13.8)
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2
l2ρ
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+
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4
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2
ρ + ω2

zl
2
z
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gN2

2(2π)3/2lzl2ρ
+
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3(2π)3/2l2ρlz
f(κ), (13.9)
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where the terms at the right hand side are, in this order: the kinetic energy,
the trap energy, the contact interaction and the DDI. The function

f(κ) ≡
{

2κ2 + 1
κ2 − 1

− 3κ2

(κ2 − 1)3/2
arctan[

√
κ2 − 1]

}
(13.10)

grows monotonically, having asymptotic values f(0) = −1 and f(∞) = 2,1

and vanishes for κ = 1 (i.e. for a spherical BEC cloud the mean DDI2

vanishes). For a BEC elongated along the dipole orientation (κ < 1),3

f(κ) < 0 and the mean DDI is attractive. This is quite intuitive, since4

in that case the dipoles see each other head with tail in average. On the5

contrary, for an oblate BEC(κ > 1) the DDI is essentially repulsive. This is6

again intuitive, because the dipoles see each other side by side in average.7

A stable BEC is characterized by the presence of a (at least local)8

minimum of E for finite values of lρ and lz (a local minimum results in9

a metastable solution, but we consider the lifetime as infinite). The disap-10

pearance of such a minimum marks the point of the BEC destabilization.11

For purely dipolar interactions (i.e. aS = 0) there is a critical λcr $ 5.2,13–1712

such that for λ<λcr the BEC is unstable for a sufficiently large number13

of particles. On the contrary if λ<λcr (sufficiently pancake trap), phonon14

instability is geometrically stabilized. For aS %= 0 there is for a given λ a15

critical value acrit(λ), which may be determined numerically,18 such that16

for aS <acrit(λ) the dipolar BEC is unstable. For cigar-shape clouds the17

DDI is attractive and one expects acrit > 0. The contrary is expected for18

pancake BECs. As a result, the curve acrit(λ) decreases monotonously with19

λ, in very good agreement with experimental results obtained with 52Cr20

condensates17 (see Fig. 14.3 in the next chapter). When the system becomes21

unstable (due to this phonon-like instability) it collapses. This collapse,22

induced by a change in aS by means of Feshbach resonances, has been23

recently observed experimentally.19 Interestingly the post-collapse images24

present a cloverleaf pattern caused by the anisotropic collapse of the system,25

as discussed in the next chapter.26

13.4. Thomas–Fermi Regime27

As for non-dipolar BECs, for sufficiently strong interactions, we may neglect
quantum pressure, and consider the Thomas–Fermi (TF) regime:4

µ = VT (r) + g|ψ(r, t)|2 +
∫

d3r′Udd(r − r′)|ψ(r′, t)|2. (13.11)
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Employing a Bogoliubov transformation for each p we obtain the spectrum
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2m
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g + Ũdd(p)
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, (13.7)

where n0 is the condensate density. Note that due to the momentum depen-1

dence of the DDI, the dispersion has an anomalous momentum dependence.2

For p → 0 we may approximate ε(p) = pcs0

√
1 + εdd(3 cos2 θp − 1), where3

cs0 ≡
√

gn0/m is the sound velocity in absence of DDI, and εdd ≡ Cdd/3g4

characterizes the ratio between dipolar and contact interactions (see next5

chapter). For θp = π/2, i.e. for p perpendicular to the dipole orientation,6

ε(p) = pcs0
√

1 − εdd. For εdd > 1 some excitations are purely imaginary,7

and the homogeneous 3D dipolar BEC is dynamically unstable. This is the8

so-called phonon instability.9

13.3.2. Geometry-Dependent Stability of Trapped10

Condensates11

Phonon instability also occurs in homogeneous non-dipolar BECs with
aS < 0. However, the finite energy level spacing may stabilize a trapped
BEC for small atom numbers. For non-dipolar BECs the dependence of
stability on the trap geometry is weak.12 In contrast, in dipolar BECs
the trap geometry crucially determines the stability properties. This is
best illustrated by considering a cylindrically symmetric trap, with its axis
along z, the dipole orientation. The axial and radial trapping frequencies
are, respectively, ωz and ωρ =ωz/λ. We consider a Gaussian ansatz of
the form:

ψ(ρ, z) =
√

N

π3/4lρl
1/2
z

e−z2/2l2ze−ρ2/2l2ρ . (13.8)

Note that the cloud aspect ratio κ = lρ/lz is in general different than the
trap aspect ratio λ1/2. Substituting Eq. (13.8) into Eq. (13.4) we obtain the
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induced by a change in aS by means of Feshbach resonances, has been23

recently observed experimentally.19 Interestingly the post-collapse images24

present a cloverleaf pattern caused by the anisotropic collapse of the system,25

as discussed in the next chapter.26

13.4. Thomas–Fermi Regime27

As for non-dipolar BECs, for sufficiently strong interactions, we may neglect
quantum pressure, and consider the Thomas–Fermi (TF) regime:4

µ = VT (r) + g|ψ(r, t)|2 +
∫

d3r′Udd(r − r′)|ψ(r′, t)|2. (13.11)



T. Koch et al., Nat. Phys. 4 (2008) 

Geometry-dependent stability 

[T. Koch et al., Nat. Phys. 4, 218 (2008);  
J. L. Bohn, R. M. Wilson and S. Ronen, Laser Physics 19, 547 (2008)] 



T. Koch et al., Nat. Phys. 4 (2008) 

Trap-dependent stability and d-wave collapse 

[Lahaye et al., PRL 101, 080401 (2008)] 

[T. Koch et al., Nat. Phys. 4, 218 (2008);  
J. L. Bohn, R. M. Wilson and S. Ronen, Laser Physics 19, 547 (2008)] 



Gross-Pitaevskii equation 

),(),(4),(
2

),( 2
2

2
2

trtrN
m
atrV

m
tr

t
i 
 ψψ

π
ψ

⎭
⎬
⎫

⎩
⎨
⎧

++∇
−

=
∂

∂

 [Strecker et al., Nature 417, 150 (2002) ] 
[Khaykovich et al., Science 296, 1290 (2002)]  

 [Burger et al, PRL 83, 5198 (1999)]  
[Denschlag et al., Science 287, 97 (2000)] 

Bright solitons (a<0) Dark Solitons (a>0) 

1D NLSE 

[Zakharov & Shabat., 
JETP 34, 62 (1972)]  

Continuous solitons become unstable in 2D and 3D 

2D solitons 



2D solitons 

Theory of dipolar gases

to this problem is negative. The formation of a modulation is just a transitien which
quickly leads to the formation of local collapses (Dutta and Meystre, 2007; Komineas
and Cooper, 2007; Shlyapnikov and Pedri, 2006). However, it has been shown recently
that introducing a cut-off of the dipole-dipole interaction at short distances may sta-
bilize the supersolid pattern. This may occur by properly tailoring inter-molecular
interactions (Wang, 2010). Another possibility is provided by the dipole-blockade in
Rydberg gases, as recently studied in Refs. (Henkel et al., 2010; Cinti et al., 2010).

1.2.6 Solitons

The 1D Gross-Pitaevskii equation (with a < 0) supports the existence of solitons, i.e.
localized waves that travel with neither attenuation nor change of shape due to the
compensation between dispersion and nonlinearity (Zakharov and Shabat, 1972). Soli-
tons have been indeed observed in quasi-1D condensates with a < 0 (Strecker et al.,
2002; Khaykovich et al., 2002). The quasi-1D condition requires a tight transversal
harmonic trap of frequency ω⊥ such that !ω⊥ exceeds the mean-field interaction en-
ergy. This in turn demands the transversal BEC size to be smaller than the soliton
width. When this condition is violated the soliton becomes unstable against transver-
sal modulations, and hence multi-dimensional solitons are not stable in non-dipolar
BECs. Remarkably the latter is not necessarily true in dipolar BECs, where as a con-
sequence of the non-local non-linearity 2D bright solitary waves may become stable
under appropriate conditions (Pedri and Santos, 2005). In the following we shall dis-
cuss the scenario studied by Tikhonenkov et al. (Tikhonenkov et al., 2008), since it is
closer to possible actual experiments (with Chromium) than the original proposal of
Ref. (Pedri and Santos, 2005).

The possibility of obtaining stable solitary waves may be easily understood from
a simplified discussion where we consider no trapping in the xz-plane and a strong
harmonic confinement with frequency ωy in the y-direction. The dipole are oriented
along the z direction, i.e. within on the plane of the trap. A good insight on the
stability of the solitons may be obtained from a simple Gaussian ansatz:
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where ly =
√

!/mωy is the oscillator length along the transverse direction, and Λx,z

are variational parameters that determine the width of the width of the Gaussian (in ly
units). We may insert this ansatz into the Hamiltonian of the nonlocal GPE, obtaining
(apart from unimportant constants):
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Fig. 1.7 Stability diagram of an anisotropic soliton as a function of εdd and g̃cr = gcr/
√

2πlz,

where for g > gcr the soliton is unstable against collapse even for εdd > 1. Figure from

Ref. (Nath et al., 2009).

Let us consider first what happens for non-dipolar gases. In that case εdd = 0 and

ε(Λ = Λx = Λz) =
(1 + g̃/2π)

2Λ2
, (1.36)

hence depending on the sign of 1 + g̃/2π the system minimises the energy either by
expanding without limits, or by contracting without limits. The localised solution is
hence unstable. This is once more the well-known instability of solitons in 2D.

The extra term provided by the DDI is quite interesting, since it introduces an
additional dependence on Λx,z. This allows (under appropriate conditions) for a min-
imum in the energy, and hence for a stable self-localised solution! This minimum is
characterised by its equilibrium widths Λx0 and Λz,0. Note that they are in general
not equal. This asymmetry comes of course from the fact that the dipole is along the
z direction. In Fig. 1.7 (Nath et al., 2009) we show the stability diagram as a function
of g̃ and εdd. There we observe two instability regions for 2D solitons (against col-
lapse and against unlimited expansion). For εdd > 1, there is a critical universal value
g̃cr(β) ≡ gNcr/

√
2πlz such that for N > Ncr the minimum of E(Λx,Λz) disappears.

As a consequence, stable 2D anisotropic self-localised solutions are stable only for a
number of particles per soliton below a critical number Ncr, which decreases for larger
εdd. Beyond this number the 2D soliton collapses. This result is also verified by a direct
simulation of the 3D nonlocal Gross-Pitaevskii equation.

In this simplified discussion we have assumed that the problem remains 2D. If the
interactions increase the problem becomes 3D, and one may show that the condensate
becomes eventually unstable (Pedri and Santos, 2005; Tikhonenkov et al., 2008).

A major difference between bright solitons in non-dipolar and dipolar BECs con-
cerns the soliton-soliton scattering properties. Whereas 1D solitons in non-dipolar
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Fig. 1.8 Density plot of the fusion of two dipolar 2D solitons. See Ref. (Pedri and Santos,

2005) for details.

BECs scatter elastically, the scattering of dipolar solitons is inelastic due to the lack
of integrability (Krolikowski et al., 2001). The solitons may transfer centre-of-mass
energy into internal vibrational modes, resulting in intriguing scattering properties,
including soliton fusion (Pedri and Santos, 2005) (see Fig. 1.8), the appearance of
strong inelastic resonances (Nath et al., 2007), and the possibility of observing 2D-
soliton spiraling as that already observed in photo-refractive materials (Shih et al.,
1997).


