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Two-dimensional dipolar condensates 
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Two-dimensional dipolar condensates 

distances >> lz    qlz<<1 

distances ~ lz     qlz~1 

E 2 (q) = q2 q2 + 2 g+ gdG(q)( )!" #$
-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

q 

G(q) 



Two-dimensional dipolar condensates 

E(q) = q q2 + 2 g+ gdG(q)( )!" #$
1/2 q≈0& →& E(q) = q 2 g+ gd( )!" #$

1/2

As long as g+gd>0 the sound velocity is real  

If g>0, E(q) always real and monotonously growing with q 

E 2 (q) = q2 q2 + 2gdG(q)!" #$
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Roton-like minimum in 2D dipolar condensates 

If g<0  E 2 (q) = q2 q2 + 2 − g + gdG(q)( )"# $%
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Roton minimum in Helium-II 



Roton-like minimum in 2D dipolar condensates 

If g<0  E 2 (q) = q2 q2 + 2 − g + gdG(q)( )"# $%
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If gd/|g| is low 
enough the roton 
becomes unstable 
although low-q 
phonons are stable 
 
 
Note that the dipole-
dipole interaction 
stabilizes the system 

g=-0.0478; gd=0.0522 



Roton-like minimum in 3D (pancake) dipolar condensates 

ωzn0

µ > ωz g > 0

distances >> lz    qlz<<1 

distances ~ lz     qlz~1 

E 2 (q) = q2 q2 + 2 g+ gdG(q)( )!" #$Recall that in 2D: 

A roton-like minimum will appear now 



Roton-like dispersion in 3D 

Dipolar Bose-Einstein condensates
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Fig. 1.5 Aspect ratio κ of the condensate as a function of the dipole-dipole to s-wave coupling

ratio εdd. Each line is for a different trap aspect ratio λ = ωz/ωx, which can be read off by

noting that κ(εdd = 0) = γ. When 0 < κ < 1 the condensate is prolate; for κ > 1 it is oblate.

Likewise, for 0 < γ < 1 the trap is prolate, and when γ > 1 the trap is oblate. Figure courtesy

of C. Eberlein.

i!
∂

∂t
ψ(r, t) =

[

−
!2

2m
∇2 − µ +

mω2z2

2
+ g|ψ(r, t)|2

+

∫

dr′Udd(r − r′)|ψ(r′, t)|2
]
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where ω is the trap frequency. The ground-state wave-function is independent of the
in-plane coordinates and can be written as ψ0(z). Then, integrating over the in-plane
coordinates in the DDI, we obtain a 1D equation similar to the a GP equation for a
1D system with short-range interactions:

[
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mω2z2
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+ (g + gd)|ψ0|2 − µ

]

ψ0(z) = 0 (1.27)

where gd = 8πCdd/3. In the following we consider the case (g + gd) > 0, where µ > 0.
For µ # ω the BEC is in the TF regime with a density profile n0(z) = n0(1 − z2/L2)
with a central density n0 = µ/(g + gd) and a TF radius L = (2µ/mω2)1/2.

We are interested in the elementary excitations on top of ψ0, which we shall study
by means of a Bogoliubov-de Gennes analysis. We look for solutions of the form:

ψ(r, t) = ψ0(z) + u(z)eiq·ρe−iωt + v∗(z)e−iq·ρe−iωt (1.28)

where u(z) and v(z) are complex amplitudes of small oscillations of the condensate
around the ground state. The excitations are characterised by a momentum q of the in-
plane free motion. Introducing the convenient functions f± = u± v the Bogoliubov-de
Gennes equations become of the form:
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are respectively the kinetic and the interaction operator. For each q we have different
eigen-energies !ω. The most interesting is the lowest branch ω0(q), which provides us
the dispersion law.

The integral term of Hint[f−] originates from the nonlocal character of the DDI and
gives rise to the momentum dependence of an effective coupling strength. In the limit
of low in-plane momenta qL # 1, this term can be omitted. In this case, excitations
of the lowest branch are essentially 2D and the effective coupling strength corresponds
to repulsion. We then recover the Bogoliubov-de Gennes equations for the excitations
of a trapped non-dipolar BEC with a coupling constant (g + gd) > 0. In particular,
at q → 0, we recover phonons propagating in the xy-plane, with a sound-velocity
cs = (2µ/3m)1/2.

The situation is very different for qL % 1. In that case, the excitations become 3D
and the effective coupling strength is reduced to (2g − gd), as one can put z0 = z in
the arguments of f and ψ0 in the integrand of Eq. (1.32). We hence recover once more
the Bogoliubov-de Gennes equations for excitations of a non-dipolar condensate but
now with a coupling constant (2g − gd). If the parameter β = gd/g < 2, this coupling
constant is positive and one has excitation energies which are real and positive for any
momentum q and condensate density n0. For β > 2, the coupling constant is negative
and at a sufficiently large density the condensate becomes dynamically unstable with
regard to creation of high momentum excitations.

We hence see that something quite remarkable may happen due to the momentum-
dependence of the DDI. For low momenta we may have stable phonons (i.e. no phonon
instability as that discussed in Sec. 1.2.2), but the BEC may be anyway unstable at
finite momenta. Fig. 1.6 shows a typical dispersion law as directly obtained from
the Bogolibov-de Gennes equations. Note the significant departure when compared to
the usual Bogoliubov spectrum. The usual Bogoliubov spectrum is characterized by
a phonon dispersion (∼ q) at low q and a single-particle dispersion (∼ q2) at large
momenta. On the contrary the dispersion law in a dipolar BEC may become non-
monotonical. For in-plane momenta qL # 1 we have 2D phonon-like excitations, for
qL > 1, excitations are 3D and the interparticle repulsion is reduced. This decreases
the excitation energy under an increase of q. The dispersion reaches a minimum and
then starts to grow as the excitations enter the single-particle regime. This minimum
resembles that found in Helium physics (although the physics behind is actually rather
different), and hence we shall call it in the following roton-like minimum. If this roton
touches zero, the BEC will then become dynamically unstable.
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Ĥint[f−] = 2(g + gd)ψ
2
0(z)f−(z)

−
3

2
qgdψ0(z)

∫ ∞

−∞
dz′ψ0(z

′) exp[−q|z − z′|]f−(z′), (1.32)

are respectively the kinetic and the interaction operator. For each q we have different
eigen-energies !ω. The most interesting is the lowest branch ω0(q), which provides us
the dispersion law.

The integral term of Hint[f−] originates from the nonlocal character of the DDI and
gives rise to the momentum dependence of an effective coupling strength. In the limit
of low in-plane momenta qL # 1, this term can be omitted. In this case, excitations
of the lowest branch are essentially 2D and the effective coupling strength corresponds
to repulsion. We then recover the Bogoliubov-de Gennes equations for the excitations
of a trapped non-dipolar BEC with a coupling constant (g + gd) > 0. In particular,
at q → 0, we recover phonons propagating in the xy-plane, with a sound-velocity
cs = (2µ/3m)1/2.

The situation is very different for qL % 1. In that case, the excitations become 3D
and the effective coupling strength is reduced to (2g − gd), as one can put z0 = z in
the arguments of f and ψ0 in the integrand of Eq. (1.32). We hence recover once more
the Bogoliubov-de Gennes equations for excitations of a non-dipolar condensate but
now with a coupling constant (2g − gd). If the parameter β = gd/g < 2, this coupling
constant is positive and one has excitation energies which are real and positive for any
momentum q and condensate density n0. For β > 2, the coupling constant is negative
and at a sufficiently large density the condensate becomes dynamically unstable with
regard to creation of high momentum excitations.

We hence see that something quite remarkable may happen due to the momentum-
dependence of the DDI. For low momenta we may have stable phonons (i.e. no phonon
instability as that discussed in Sec. 1.2.2), but the BEC may be anyway unstable at
finite momenta. Fig. 1.6 shows a typical dispersion law as directly obtained from
the Bogolibov-de Gennes equations. Note the significant departure when compared to
the usual Bogoliubov spectrum. The usual Bogoliubov spectrum is characterized by
a phonon dispersion (∼ q) at low q and a single-particle dispersion (∼ q2) at large
momenta. On the contrary the dispersion law in a dipolar BEC may become non-
monotonical. For in-plane momenta qL # 1 we have 2D phonon-like excitations, for
qL > 1, excitations are 3D and the interparticle repulsion is reduced. This decreases
the excitation energy under an increase of q. The dispersion reaches a minimum and
then starts to grow as the excitations enter the single-particle regime. This minimum
resembles that found in Helium physics (although the physics behind is actually rather
different), and hence we shall call it in the following roton-like minimum. If this roton
touches zero, the BEC will then become dynamically unstable.

ωzn0

Dipolar Bose-Einstein condensates

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
εdd

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

κ

unstable

metastable
stable

Fig. 1.5 Aspect ratio κ of the condensate as a function of the dipole-dipole to s-wave coupling

ratio εdd. Each line is for a different trap aspect ratio λ = ωz/ωx, which can be read off by

noting that κ(εdd = 0) = γ. When 0 < κ < 1 the condensate is prolate; for κ > 1 it is oblate.

Likewise, for 0 < γ < 1 the trap is prolate, and when γ > 1 the trap is oblate. Figure courtesy

of C. Eberlein.

i!
∂

∂t
ψ(r, t) =

[

−
!2

2m
∇2 − µ +

mω2z2

2
+ g|ψ(r, t)|2

+

∫

dr′Udd(r − r′)|ψ(r′, t)|2
]

ψ(r, t). (1.26)

where ω is the trap frequency. The ground-state wave-function is independent of the
in-plane coordinates and can be written as ψ0(z). Then, integrating over the in-plane
coordinates in the DDI, we obtain a 1D equation similar to the a GP equation for a
1D system with short-range interactions:

[

−!2

2m

d2

dz2
+

mω2z2

2
+ (g + gd)|ψ0|2 − µ

]

ψ0(z) = 0 (1.27)

where gd = 8πCdd/3. In the following we consider the case (g + gd) > 0, where µ > 0.
For µ # ω the BEC is in the TF regime with a density profile n0(z) = n0(1 − z2/L2)
with a central density n0 = µ/(g + gd) and a TF radius L = (2µ/mω2)1/2.

We are interested in the elementary excitations on top of ψ0, which we shall study
by means of a Bogoliubov-de Gennes analysis. We look for solutions of the form:

ψ(r, t) = ψ0(z) + u(z)eiq·ρe−iωt + v∗(z)e−iq·ρe−iωt (1.28)

where u(z) and v(z) are complex amplitudes of small oscillations of the condensate
around the ground state. The excitations are characterised by a momentum q of the in-
plane free motion. Introducing the convenient functions f± = u± v the Bogoliubov-de
Gennes equations become of the form:

ψ
r, t( ) =ψ0 z( ) n0e

−iµt/

[Santos et al., PRL 90, 
250403 (2003)] 
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FIG. 1: Dispersion law ε0(q) for various values of β and µ/h̄ω:
(a) β = 1/2, µ/h̄ω = 343; (b) β = 0.53, µ/h̄ω = 46 (upper
curve) and β = 0.47, µ/h̄ω = 54 (lower curve). The solid
curves show the numerical results, and the dotted curves the
result of Eq. (9).
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FIG. 2: Critical values of β for the rotonization (filled squares)
and for the instability (hollow squares) versus µ/h̄ω.

of the roton minimum are tunable by varying the den-
sity, confining potential, and the short-range coupling
strength. This opens new handles on manipulations of
superfluid properties of trapped condensates.
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Note added: After this work has been completed, we
become aware of the recent preprint by O’Dell et al. [22]
where a roton-maxon spectrum has been obtained numer-
ically for some particular cases in elongated condensates
with laser-induced dipole-dipole interatomic interactions.
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Roton-like minimum (with g>0) [Santos et al., PRL 90, 
250403 (2003)] 

Roton-like minimum at 
qr~1/lz 
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The roton-like minimum results from the  
q-dependence of the DDI 

•  Pancake traps (but in the 3D regime) 

Conditions for a 
roton-like minimum 
(for g>0) 

•  Large-enough ratio DDI//contact 
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row range of distances |z′ − z| ∼ 1/q. This yields

[

1

2
(1 − x2)

d2W
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−

(
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3
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x
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]

h̄2ω2 +
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ε2 − E2
q −

2β − 1

1 + β
µEq(1 − x2) −

3h̄2ω2
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]

W = 0, (7)

where Eq = h̄2q2/2m. Here we omitted terms of the
order of Eqh̄

2ω2/µ and h̄4ω4/µ2, since they are small
compared to either h̄2ω2 or E2

q .
For each mode of the confined motion (each quantum

number j), the solution of Eq.(7) can be written as series
of expansion in Gegenbauer polynomials Cλ

n(x), where
λ = (4 + β)/2(1 + β), and n ≥ 0 is an integer. The cou-
pling between polynomials of different power is provided
by the term proportional to (2β − 1)(1 − x2)W . For the
critical value β = 1/2 the coupling is absent, and we then
obtain Wj ∝ Cλ

j (x). The dispersion law is characterized
by a plateau (see Fig.1a), and for the j-th branch of the
spectrum it is given by

ε2j(q) = E2
q+h̄2ω2(1+j(j+3)/2); β = 1/2, qL % 1. (8)

For β &= 1/2, assuming that the coupling term
µEq|2β − 1|/(1 + β) <∼ h̄2ω2 and it does not significantly
modify the eigenfunctions, we can still confine ourselves
to the perturbative approach. Then, as the polynomials
Cλ

j are orthogonal with the weight (1− x2)λ−1/2, for the
lowest branch of the spectrum we obtain

ε2(q) = E2
q +

(2β − 1)(5 + 2β)

3(1 + β)(2 + β)
Eqµ+h̄2ω2; qL % 1. (9)

From Eq.(9) one sees two types of behavior of the spec-
trum. For β > 1/2 the excitation energy monotonously
increases with q (see Fig.1b). If β < 1/2, then the dis-
persion law (9) is characterized by the presence of a min-
imum. Since in the limit of qL ' 1 the energy ε0 grows
with q, the existence of this minimum indicates that the
spectrum as a whole should have a roton-maxon charac-
ter (see Fig.1b). This behavior is known from the physics
of liquid helium. As discussed above, in our case it is re-
lated to the reduction in the coupling strength with an
increase of momentum, resulting from the transformation
of the character of excitations from 2D to 3D.

As follows from Eq.(9) for β close to 1/2, the roton
minimum is located at q = (16µδ/15h̄ω)1/21/l0, where
δ = 1/2−β, and l0 = (h̄/mω)1/2 is the harmonic oscilla-
tor length for the confined motion. The excitation energy
at this point is εmin = [h̄2ω2−(8µδ/15)2]1/2. An increase
of the density (chemical potential) or δ makes the roton
minimum deeper. For µδ/h̄ω = 15/8 the minimum en-
ergy reaches zero at q =

√
2/l0. At larger values of µδ/h̄ω

one gets imaginary excitation energies for q ∼ 1/l0, and
the condensate becomes unstable.

We have then found the excitation spectrum numeri-
cally from Eqs. (3) and (4) for various values of β and

µ/h̄ω. The results for the TF regime and β close to 1/2
are presented in Fig.1, where one sees a good agreement
between the numerics and analytics. The discrepancy
is mainly due to the neglect of the border effects and
some of the kinetic energy terms when obtaining Eq. (7)
from Eqs. (3) and (4). A similar behavior of the spec-
trum is observed for non-TF condensates. In this case,
due to a large kinetic energy in the confined direction,
the stability of the condensate does not require as strong
a short-range repulsive coupling strength as in the TF
regime. Accordingly, the rotonization of the spectrum
and the instability appear at smaller values of β. These
critical β have been calculated numerically as functions
of µ/h̄ω and are shown in Fig.2.

The dipolar condensate is the first example of a weakly
interacting gas offering a possibility of obtaining a roton-
maxon dispersion, up to now only observed in the rela-
tively more complicated physics of liquid He. In contrast
to the helium case, the rotonization in dipolar conden-
sates is tunable. By varying the density, the frequency of
the tight confinement, and the short-range coupling one
can manipulate and control the spectrum, making the
roton minimum deeper or shallower. One can also elimi-
nate it completely and get the Bogoliubov-type spectrum
or, on the opposite, reach the point of instability.

The instability of dipolar condensates with regard to
short-wave excitations, is fundamentally different from
the well-known instability of condensates with attractive
short-range interaction (negative scattering length). In
the latter case the chemical potential is negative and the
ground state does not exist. The unstable excitations
are long-wave and an infinitely large cloud undergoes lo-
cal collapses. For the dipolar BEC the chemical potential
is positive and the instability is related to the momen-
tum dependence of an effective coupling strength. The
unstable excitations become the ones with high momenta
at which the coupling is attractive. The existence of the
roton minimum at a given β < 1/2 for µ/h̄ω just below
the point of instability, is likely to indicate that there is
a new ground state in the region of the condensate insta-
bility. The presence and character of this state will be a
subject of our future studies.

The presence of the roton minimum in the excitation
spectrum can be observed in Bragg-spectroscopy experi-
ments as those of Steinhauer et al. [19], or in the MIT-
type of measurement of the critical velocity for super-
fluidity [20]. According to the Landau criterion [21],
the critical velocity vc is equal to the minimum value of
ε0(q)/q, and the presence of the roton minimum strongly
reduces vc. Even in the absence of rotonization, a de-
crease in the slope of the dispersion curve at large mo-
menta leads to a significant reduction of the critical ve-
locity.

In conclusion, we have found that pancake dipolar con-
densates can exhibit a roton-maxon character of the ex-
citation spectrum. The presence, position, and depth
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ter (see Fig.1b). This behavior is known from the physics
of liquid helium. As discussed above, in our case it is re-
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ergy reaches zero at q =
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the critical velocity vc is equal to the minimum value of
ε0(q)/q, and the presence of the roton minimum strongly
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FIG. 1: Dispersion law ε0(q) for various values of β and µ/h̄ω:
(a) β = 1/2, µ/h̄ω = 343; (b) β = 0.53, µ/h̄ω = 46 (upper
curve) and β = 0.47, µ/h̄ω = 54 (lower curve). The solid
curves show the numerical results, and the dotted curves the
result of Eq. (9).
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FIG. 2: Critical values of β for the rotonization (filled squares)
and for the instability (hollow squares) versus µ/h̄ω.

of the roton minimum are tunable by varying the den-
sity, confining potential, and the short-range coupling
strength. This opens new handles on manipulations of
superfluid properties of trapped condensates.
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Note added: After this work has been completed, we
become aware of the recent preprint by O’Dell et al. [22]
where a roton-maxon spectrum has been obtained numer-
ically for some particular cases in elongated condensates
with laser-induced dipole-dipole interatomic interactions.
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Roton confinement in trapped dipolar Bose-Einstein condensates

M. Jona-Lasinio, K.  Lakomy and L. Santos
Institut für Theoretische Physik, Leibniz Universität, 30167 Hannover, Germany

(Dated: January 22, 2013)

Roton excitations constitute a key feature of dipolar gases, connecting these systems with super-
fluid helium. We show that the density dependence of the roton minimum results in a spatial roton
confinement that is particularly relevant in pancake dipolar condensates with large aspect ratios.
We demonstrate that this confinement is crucial to understand the dynamics after roton instability.
We show also that arresting the instability may create a trapped roton gas revealed by confined
density modulations. Roton confinement is expected to play a key role in experiments. We discuss
in particular local susceptibility against density perturbations, illustrated for the case of vortices.

In recent years dipolar gases have been attracting a
rapidly growing attention. Quantum degenerate gases
of highly magnetic atoms, such as chromium [1], dys-
prosium [2] and erbium [3], have already been realized.
Moreover, the preparation of heteronuclear molecules in
their ro-vibrational ground-state [4] opens fascinating
perspectives for the creation of a quantum degenerate
gas of polar molecules, a goal currently pursued by var-
ious groups worldwide [5]. Rydberg atoms provide yet
another possible realization of a highly polar gas [6].

The wealth of novel physics o↵ered by dipolar
gases arises from the presence of dipole-dipole interac-
tions (DDI) [7]. In particular, dipolar Bose-Einstein
condensates (BECs) are distinguished by a geometry-
dependent stability [8] and a peculiar energy disper-
sion of the elementary excitations. While nonpolar
BECs present the usual Bogoliubov spectrum, charac-
terized by a linear (phonon) dispersion at low momenta,
and a quadratic (single-particle) dispersion at large mo-
menta [9], dipolar BECs, under proper conditions, fea-
ture additionally a dispersion minimum at intermediate
momenta [10, 11]. This minimum resembles the roton
minimum in superfluid He [12], although in dipolar BECs
it stems from the momentum dependence of the DDI [10].

In superfluid He roton excitations play a key role, lead-
ing to the reduction of the critical superfluid velocity [13].
Remarkably, a similar e↵ect has been predicted for dipo-
lar BECs as well [14]. Furthermore, a deep roton mini-
mum in helium leads to intriguing e↵ects related to den-
sity modulations close to defects, boundaries, and vortex
cores [15–19], a phenomenon whose counterpart is antici-
pated also in dipolar BECs [20–22]. The roton minimum
is also crucial for the stability properties of a dipolar
BEC. When the dispersion minimum reaches zero energy,
the BEC becomes unstable against finite-momentum ex-
citations (roton instability) [10, 11, 23], di↵ering funda-
mentally from the usual phonon instability.

In He the roton properties may be controlled by means
of pressure [24]. Similarly, the roton minimum in dipo-
lar BECs depends on contact and dipolar interactions,
being particularly sensitive to density. In this Letter we
demonstrate that this density dependence leads to a spa-
tial roton confinement at the trap center due to the inho-

FIG. 1: (Color online) LDA excitation spectrum of BEC of
2 ⇥ 105 Er atoms, !z = 2⇡ ⇥ 1 kHz and � = 40. Note the
existence of a deep minimum (dark red region) in both space
and momentum that results in roton confinement.

mogeneous density profile, which is particularly relevant
for pancake BECs with large aspect ratios. This roton
confinement, which has been hinted in recent numerical
calculations [14, 25], resembles that of rotons at vortex
lines in He [26], although in that case confinement results
from a spatially-dependent Doppler shift. We show that
roton confinement is well characterized by local-density
approximation (LDA), which allows for a simple analyt-
ical derivation of the localized roton wave functions. We
demonstrate that roton confinement is crucial for the un-
derstanding of roton instability in pancake traps after an
abrupt change of the scattering length. Interestingly, the
associated modulational instability, post-collapse dynam-
ics and atom losses present a non-trivial dependence on
the excitations prior to the destabilization. Moreover,
we show that arresting the roton instability allows for
the creation of a trapped gas of rotons which is revealed
by density modulations confined at the trap center. We
finally discuss other consequences of roton localization,
and in particular local susceptibility against density per-
turbations, which leads to vortex lattices with spatially-
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fluid helium. We show that the density dependence of the roton minimum results in a spatial roton
confinement that is particularly relevant in pancake dipolar condensates with large aspect ratios.
We demonstrate that this confinement is crucial to understand the dynamics after roton instability.
We show also that arresting the instability may create a trapped roton gas revealed by confined
density modulations. Roton confinement is expected to play a key role in experiments. We discuss
in particular local susceptibility against density perturbations, illustrated for the case of vortices.
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Moreover, the preparation of heteronuclear molecules in
their ro-vibrational ground-state [4] opens fascinating
perspectives for the creation of a quantum degenerate
gas of polar molecules, a goal currently pursued by var-
ious groups worldwide [5]. Rydberg atoms provide yet
another possible realization of a highly polar gas [6].

The wealth of novel physics o↵ered by dipolar
gases arises from the presence of dipole-dipole interac-
tions (DDI) [7]. In particular, dipolar Bose-Einstein
condensates (BECs) are distinguished by a geometry-
dependent stability [8] and a peculiar energy disper-
sion of the elementary excitations. While nonpolar
BECs present the usual Bogoliubov spectrum, charac-
terized by a linear (phonon) dispersion at low momenta,
and a quadratic (single-particle) dispersion at large mo-
menta [9], dipolar BECs, under proper conditions, fea-
ture additionally a dispersion minimum at intermediate
momenta [10, 11]. This minimum resembles the roton
minimum in superfluid He [12], although in dipolar BECs
it stems from the momentum dependence of the DDI [10].

In superfluid He roton excitations play a key role, lead-
ing to the reduction of the critical superfluid velocity [13].
Remarkably, a similar e↵ect has been predicted for dipo-
lar BECs as well [14]. Furthermore, a deep roton mini-
mum in helium leads to intriguing e↵ects related to den-
sity modulations close to defects, boundaries, and vortex
cores [15–19], a phenomenon whose counterpart is antici-
pated also in dipolar BECs [20–22]. The roton minimum
is also crucial for the stability properties of a dipolar
BEC. When the dispersion minimum reaches zero energy,
the BEC becomes unstable against finite-momentum ex-
citations (roton instability) [10, 11, 23], di↵ering funda-
mentally from the usual phonon instability.

In He the roton properties may be controlled by means
of pressure [24]. Similarly, the roton minimum in dipo-
lar BECs depends on contact and dipolar interactions,
being particularly sensitive to density. In this Letter we
demonstrate that this density dependence leads to a spa-
tial roton confinement at the trap center due to the inho-

FIG. 1: (Color online) LDA excitation spectrum of BEC of
2 ⇥ 105 Er atoms, !z = 2⇡ ⇥ 1 kHz and � = 40. Note the
existence of a deep minimum (dark red region) in both space
and momentum that results in roton confinement.

mogeneous density profile, which is particularly relevant
for pancake BECs with large aspect ratios. This roton
confinement, which has been hinted in recent numerical
calculations [14, 25], resembles that of rotons at vortex
lines in He [26], although in that case confinement results
from a spatially-dependent Doppler shift. We show that
roton confinement is well characterized by local-density
approximation (LDA), which allows for a simple analyt-
ical derivation of the localized roton wave functions. We
demonstrate that roton confinement is crucial for the un-
derstanding of roton instability in pancake traps after an
abrupt change of the scattering length. Interestingly, the
associated modulational instability, post-collapse dynam-
ics and atom losses present a non-trivial dependence on
the excitations prior to the destabilization. Moreover,
we show that arresting the roton instability allows for
the creation of a trapped gas of rotons which is revealed
by density modulations confined at the trap center. We
finally discuss other consequences of roton localization,
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Roton spectrum of a trapped dBEC  [Bisset, Baillie, and Blakie, 
PRA 88, 043606 (2013)] 
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FIG. 4. (color online) Emergence and properties of roton fingers. The energies of the lowest (m = 0) roton in each finger for (a) λ = 20,
(b) λ = 40. Insets: the respective radial momenta of the m = 0 rotons in each finger. (c) The generalized dispersion relation showing the
spectrum of a λ = 40 dipolar BEC at D = 700 [this case is indicated by a grey vertical line in (b)]. The m = 0 rotons at the start of each
finger are marked with the symbols used to represent them in (b).

3. Development of fingers

How the fingers emerge as DDI strengthD increases is con-
sidered in Fig. 4, where we present results for both λ = 20
and λ = 40. The first fingers appear when D is sufficiently
large (for λ = 20 the fingers first emerge at D ∼ 160 and
for λ = 40 they emerge at D ∼ 450). As D increases the
fingers decrease in energy and become longer (i.e. extend to
over a largerm range), and additional fingers emerge from the
non-rotonic background. For a sufficiently large DDI strength
Dcrit the lowest (n = 0) finger will fall to zero energy [32],
and will become imaginary for D > Dcrit, signaling that the
condensate is dynamically unstable [20, 21]. For higher trap
aspect ratios a greater number of fingers emerge before the
onset of the dynamical instability, e.g. for λ = 20 we find that
3 fingers emerge by Dcrit ≈ 240 [see Fig. 4(a)]; for λ = 40
we find that 6 fingers emerge by Dcrit ≈ 728 [see Fig. 4(b)].

4. Finger dislocations: Phonon-Roton avoided crossings

We also note that while the roton fingers are generally
smooth functions of m [see Figs. 1(d), 4(c)], for certain pa-
rameters we observe that particular roton modes dislocate
from the finger by having a 〈kρ〉j value that is significantly
less than the other modes in that finger. The origin of these

dislocations is avoided crossings between roton and phonon
modes in the same m subspace [33]. We demonstrate this
in Fig. 5 where we consider such a crossing that effects the
n = 0,m = 0 roton. In Fig. 5(a) we show the roton mode dis-
located from the finger in the midst of such a crossing, noting
that the coupled phonon mode undergoes a matching disloca-
tion to a higher momentum value.
To explore this crossing we vary the DDI strength. As D

increases the roton mode energy decreases, crossing the rele-
vant phonon mode energy [see Fig. 5(b)]. Due to the coupling
between these modes they undergo an avoided crossing dur-
ing which the two modes hybridize, leading to a significant
change in 〈kρ〉j [Fig. 5(c)]. We emphasize that these avoided
crossings can occur for any value of m, however because the
coupling between phonon and roton modes is weak they tend
to occur in very narrow parameter regimes.

C. Relation to predictions of Jona-Lasinio et al. [27]

In Ref. [27] Jona-Lasinio et al. developed an analytic de-
scription of rotons in a trapped dipolar BEC. We briefly re-
view their results and comment on its relationship to our full
numerical treatment
A central idea of Ref. [27] is that after integrating out the

tightly confined (z) degree of freedom, a local quasi-particle
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Roton excitations in a trapped dipolar Bose-Einstein condensate

R. N. Bisset, D. Baillie, and P. B. Blakie∗
Jack Dodd Centre for Quantum Technology, Department of Physics, University of Otago, Dunedin, New Zealand.

We consider the quasi-particle excitations of a trapped dipolar Bose-Einstein condensate. By mapping these
excitations onto radial and angular momentum we show that the roton modes are clearly revealed as discrete
fingers in parameter space, whereas the other modes form a smooth surface. We examine the properties of the
roton modes and characterize how they change with the dipole interaction strength. We demonstrate how the
application of a perturbing potential can be used to engineer angular rotons, i.e. allowing us to controllably
select modes of non-zero angular momentum to become the lowest energy rotons.

PACS numbers: 67.85-d, 67.85.Bc

I. INTRODUCTION

Bose-Einstein condensates (BECs) with dipole-dipole in-
teractions (DDIs) have been realized with highly magnetic
atoms [1–3]. This interaction is both long ranged and
anisotropic and is predicted to open up an array of new phe-
nomenon for exploration using ultra-cold atomic gases [4, 5].
An important prediction is that a rotonlike excitation will
emerge in a dipolar BEC which is tightly confined along the
direction that the dipoles are polarized [6]. There has been
significant theoretical interest in schemes for detecting rotons
[7–11] and on the role of rotons in the behavior of dipolar
BECs, such as response to perturbations [12], the critical ve-
locity for the breakdown of superfluidity [13, 14], pattern for-
mation [15, 16], and density fluctuations [11, 17, 18].

Initial theoretical predictions of Santos et al. [6] were made
for a BEC of dipoles polarized and confined in the z direction
(i.e. untrapped in the xy-plane). In this case the quasiparticles
are planewaves and the rotons occur as a local minimum in the
dispersion relation at wavevector krot ∼ 1/az, where az is the
z confinement length [19]. While robust numerical techniques
for calculating the quasi-particles of a fully trapped dipolar
BEC have been developed (e.g. see [20]), there has been no
comprehensive study of rotons for the trapped system. How-
ever, some aspects of the lowest energy rotons in the trapped
system have emerged in studies of condensate structure and
stability [21–26]. Recent work [27] presented an approximate
description of the trapped rotons by re-quantizing a local den-
sity treatment of the excitation spectrum, enabling an analytic
prediction for the roton spectrum and wavefunctions.

In this paper we directly examine the structure and prop-
erties of the rotons modes that emerge in a pancake shaped
trapped dipolar BEC using full three-dimensional numerical
calculations. We produce a generalized dispersion relation
for the quasi-particle excitations by mapping these excitations
modes onto radial and angular momentum, and use this to
identify the rotons. Strikingly, in the trapped system the ro-
tons emerge as fingers in the generalized dispersion relation
(see Fig. 1). We then examine the properties of the rotons
in each finger, as well as considering how the fingers change
with the DDI strength. Finally we show that by perturbing the
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FIG. 1. (color online) Roton fingers in the spectrum of a trapped
dipolar BEC. (a), (b) Two views of the quasi-particle excitations of
a trapped dipolar condensate mapped against their angular momen-
tum projection m and effective radial momentum 〈kρ〉j [see Eq. (5)].
The individual mapped excitations are represented by dots and sep-
arate into two categories: (i) a smooth non-rotonic background part
(blue) dots joined by lines to form a surface; (ii) the roton fingers
indicated by (red) dots that extend as linear chains below the non-
rotonic background. (c), (d) Two views of the roton fingers for the
same case shown in (a), (b). Parameters: λ = 20 and D = 220.

harmonic trap with a repulsive Gaussian potential the charac-
ter of the roton fingers can be modified. Notably, we observe
that higher angular momentum modes become the minimum
energy rotons in each finger, thus allowing a controllable way
to produce angular rotons [21].
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FIG. 4. (color online) Emergence and properties of roton fingers. The energies of the lowest (m = 0) roton in each finger for (a) λ = 20,
(b) λ = 40. Insets: the respective radial momenta of the m = 0 rotons in each finger. (c) The generalized dispersion relation showing the
spectrum of a λ = 40 dipolar BEC at D = 700 [this case is indicated by a grey vertical line in (b)]. The m = 0 rotons at the start of each
finger are marked with the symbols used to represent them in (b).

3. Development of fingers

How the fingers emerge as DDI strengthD increases is con-
sidered in Fig. 4, where we present results for both λ = 20
and λ = 40. The first fingers appear when D is sufficiently
large (for λ = 20 the fingers first emerge at D ∼ 160 and
for λ = 40 they emerge at D ∼ 450). As D increases the
fingers decrease in energy and become longer (i.e. extend to
over a largerm range), and additional fingers emerge from the
non-rotonic background. For a sufficiently large DDI strength
Dcrit the lowest (n = 0) finger will fall to zero energy [32],
and will become imaginary for D > Dcrit, signaling that the
condensate is dynamically unstable [20, 21]. For higher trap
aspect ratios a greater number of fingers emerge before the
onset of the dynamical instability, e.g. for λ = 20 we find that
3 fingers emerge by Dcrit ≈ 240 [see Fig. 4(a)]; for λ = 40
we find that 6 fingers emerge by Dcrit ≈ 728 [see Fig. 4(b)].

4. Finger dislocations: Phonon-Roton avoided crossings

We also note that while the roton fingers are generally
smooth functions of m [see Figs. 1(d), 4(c)], for certain pa-
rameters we observe that particular roton modes dislocate
from the finger by having a 〈kρ〉j value that is significantly
less than the other modes in that finger. The origin of these

dislocations is avoided crossings between roton and phonon
modes in the same m subspace [33]. We demonstrate this
in Fig. 5 where we consider such a crossing that effects the
n = 0,m = 0 roton. In Fig. 5(a) we show the roton mode dis-
located from the finger in the midst of such a crossing, noting
that the coupled phonon mode undergoes a matching disloca-
tion to a higher momentum value.
To explore this crossing we vary the DDI strength. As D

increases the roton mode energy decreases, crossing the rele-
vant phonon mode energy [see Fig. 5(b)]. Due to the coupling
between these modes they undergo an avoided crossing dur-
ing which the two modes hybridize, leading to a significant
change in 〈kρ〉j [Fig. 5(c)]. We emphasize that these avoided
crossings can occur for any value of m, however because the
coupling between phonon and roton modes is weak they tend
to occur in very narrow parameter regimes.

C. Relation to predictions of Jona-Lasinio et al. [27]

In Ref. [27] Jona-Lasinio et al. developed an analytic de-
scription of rotons in a trapped dipolar BEC. We briefly re-
view their results and comment on its relationship to our full
numerical treatment
A central idea of Ref. [27] is that after integrating out the

tightly confined (z) degree of freedom, a local quasi-particle
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Roton modulational instability [Jona-Lasinio, Lakomy and 
Santos, arXiv:1301.4907] 
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FIG. 2: (Color online) Roton instability for 105 Erbium atoms, with !z = 2⇡ ⇥ 450.0Hz and � = 30, ai = ac = 8.49a0

and af = 0 (see text). We consider a small initial seeding  (r, t = 0) =  0(r)e
i�(r), with a random �(r) homogeneously

distributed with |�(r)|/⇡ < ⇠. (a) Concentric rings (s = 0) formed after t = 19ms for small initial fluctuations (⇠ = 10�10) .
(e) Modulational instability after t = 15.5ms consisting of several s states for large initial fluctuations (⇠ = 10�6). (b) and (f)
show the momentum distribution of (a) and (e), respectively (we have suppressed for both the large peak at k = 0). (c) and
(g) depict the post-collapse dynamics after t = 23 ms for (a) and t = 19.5 ms for (e), respectively. (d) Radial density n2D

0 (⇢)
(see text) (green crosses) and theoretical prediction assuming  0(⇢) on top of the TF profile (solid black line). (h) Remnant
BEC fraction for the case (a) (red solid line) and (e) (blue dashed-dotted line).

a = ai). Although this allows us to discuss the possi-
ble collapse scenarios, the actual amplitude of the ini-
tial fluctuations depends on ai and on temperature, T ,
and its analysis lies beyond the scope of this Letter. If
for ai the spectrum is weakly (or not) rotonized, for
kBT ⌧ µl(0) (kB is the Boltzmann constant) the pop-
ulation of the dominant unstable modes for a = af is
negligible (corresponding to our simulations with small
noise amplitude). In contrast, the initial population of
unstable modes may be significant for kBT ⇠ E0, if for
ai the roton depth, E0, approaches zero (corresponding
to our simulations with large noise amplitude).

For a small initial population of the unstable modes,
the modulation instability proceeds at a su�ciently slow
pace such that the most unstable mode  0(⇢) dominates.
As a result, a localized pattern of concentric rings devel-
ops (Fig. 2a), n(⇢, t) � n0(⇢) ⇠

p
n0(⇢) <( 0(⇢)), with

a localization length in excellent agreement with the ex-
pected l⇤ (Fig. 2d) [31]. The corresponding momentum
distribution is then characterized by the appearance of
a ring, given by the Rashba-like dispersion (Fig. 2b). In
contrast, for larger initial fluctuations the pattern growth
is too fast to select the most unstable mode only and the
created density pattern results from a (shot-to-shot de-
pendent) linear combination of modes with di↵erent s.
As a consequence, the formed pattern is characterized
by a superposition of eccentric collapse centers (Fig. 2e).
In this case, the corresponding momentum distribution

presents a ring-like structure as well, but with an az-
imuthal modulation arising from the linear combination
of various s states (Fig. 2f).

Similarly to other collapse scenarios in cold gases [32,
33], three-body losses play here a crucial role as well.
We included the losses in our simulations of Eq. (1)
by adding a term �i~L3

2 N

2| (r, t)|4 (r, t) [33], with a
loss rate L3 = 10�28cm�6s�1. When the collapse pro-
ceeds, the three-body losses become relevant at the den-
sity maxima, arresting the collapse and preventing sin-
gularities of the wavefunction [34]. As a result, the par-
ticles are expelled from the collapse center(s) and the
BEC explodes [32]. The global (phonon-like) collapse
studied in dipolar chromium and erbium BECs [3, 33]
results in a large decrease of the atom number and in a
d-wave pattern in TOF. The pattern formation discussed
above leads to a a very di↵erent collapse dynamics. Con-
centric rings as those of Fig. 2a are followed by a se-
quential collapse (and azimuthal instability) of the rings,
starting from the inner (denser) ones towards the outer
ones (Fig. 2c). As a result, the atom number decreases in
time in a step-like manner (Fig. 2h). For the case of large
initial fluctuations, the superimposed eccentric collapse
centers (Fig. 2e) lead to a complex post-collapse behavior
with characteristic mutually interfering jets expelled out
of each local collapse center (Fig. 2g). In this case the
atom decrease is smooth, lacking the step-like behavior
of the previous case (Fig. 2h). In both scenarios the lo-

3
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(g) depict the post-collapse dynamics after t = 23 ms for (a) and t = 19.5 ms for (e), respectively. (d) Radial density n2D

0 (⇢)
(see text) (green crosses) and theoretical prediction assuming  0(⇢) on top of the TF profile (solid black line). (h) Remnant
BEC fraction for the case (a) (red solid line) and (e) (blue dashed-dotted line).

a = ai). Although this allows us to discuss the possi-
ble collapse scenarios, the actual amplitude of the ini-
tial fluctuations depends on ai and on temperature, T ,
and its analysis lies beyond the scope of this Letter. If
for ai the spectrum is weakly (or not) rotonized, for
kBT ⌧ µl(0) (kB is the Boltzmann constant) the pop-
ulation of the dominant unstable modes for a = af is
negligible (corresponding to our simulations with small
noise amplitude). In contrast, the initial population of
unstable modes may be significant for kBT ⇠ E0, if for
ai the roton depth, E0, approaches zero (corresponding
to our simulations with large noise amplitude).

For a small initial population of the unstable modes,
the modulation instability proceeds at a su�ciently slow
pace such that the most unstable mode  0(⇢) dominates.
As a result, a localized pattern of concentric rings devel-
ops (Fig. 2a), n(⇢, t) � n0(⇢) ⇠

p
n0(⇢) <( 0(⇢)), with

a localization length in excellent agreement with the ex-
pected l⇤ (Fig. 2d) [31]. The corresponding momentum
distribution is then characterized by the appearance of
a ring, given by the Rashba-like dispersion (Fig. 2b). In
contrast, for larger initial fluctuations the pattern growth
is too fast to select the most unstable mode only and the
created density pattern results from a (shot-to-shot de-
pendent) linear combination of modes with di↵erent s.
As a consequence, the formed pattern is characterized
by a superposition of eccentric collapse centers (Fig. 2e).
In this case, the corresponding momentum distribution

presents a ring-like structure as well, but with an az-
imuthal modulation arising from the linear combination
of various s states (Fig. 2f).

Similarly to other collapse scenarios in cold gases [32,
33], three-body losses play here a crucial role as well.
We included the losses in our simulations of Eq. (1)
by adding a term �i~L3
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2| (r, t)|4 (r, t) [33], with a
loss rate L3 = 10�28cm�6s�1. When the collapse pro-
ceeds, the three-body losses become relevant at the den-
sity maxima, arresting the collapse and preventing sin-
gularities of the wavefunction [34]. As a result, the par-
ticles are expelled from the collapse center(s) and the
BEC explodes [32]. The global (phonon-like) collapse
studied in dipolar chromium and erbium BECs [3, 33]
results in a large decrease of the atom number and in a
d-wave pattern in TOF. The pattern formation discussed
above leads to a a very di↵erent collapse dynamics. Con-
centric rings as those of Fig. 2a are followed by a se-
quential collapse (and azimuthal instability) of the rings,
starting from the inner (denser) ones towards the outer
ones (Fig. 2c). As a result, the atom number decreases in
time in a step-like manner (Fig. 2h). For the case of large
initial fluctuations, the superimposed eccentric collapse
centers (Fig. 2e) lead to a complex post-collapse behavior
with characteristic mutually interfering jets expelled out
of each local collapse center (Fig. 2g). In this case the
atom decrease is smooth, lacking the step-like behavior
of the previous case (Fig. 2h). In both scenarios the lo-
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wavelength, when imposing a 
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FIG. 1: (Color online). Solid lines: function [fz
λ(!)]−1/3 for

λ = 11, 100, and 400 in descending order. The dashed line
represents the asymptote (2π)−1/6!.

Axially polarized dipoles — For this case, we can find
from Eq. (4) that
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with Kn(z) being the nth-order modified Bessel func-
tion of the second kind and U(a, b, z) being the conflu-
ent hypergeometric function. Fig. 1 shows the function
[fz

λ(#)]−1/3 for various values of the trap aspect ratio λ.
It can be seen that, as expected, the effective dipolar in-
teraction is repulsive and isotropic. Independent of λ,
fz

λ(#) asymptotically approaches
√

2π #−3 at large #. At
the other limit, as # → 0, fz

λ(#) diverges much slower
than #−3, although the detailed behavior at small # de-
pends on the value of λ. Note that for a true 2D sys-
tem with dipoles located in the xy plane and polarized
along z axis, one expects a dipolar interaction potential
Ṽ 2D

dd ∝ #−3 as can be easily seen from Eq. (1). For the
quasi-2D case considered here, the effective dipolar inter-
action potential deviates from Ṽ 2D

dd at small values of #
in a fashion that makes the singularity of V 2D

dd at # = 0
integrable, a quite important property for numerical cal-
culations. An alternative, and often more efficient, way
to treat the dipolar terms in numerical calculations is to
use the Fourier transform of V 2D

dd [7].
The ground state wave function can be obtained by

evolving Eq. (3) in imaginary time. In the numerical
results presented in the paper, we use N = 105 and ω⊥ =
2π × 100Hz. First we want to study the structure of a
single axial vortex at the center of the cloud. Due to
the azimuthal symmetry, such a state can be written as
ψ(ρ) = χ(ρ)eiϕ with ϕ being the azimuthal angle and χ a
real function satisfying the following 1D radial equation:

i
∂χ

∂t
=

[
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2ρ
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ρ
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2ρ2
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2
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2 + D(ρ)
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χ,

FIG. 2: (Color online). (a) Radial density profile of the single
vortex state for λ = 100 and various scattering lengths (in
units of Bohr radius, aB). (b) The λ dependence of critical
scattering length (in units of aB). Here ! and " denote,
respectively, the non-vortex state and the axial vortex state.

where

D(ρ)=

∫ ∞

0
ρ′dρ′

∫ 2π

0
dϕ′V 2D

dd (ρ2 + ρ′2 − 2ρρ′ cosϕ′)χ2(ρ′).

Figure 2(a) illustrates the radial density profile χ2(ρ)
of the single vortex state for different values of the scat-
tering length. An interesting feature one can notice is
that the density close to the vortex core oscillates as
long as a is not too large. Such oscillatory behavior is
induced by the dipolar interaction and gives the vortex
a crater-like shape. Similar density oscillations are also
observed in numerical studies with other forms of non-
local interaction potentials which are originally employed
to model the inter-particle interactions in superfluid 4He
[8, 9]. Note that no oscillations are found in the ground
state structures of a non-rotating dipolar condensate.

The density oscillations of the vortex state also af-
fect its stability property. A condensate with sufficiently
large and negative a is unstable and tends to collapse
[10]. The critical scattering length acr as a function of
the trap aspect ratio is shown in Fig. 2(b) for both the
axial vortex state and the non-vortex state. Near acr,
due to the dipole-induced density oscillation, the vortex
state has a peak density exceeds that of the non-vortex
state. Since collapse starts locally at the high density
region, the vortex state tends to be less stable, having a
critical scattering length smaller in magnitude by about
5∼10% compared with the non-vortex state. This is in
contrast with the non-dipolar condensate where the vor-
tex states are shown to be more stable [11] as they have
lower peak densities compared to the non-vortex states.
We remark that the repulsive dipolar interaction in this
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FIG. 3: (Color online) Evolution of a radial density cut for
the case of Fig. 2a, but arresting the collapse after t ' 16ms
with a quench up to a = 8.55a0. A trapped roton gas is
revealed by a confined density modulation at the trap center.

cality of the collapse has two main consequences. First,
TOF pictures lack d-wave symmetry (post-collapse TOF
pictures are to a large extent dominated by the central
q = 0 peak, with the additional weak ring feature dis-
cussed above). Second, only a small number of atoms
is lost during the collapse, compared to the large losses
observed in global collapses. Therefore, the roton local
collapse may be distinguished from the phonon global col-
lapse by both the atom losses and the post-collapse TOF
images, even without accessing the in-situ dynamics.

Interestingly, roton instability may be employed to cre-
ate a confined roton gas. As discussed above, an ini-
tially stable BEC may be driven into roton instability
by quenching a < ac. The pattern formation shown
in Figs. 2a and 2d, may be alternatively understood as
the growth of roton population. At this initial stage of
the collapse, roton population is much lower than N ,
and hence we may neglect condensate depletion or roton-
roton interactions. Once the roton gas is populated we
return to the stable regime with a quench up, a > ac [34].
Since both m⇤ and !⇤ do not vary significantly at the in-
stability threshold, the created rotons are expected to
remain confined in the trap center also for the final sta-
ble configuration. As shown in Fig. 3, the density pattern
remains localized at the trap center, revealing the con-
finement of the created roton gas [35]. We recall that the
density modulations remain confined due to the locality
of the dispersion. Therefore, the rotons (density modula-
tions) may be deconfined by further increasing a, above
the value where the roton minimum disappears.

A deep roton minimum induces in the vicinity of a
perturbation a large susceptibility against the formation
of density modulations with the roton wavelength. This
well-known e↵ect in helium [15–19] is also relevant in
dipolar BECs [21]. The dependence of the roton depth

FIG. 4: (Color online) Vortex lattice for a BEC of N = 105

Er atoms, the same trap as Fig. 1, and a rotational frequency
0.3!, at the threshold of the roton instability.

on the BEC density leads to a spatially dependent sus-
ceptibility, which we illustrate for the relevant case of
vortices [36]. Vortex cores present a crater-like shape for
a deep roton minimum [20, 21], absent for a shallow or
inexistent roton minimum. Hence, vortices at di↵erent
positions in a trapped BEC present a di↵erent core pro-
file. This is particularly evident in vortex lattices (Fig. 4),
where the crater-like modulations of the cores at the trap
center disappear for vortices close to the BEC boundary.
Note however that the vortex lattice still presents a trian-
gular Abrikosov geometry, since the energy scale result-
ing from the density oscillations is overwhelmed by the
Coulomb-like vortex-vortex repulsion. Note also, that
contrary to He [19], density oscillations cannot exist far
from the vortex core, due to enhanced instability [20].

In summary, inhomogeneous trapping in pancake dipo-
lar BECs with large aspect ratios leads to spatial roton
confinement, which is crucial for the understanding of
roton instability. The roton-like dispersion has not yet
been observed experimentally, being currently a major
goal pursued by several groups. Roton confinement is
expected to play a key role in these experiments, since
harmonic traps are typically employed and large aspect
ratios are needed to study the roton dispersion. In addi-
tion to the local susceptibility discussed above [36], roton
confinement should be carefully considered when mea-
suring the critical superfluid velocity, performing Bragg
scattering [37], or analyzing finite temperature physics,
which may be very interesting since the thermal roton
cloud is expected to localize at the trap center.

We acknowledge funding by the German-Israeli Foun-
dation, the Cluster of Excellence QUEST and the
DFG (SA1031/6).

Since the roton depth is local 
the susceptibility is also 
local. This may be seen e.g.  
in vortex lattices. 
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FIG. 2. (color online) Development of a roton peak in the non-condensate as the dipole interaction increases for T = 10 ~!⇢/kB . Non-
condensate density in the y = 0 plane for (a1) D = 80, (b1) D = 140, (c1) D = 200, with respective mapped dispersions in (a2)-(c2). Insets
show the non-condensate density with white lines indicating contours of the condensate density. Note: C = 0 in all these results.

case, verifying that the roton peak arises from modes in the
roton region. Furthermore, ñ

out

, shown in Fig. 1(d), is very
similar to the contact case [c.f. Fig. 1(b1)], since the character
of long wavelength excitations (i.e. those with hk

⇢

i
j

< 2/a

⇢

)
for the two cases [compare Figs. 1(a2) and (b2)] are similar.

The localized nature of the roton-like excitations for a pan-
cake shaped dipolar BEC was revealed in previous numeri-
cal studies that examined individual excitations [6, 14]. More
recently, Jona-Lasinio et al. [17] have proposed the idea of
a confined roton gas based on a local density analysis of a

trapped dipolar condensate. Their analysis shows that the sen-
sitivity of the roton excitations to the condensate density ef-
fectively confines these excitations to a small region near the
trap center, explaining the roton peak in ñ we observe.

In Fig. 2 we show how the density peak in ñ develops for
several values of the dipolar interaction strength. The peak is
absent for low interaction strengths, where the excitation spec-
trum is monotonically increasing with hk

⇢

i [Fig. 2(a1), (a2)].
The peak first appears at D ⇡ 140 [see Fig. 2(b1)] which
is also when the excitation spectrum flattens to a horizontal
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FIG. 2. (color online) Development of a roton peak in the non-condensate as the dipole interaction increases for T = 10 ~!⇢/kB . Non-
condensate density in the y = 0 plane for (a1) D = 80, (b1) D = 140, (c1) D = 200, with respective mapped dispersions in (a2)-(c2). Insets
show the non-condensate density with white lines indicating contours of the condensate density. Note: C = 0 in all these results.

case, verifying that the roton peak arises from modes in the
roton region. Furthermore, ñ

out

, shown in Fig. 1(d), is very
similar to the contact case [c.f. Fig. 1(b1)], since the character
of long wavelength excitations (i.e. those with hk
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< 2/a
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)
for the two cases [compare Figs. 1(a2) and (b2)] are similar.

The localized nature of the roton-like excitations for a pan-
cake shaped dipolar BEC was revealed in previous numeri-
cal studies that examined individual excitations [6, 14]. More
recently, Jona-Lasinio et al. [17] have proposed the idea of
a confined roton gas based on a local density analysis of a

trapped dipolar condensate. Their analysis shows that the sen-
sitivity of the roton excitations to the condensate density ef-
fectively confines these excitations to a small region near the
trap center, explaining the roton peak in ñ we observe.

In Fig. 2 we show how the density peak in ñ develops for
several values of the dipolar interaction strength. The peak is
absent for low interaction strengths, where the excitation spec-
trum is monotonically increasing with hk

⇢

i [Fig. 2(a1), (a2)].
The peak first appears at D ⇡ 140 [see Fig. 2(b1)] which
is also when the excitation spectrum flattens to a horizontal
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B. Bogoliubov quasiparticles

The fluctuation operator is expanded as

ˆ

�(x) =

X

i

h
u

i

(x)↵̂

i

� v

⇤
i

(x)↵̂

†
i

i
, (6)

where {u
j

, v

j

} are the quasiparticle modes, with respective
energies ✏

j

, and ↵̂
j

are the bosonic quasiparticle mode oper-
ators. These quasiparticles are the elementary linearized ex-
citations of the condensate and are obtained by solving the
Bogoliubov-de Gennes (BdG) equations

L
✓

u

i

v

i

◆
= ✏

i

✓
u

i

v

i

◆
, (7)

where

L =

✓
L
GP

� µ+X �X

X �(L
GP

� µ+X)

◆
, (8)

with the exchange operator X defined by

Xf ⌘  

0

(x)

Z
dx

0
U(x� x

0
)f(x

0
) 

⇤
0

(x

0
). (9)

To quadratic order the quasiparticle basis diagonalizes the
many-body Hamiltonian with h↵̂†

i

↵̂

j

i = �

ij

n̄

j

in thermal
equilibrium, where n̄

j

=

�
e

�✏j � 1

��1 and � = 1/k

B

T is
the inverse temperature.

C. Parameter Regime and Numerical methods

In the results that follow we adopt harmonic oscillator
units defined by the radial trap frequency, in particular a

⇢

=p
~/m!

⇢

as the unit of length. We follow Ref. [26] and intro-
duce C = Na

s

/a

⇢

and D = 3Ng

dd

m/4⇡~2a
⇢

as the dimen-
sionless contact interaction and DDI parameters, respectively.

In this paper we focus on the case � = 20 and values of
D  320. We can put these parameters into the context of cur-
rent experiments: The important case we consider of D = 220

would correspond to about 25⇥10

3 164Dy atoms in a trap with
!

⇢

= 2⇡ ⇥ 11 s�1. For this case the maximum temperature
we consider of T = 10~!

⇢

/k

B

corresponds to 5.3 nK, which
is about 14% of the condensation temperature T

c

. We have
checked that qualitatively similar results to those presented in
this paper are obtained for � = 40, and we expect our results
to capture the behavior of weakly interacting dipolar conden-
sates with � & 10 (also see [18, 28]).

Our numerical algorithm closely follows the cylindrical
method presented by Ronen et al. [26]. We employ the cylin-
drically cutoff DDI, as described in [7], to improve the accu-
racy of our numerics in the pancake geometry. We also ensure
our quasi-particles are orthogonal to the condensate (see [9]).
It is important to have suitably dense spatial grids to ensure
that the short wavelength rotons are well represented, and we
use cylindrical grids with 650 points radially over the range
⇢/a

⇢

= [0, 26], and 50 points along the positive z axis with
range z/a

⇢

= [0, 2.46]. The results we present here are typ-
ically calculated using the lowest ⇠ 30 ⇥ 10

3 quasi-particle
modes, including all modes with energies up to 120~!

⇢

.

III. RESULTS

A. Non-condensate density

The non-condensate density, given by

ñ(x) ⌘ hˆ�†ˆ�i =
X

j

⇥
n̄

j

|u
j

(x)|2 + (n̄

j

+1)|v
j

(x)|2
⇤
, (10)

characterizes the atoms excited out of the condensate due to
interactions and thermal effects. In Figs. 1(a1) and (b1) we
show the non-condensate density for systems in a pancake
shaped trap at a small, but non-zero temperature. The re-
sult in Fig. 1(a1) is for a condensate with only dipole inter-
actions (i.e. D = 220, C = 0), while Fig. 1(b1) is for a
contact interaction only case (i.e. D = 0, C = 127). The
values of the interaction parameters were chosen to ensure
than both cases had approximately the same chemical poten-
tial (µ ⇡ 37.5~!

⇢

), which leads to the condensate modes be-
ing quite similar [e.g. see condensate density contours shown
in the insets to Figs. 1(a1) and (b1)]. The value D = 220 is
sufficiently large to reveal the effects of DDIs on the system,
yet is still well in the stable region (about 10% below the crit-
ical value at which the system becomes dynamically unstable
[15]). Indeed, for these parameters the system gas exhibits
a roton like feature in its excitation spectrum [see Fig. 1(a2),
and description below], and associated with this is a promi-
nent peak in the non-condensate density near the trap center
[see Fig. 1(a1)], which we refer to as the roton peak. This ro-
ton peak in ñ is absent in the contact only case, which instead
has a local minimum (along the x-axis) at the trap center [see
Fig. 1(b1)]. It is also important to take note that the roton peak
exhibits a greater z-extent than the parts of ñ away from the
trap center. This indicates that the excitations responsible for
the roton peak have some important 3D character and would
not be accurately captured in the quasi-2D treatment in which
the z-motion is essentially frozen out (also see [19]). This
reaffirms the necessity of the full 3D numerical solution we
provide here.

To quantify the nature of excitations in the trapped system
we follow the procedure introduced in [10] to approximately
map the excitations to a dispersion relation. In this procedure
each quasiparticle is assigned a momentum according to

hk
⇢

i
j

⌘

sR
dk k

2

⇢

[|ū
j

(k)|2 + |v̄
j

(k)|2]R
dk [|ū

j

(k)|2 + |v̄
j

(k)|2]
, (11)

where ū
j

(k) = F [u

j

(x)], v̄
j

(k) = F [v

j

(x)] are the quasipar-
ticle amplitudes in momentum space, with F representing the
Fourier transform. The result of this analysis for the purely
dipolar case [see Fig. 1(a2)] reveals a clear flattening in the
dispersion relation for 2/a

⇢

. hk
⇢

i
j

. 5/a

⇢

, as well as some
particular modes dropping down. The upper branch of ex-
citations (✏

j

� 20~!
⇢

) in this figure corresponds to modes
that are excited in the tightly confined z-direction. For the
contact interaction case [see Fig. 1(b2)] a strong phonon-like
(linear) dispersion is apparent, with no roton-like softening in
the hk

⇢

i
j

range where it occurs for the dipolar case.
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We consider a system of quantum degenerate spin polarized fermions in a harmonic trap at zero
temperature, interacting via dipole-dipole forces. We introduce a variational Wigner function to
describe the deformation and compression of the Fermi gas in phase space and use it to examine
the stability of the system. We emphasize the important roles played by the Fock exchange term of
the dipolar interaction which results in a non-spherical Fermi surface.
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Two-body collisions in usual ultracold atomic systems
can be described by short-range interactions. The suc-
cessful realization of chromium Bose-Einstein conden-
sate (BEC) [1] and recent progress in creating heteronu-
clear polar molecules [2] have stimulated great interest
in quantum degenerate dipolar gases. The anisotropic
and long-range nature of the dipolar interaction makes
the dipolar systems different from non-dipolar ones in
many qualitative ways [3]. Although most of the theo-
retical studies of dipolar gases have been focused on dipo-
lar BECs, where the stability and excitations of the sys-
tem are investigated (see Ref. [3] and references therein,
and also Ref. [4]) and new quantum phases are predicted
[5, 6], some interesting works about dipolar Fermi gas do
exist. These studies concern the ground state properties
[7, 8, 9], dipolar-induced superfluidity [10], and strongly
correlated states in rotating dipolar Fermi gases [11].
None of these studies, however, takes the Fock exchange
term of dipolar interaction into proper account [12].

In this Letter, we study a system of dipolar spin po-
larized Fermi gas. We will show that the Fock exchange
term that is neglected in previous studies plays a crucial
role. In particular, it leads to the deformation of Fermi
surface which controls the properties of fermionic sys-
tems, and it affects the stability property of the system.
As Fermi surface can be readily imaged using time-of-
flight technique [13], this property thus offers a straight-
forward way of detecting dipolar effects in Fermi gases.

In our work, we consider a trapped dipolar gas of single
component fermions of mass m and magnetic or electric
dipole moment d at zero temperature. The dipoles are
assumed to be polarized along the z-axis. The system is
described by the Hamiltonian

H =
N

∑

i=1

[

−
h̄2

2m
∇2

i + U(ri)

]

+
1

2

∑

i!=j

Vdd(ri − rj) , (1)

where Vdd(r) = (d2/r3)(1−3z2/r2) is the two-body dipo-
lar interaction and U(r) the trap potential. To character-

ize the system, we use a semiclassical approach in which
the one-body density matrix is given by

ρ(r, r′) =

∫

d3k

(2π)3
f

(

r + r′

2
, k

)

eik(r−r′) , (2)

where f(r, k) is the Wigner distribution function. The
density distributions in real and momentum space are
then given respectively by

n(r) = ρ(r, r) = (2π)−3

∫

d3k f (r, k) ,

ñ(k) = (2π)−3

∫

d3r f (r, k) .

Our goal is to examine n(r) and ñ(k), as well as the
stability of the system by minimizing the energy func-
tional using a variational method. Within the Thomas-
Fermi-Dirac approximation [7], the total energy of the
system is given by E = Ekin + Etr + Ed + Eex, where

Ekin =

∫

d3r

∫

d3k

(2π)3
h̄2k2

2m
f(r, k), (3)

Etr =

∫

d3r U(r)n(r), (4)

Ed =
1

2

∫

d3r

∫

d3r′ Vdd(r − r′)n(r)n(r′), (5)

Eex = −
1

2

∫

d3r

∫

d3r′
∫

d3k

(2π)3

∫

d3k′

(2π)3
Vdd(r − r′)

× ei(k−k′)·(r−r′)f

(

r + r′

2
, k

)

f

(

r + r′

2
, k′

)

.(6)

The dipolar interaction induces two contributions: the
Hartree direct energy Ed and the Fock exchange energy
Eex. The latter arises due to the requirement of the an-
tisymmetrization of many-body fermion wave functions
and is therefore absent for the dipolar BECs.

Homogeneous case — Let us first consider a homoge-
neous system of volume V with number density nf , which
will provide some insights into the trapped system to be
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Two-body collisions in usual ultracold atomic systems
can be described by short-range interactions. The suc-
cessful realization of chromium Bose-Einstein conden-
sate (BEC) [1] and recent progress in creating heteronu-
clear polar molecules [2] have stimulated great interest
in quantum degenerate dipolar gases. The anisotropic
and long-range nature of the dipolar interaction makes
the dipolar systems different from non-dipolar ones in
many qualitative ways [3]. Although most of the theo-
retical studies of dipolar gases have been focused on dipo-
lar BECs, where the stability and excitations of the sys-
tem are investigated (see Ref. [3] and references therein,
and also Ref. [4]) and new quantum phases are predicted
[5, 6], some interesting works about dipolar Fermi gas do
exist. These studies concern the ground state properties
[7, 8, 9], dipolar-induced superfluidity [10], and strongly
correlated states in rotating dipolar Fermi gases [11].
None of these studies, however, takes the Fock exchange
term of dipolar interaction into proper account [12].

In this Letter, we study a system of dipolar spin po-
larized Fermi gas. We will show that the Fock exchange
term that is neglected in previous studies plays a crucial
role. In particular, it leads to the deformation of Fermi
surface which controls the properties of fermionic sys-
tems, and it affects the stability property of the system.
As Fermi surface can be readily imaged using time-of-
flight technique [13], this property thus offers a straight-
forward way of detecting dipolar effects in Fermi gases.

In our work, we consider a trapped dipolar gas of single
component fermions of mass m and magnetic or electric
dipole moment d at zero temperature. The dipoles are
assumed to be polarized along the z-axis. The system is
described by the Hamiltonian

H =
N

∑

i=1
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−
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i + U(ri)
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+
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∑
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Vdd(ri − rj) , (1)

where Vdd(r) = (d2/r3)(1−3z2/r2) is the two-body dipo-
lar interaction and U(r) the trap potential. To character-

ize the system, we use a semiclassical approach in which
the one-body density matrix is given by

ρ(r, r′) =

∫

d3k

(2π)3
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(
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eik(r−r′) , (2)

where f(r, k) is the Wigner distribution function. The
density distributions in real and momentum space are
then given respectively by

n(r) = ρ(r, r) = (2π)−3

∫

d3k f (r, k) ,

ñ(k) = (2π)−3

∫

d3r f (r, k) .

Our goal is to examine n(r) and ñ(k), as well as the
stability of the system by minimizing the energy func-
tional using a variational method. Within the Thomas-
Fermi-Dirac approximation [7], the total energy of the
system is given by E = Ekin + Etr + Ed + Eex, where

Ekin =
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d3r

∫

d3k

(2π)3
h̄2k2

2m
f(r, k), (3)

Etr =

∫

d3r U(r)n(r), (4)
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1

2

∫
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∫
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Eex = −
1

2

∫
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∫

d3r′
∫
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(
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2
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)
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(

r + r′

2
, k′

)

.(6)

The dipolar interaction induces two contributions: the
Hartree direct energy Ed and the Fock exchange energy
Eex. The latter arises due to the requirement of the an-
tisymmetrization of many-body fermion wave functions
and is therefore absent for the dipolar BECs.

Homogeneous case — Let us first consider a homoge-
neous system of volume V with number density nf , which
will provide some insights into the trapped system to be

Ekin = d3k  n(

k ) 

2k2

2m∫

Etrap = d3r  n(r )U(r )∫
EDDI ;direct =

1
2

d3rd3r '  n(r )n(r ')∫∫ Vddi (
r − r ')

EDDI ;exchange = −
1
2

d3rd3r ' ρ(r, r ') 2∫∫ Vddi (
r − r ')
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discussed later. In this case, we obviously have Etr = 0.
We choose a variational ansatz for the Wigner distribu-
tion function that is spatially invariant:

f(r, k) = f(k) = Θ

(

k2
F −

1

α
(k2

x + k2
y) − α2k2

z

)

, (7)

where Θ() is Heaviside’s step function. Here the pos-
itive parameter α represents deformation of Fermi sur-
face [14], the constant kF is the Fermi wave number and
is related to the number density through nf = k3

F /6π2.
The choice of (7) preserves the number density, i.e.,
(2π)−3

∫

d3k f(k) = nf .
The exchange energy can be rewritten as

Eex = −
V

2

∫

d3k

(2π)3

∫

d3k′

(2π)3
f(k)f(k′)Ṽdd(k − k′) ,

Here we have used the Fourier transform of the dipolar
potential Ṽdd(q) = (4π/3)d2(3 cos2 θq−1) where θq is the
angle between the momentum q and the dipolar direction
(i.e., the z-axis) [15]. We note that the Hartree direct
term becomes zero for uniform density distribution of
fermions because the average over the angle θq cancels
out the interaction effect.

Using the variation ansatz (7), the exchange energy
can be evaluated analytically and is given by

Eex = −
πd2V

3
I(α)n2

f , (8)

where we have defined the “deformation function”:

I(x) =

∫ π

0
dθ sin θ

(

3 cos2 θ

x3 sin2 θ + cos2 θ
− 1

)

.

This integral has rather complicated analytical form. It
is more instructive to plot out the function I(x) which
we show in Fig. 1. I(x) is a monotonically decreasing
function of x, positive for x < 1, passing through zero at
x = 1 and becomes negative for x > 1. The exchange
energy (8) therefore tends to stretch the Fermi surface
along the z-axis by taking α → 0. This however comes
with the expense of the kinetic energy

Ekin =
V

5

h̄2k2
F

2m
nf

(

1

α2
+ 2α

)

,

which favors an isotropic spherical Fermi surface (i.e.,
α = 1). The competition between the two will find an
optimal value of α in the region α ∈ (0, 1). The dipo-
lar interaction therefore, through the Fock exchange en-
ergy, deforms the Fermi surface of the system. This may
be regarded as the magnetostriction effect in momentum
space.

Inhomogeneous case — Let us now turn to a system of
N atoms confined in a harmonic trapping potential with
axial symmetry:

U(r) =
1

2
m[ω2

r (x2 + y2) + ω2
z z2] .

We choose a variational Wigner function that has the
same form as in the homogeneous case, i.e., Eq. (7), but
now the Fermi wave number kF is no longer a constant
and has the following spatial dependence:

kF (r) =

{

k̃2
F −

λ2

a4
ho

[

β(x2 + y2) +
1

β2
z2

]}1/2

, (9)

where aho =
√

h̄/mω and ω = (ω2
rωz)1/3. The vari-

ational parameters β and λ represent deformation and
compression of the dipolar gas in real space, respec-
tively. Using N =

∫

d3r n(r) one can easily find that

k̃F = (48N)1/6λ1/2/aho. The corresponding density dis-
tributions in real and momentum space are give by

n(r) =
k̃3

F

6π2

{

1 −
1

R2
F

[

β(x2 + y2) +
1

β2
z2

]}3/2

,

ñ(k) =
R3

F

6π2

{

1 −
1

k̃2
F

[

1

α

(

k2
x + k2

y

)

− α2k2
z

]

}3/2

,

respectively, where RF = (48N)1/6aho/λ1/2.
Under this ansatz, each term in the energy functional

can be evaluated analytically, with the total energy given
by, in units of N4/3h̄ω,

ε(α, β, λ) = c1

[

λ

(

2α +
1

α2

)

+
1

λ

(

2
β0

β
+

β2

β2
0

)]

+ c2cddN
1/6λ3/2{I(β) − I(α)} , (10)

where c1 = 31/3/28/3 $ 0.2271, c2 = 210/(37/2 ·5 ·7π2) $
0.0634, cdd = d2/(a3

hoh̄ω), and β0 ≡ (ωr/ωz)2/3 mea-
sures the trap aspect ratio. Here the two terms in the
square bracket at rhs represent the kinetic and trapping
energy, respectively, while those in the curly bracket are
the direct and exchange interaction terms, respectively.

It is not difficult to see that Eq. (10) is not bounded
from below, a result arising from the fact that the dipolar
interaction is partially attractive. There however exists,
under certain conditions, a local minimum in (10), repre-
senting a metastable state. This situation is reminiscent
of the case of a trapped attractive BEC [16]. For the
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discussed later. In this case, we obviously have Etr = 0.
We choose a variational ansatz for the Wigner distribu-
tion function that is spatially invariant:
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z
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where Θ() is Heaviside’s step function. Here the pos-
itive parameter α represents deformation of Fermi sur-
face [14], the constant kF is the Fermi wave number and
is related to the number density through nf = k3

F /6π2.
The choice of (7) preserves the number density, i.e.,
(2π)−3

∫
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The exchange energy can be rewritten as
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Here we have used the Fourier transform of the dipolar
potential Ṽdd(q) = (4π/3)d2(3 cos2 θq−1) where θq is the
angle between the momentum q and the dipolar direction
(i.e., the z-axis) [15]. We note that the Hartree direct
term becomes zero for uniform density distribution of
fermions because the average over the angle θq cancels
out the interaction effect.

Using the variation ansatz (7), the exchange energy
can be evaluated analytically and is given by

Eex = −
πd2V

3
I(α)n2

f , (8)

where we have defined the “deformation function”:

I(x) =

∫ π

0
dθ sin θ

(

3 cos2 θ

x3 sin2 θ + cos2 θ
− 1

)

.

This integral has rather complicated analytical form. It
is more instructive to plot out the function I(x) which
we show in Fig. 1. I(x) is a monotonically decreasing
function of x, positive for x < 1, passing through zero at
x = 1 and becomes negative for x > 1. The exchange
energy (8) therefore tends to stretch the Fermi surface
along the z-axis by taking α → 0. This however comes
with the expense of the kinetic energy

Ekin =
V

5

h̄2k2
F

2m
nf

(

1

α2
+ 2α

)

,

which favors an isotropic spherical Fermi surface (i.e.,
α = 1). The competition between the two will find an
optimal value of α in the region α ∈ (0, 1). The dipo-
lar interaction therefore, through the Fock exchange en-
ergy, deforms the Fermi surface of the system. This may
be regarded as the magnetostriction effect in momentum
space.

Inhomogeneous case — Let us now turn to a system of
N atoms confined in a harmonic trapping potential with
axial symmetry:

U(r) =
1

2
m[ω2

r (x2 + y2) + ω2
z z2] .

We choose a variational Wigner function that has the
same form as in the homogeneous case, i.e., Eq. (7), but
now the Fermi wave number kF is no longer a constant
and has the following spatial dependence:

kF (r) =

{

k̃2
F −

λ2

a4
ho

[

β(x2 + y2) +
1

β2
z2

]}1/2

, (9)

where aho =
√

h̄/mω and ω = (ω2
rωz)1/3. The vari-

ational parameters β and λ represent deformation and
compression of the dipolar gas in real space, respec-
tively. Using N =

∫

d3r n(r) one can easily find that

k̃F = (48N)1/6λ1/2/aho. The corresponding density dis-
tributions in real and momentum space are give by
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respectively, where RF = (48N)1/6aho/λ1/2.
Under this ansatz, each term in the energy functional

can be evaluated analytically, with the total energy given
by, in units of N4/3h̄ω,

ε(α, β, λ) = c1
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+
1
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where c1 = 31/3/28/3 $ 0.2271, c2 = 210/(37/2 ·5 ·7π2) $
0.0634, cdd = d2/(a3

hoh̄ω), and β0 ≡ (ωr/ωz)2/3 mea-
sures the trap aspect ratio. Here the two terms in the
square bracket at rhs represent the kinetic and trapping
energy, respectively, while those in the curly bracket are
the direct and exchange interaction terms, respectively.

It is not difficult to see that Eq. (10) is not bounded
from below, a result arising from the fact that the dipolar
interaction is partially attractive. There however exists,
under certain conditions, a local minimum in (10), repre-
senting a metastable state. This situation is reminiscent
of the case of a trapped attractive BEC [16]. For the
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discussed later. In this case, we obviously have Etr = 0.
We choose a variational ansatz for the Wigner distribu-
tion function that is spatially invariant:

f(r, k) = f(k) = Θ

(

k2
F −

1

α
(k2

x + k2
y) − α2k2

z

)

, (7)

where Θ() is Heaviside’s step function. Here the pos-
itive parameter α represents deformation of Fermi sur-
face [14], the constant kF is the Fermi wave number and
is related to the number density through nf = k3

F /6π2.
The choice of (7) preserves the number density, i.e.,
(2π)−3

∫

d3k f(k) = nf .
The exchange energy can be rewritten as

Eex = −
V

2

∫

d3k

(2π)3

∫

d3k′

(2π)3
f(k)f(k′)Ṽdd(k − k′) ,

Here we have used the Fourier transform of the dipolar
potential Ṽdd(q) = (4π/3)d2(3 cos2 θq−1) where θq is the
angle between the momentum q and the dipolar direction
(i.e., the z-axis) [15]. We note that the Hartree direct
term becomes zero for uniform density distribution of
fermions because the average over the angle θq cancels
out the interaction effect.

Using the variation ansatz (7), the exchange energy
can be evaluated analytically and is given by

Eex = −
πd2V

3
I(α)n2

f , (8)

where we have defined the “deformation function”:

I(x) =

∫ π

0
dθ sin θ

(

3 cos2 θ

x3 sin2 θ + cos2 θ
− 1

)

.

This integral has rather complicated analytical form. It
is more instructive to plot out the function I(x) which
we show in Fig. 1. I(x) is a monotonically decreasing
function of x, positive for x < 1, passing through zero at
x = 1 and becomes negative for x > 1. The exchange
energy (8) therefore tends to stretch the Fermi surface
along the z-axis by taking α → 0. This however comes
with the expense of the kinetic energy
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)

,

which favors an isotropic spherical Fermi surface (i.e.,
α = 1). The competition between the two will find an
optimal value of α in the region α ∈ (0, 1). The dipo-
lar interaction therefore, through the Fock exchange en-
ergy, deforms the Fermi surface of the system. This may
be regarded as the magnetostriction effect in momentum
space.

Inhomogeneous case — Let us now turn to a system of
N atoms confined in a harmonic trapping potential with
axial symmetry:

U(r) =
1

2
m[ω2

r (x2 + y2) + ω2
z z2] .

We choose a variational Wigner function that has the
same form as in the homogeneous case, i.e., Eq. (7), but
now the Fermi wave number kF is no longer a constant
and has the following spatial dependence:

kF (r) =

{

k̃2
F −

λ2

a4
ho

[

β(x2 + y2) +
1

β2
z2

]}1/2

, (9)

where aho =
√

h̄/mω and ω = (ω2
rωz)1/3. The vari-

ational parameters β and λ represent deformation and
compression of the dipolar gas in real space, respec-
tively. Using N =

∫

d3r n(r) one can easily find that

k̃F = (48N)1/6λ1/2/aho. The corresponding density dis-
tributions in real and momentum space are give by

n(r) =
k̃3

F

6π2

{

1 −
1

R2
F

[
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1
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,

respectively, where RF = (48N)1/6aho/λ1/2.
Under this ansatz, each term in the energy functional

can be evaluated analytically, with the total energy given
by, in units of N4/3h̄ω,

ε(α, β, λ) = c1

[

λ

(

2α +
1

α2

)

+
1

λ

(

2
β0

β
+

β2

β2
0

)]

+ c2cddN
1/6λ3/2{I(β) − I(α)} , (10)

where c1 = 31/3/28/3 $ 0.2271, c2 = 210/(37/2 ·5 ·7π2) $
0.0634, cdd = d2/(a3

hoh̄ω), and β0 ≡ (ωr/ωz)2/3 mea-
sures the trap aspect ratio. Here the two terms in the
square bracket at rhs represent the kinetic and trapping
energy, respectively, while those in the curly bracket are
the direct and exchange interaction terms, respectively.

It is not difficult to see that Eq. (10) is not bounded
from below, a result arising from the fact that the dipolar
interaction is partially attractive. There however exists,
under certain conditions, a local minimum in (10), repre-
senting a metastable state. This situation is reminiscent
of the case of a trapped attractive BEC [16]. For the
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discussed later. In this case, we obviously have Etr = 0.
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where Θ() is Heaviside’s step function. Here the pos-
itive parameter α represents deformation of Fermi sur-
face [14], the constant kF is the Fermi wave number and
is related to the number density through nf = k3
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Here we have used the Fourier transform of the dipolar
potential Ṽdd(q) = (4π/3)d2(3 cos2 θq−1) where θq is the
angle between the momentum q and the dipolar direction
(i.e., the z-axis) [15]. We note that the Hartree direct
term becomes zero for uniform density distribution of
fermions because the average over the angle θq cancels
out the interaction effect.
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from below, a result arising from the fact that the dipolar
interaction is partially attractive. There however exists,
under certain conditions, a local minimum in (10), repre-
senting a metastable state. This situation is reminiscent
of the case of a trapped attractive BEC [16]. For the
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field theory in the zero temperature limit [26–28] (Supplemen-
tary Materials). In Fig. 2, we compare the experimental data
with the parameter-free theoretical curves, which include both
the FSD and the NBE effects. We observe an excellent overall
agreement between the experiment and the theory, showing
that our model accurately describes the behavior of our sys-
tem. In addition, we plot the numerical simulations in the
case of pure ballistic expansions. The comparison between
the ballistic and non-ballistic expansion reveals that the latter
plays a minor role in the final AR, showing that the observed
anisotropy dominantly originates from the FSD. For the sake
of completeness, Fig. 2 also shows the calculation for a non-
interacting Fermi gas, whose FS is spheric.

The FSD is a quantum phenomena that comes from the an-
tisymmetrization of many-body fermion wavefunctions. It has
been predicted that its magnitude increases with the Fermi en-
ergy and the dipole moment and that. In the limit of weak
DDI, the magnitude of the FSD is linearly proportional to a
dimensionless parameter [26, 27]

h = ACdd
p

EF (1)

Here, A = c0m3/2/h3 is a numerical factor with c0 =
8p36�1/6 ' 184, m the mass of 167Er, and h the Planck con-
stant, Cdd = µ0µ2/(4p) denotes the dipolar coupling constant
with µ0 vacuum permeability, and EF = kBTF = h f̄ (6N)1/3

is the Fermi energy for a non-interacting Fermi gas in a har-
monic trap with kB the Boltzmann constant, f̄ = ( fx fy fz)1/3

the mean trap frequency, and N the number of atoms. In-
tuitively, this scaling is interpreted as follows: a larger EF ,
resulting in a higher number density and thus in a smaller in-
terparticle spacing, gives rise to larger DDI in a Fermi gas.
These arguments open up the possibility of tuning the FSD
by changing EF , i. e. the external trapping potential and the
number density.

We explore the dependence on the external trapping poten-
tial in experiment and substantiate the experimental results by
calculations. For convenience, we define the deformation fac-
tor, D, as D = 1�AR. We first simulate how D varies when
the trap anisotropy,

p
fx fz/ fy, (Fig. 3A) and/or f̄ (Fig. 3B) are

varied. In the calculations, we keep the FSD and the NBE con-
tributions separated. Our theoretical results clearly convey the
following information: (i) the FSD gives the major contribu-
tion to D and is truly independent from the trap anisotropy,
while it increases with f̄ , (ii) the NBE effect is reminiscent of
the trap anisotropy and vanishes for a spherical trap [27].

In the experiment, we explore the dependence of D on the
trap geometry for b = 0� by keeping the axial frequency ( fy)
constant and vary the radial frequencies ( fx = fz within 5%)
(Fig. 3C). This leads to a variation in the trap anisotropy, in
f̄ , and thus in h . We observe a linear dependence of D on
h in agreement with Refs. [26, 27] and our numerical calcu-
lations. The excellent agreement between experiments and
theory shows that our system is a clean sample allowing us to
investigate a nematic phase under a highly controlled environ-
ment.
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FIG. 4: (color online) Deformation as a function of the temperature
of the cloud. Measurements are performed for two dipole angles,
b = 0� (squares) and b = 90� (circles) under the same conditions
as in Fig. 2. The experimental data are taken at tTOF = 12ms. The
plot shows the numerically calculated values at zero temperature for
b = 0� (solid line) and b = 90� (dashed line).

In analogy with a study on nematicity in a superconduct-
ing material [31], we graphically emphasize the FSD in the
measurements at h = 0.14 by subtracting the TOF absorption
image taken at b = 90� from the one at b = 0� (Fig. 3D). The
resulting image shows a clover-leaf-like pattern, visualizing
that the momentum spread in the orientation of the dipoles is
larger than in the other direction. For comparison, the same
procedure is applied for images obtained by a fit to the ob-
served cloud (Fig. 3E). At h = 0.14, the trap anisotropy is so
small that the NBE effect is negligibly small. Therefore, the
deformation visualized here is almost purely the FSD.

Finally, we investigate the temperature dependence of D
(Fig. 4). We prepare samples at various temperatures by stop-
ping the evaporative cooling procedure at arbitrary points [32].
The final trap geometry is kept constant. By reducing the
temperature of the Fermi gas, we observe the emergence of
the FSD which becomes more and more pronounced at low
temperature and eventually approaches the zero-temperature
limit. The observed temperature dependence qualitatively
agrees with a theoretical result at finite temperatures [33]. Our
observation clearly shows the quantum many-body nature of
the FSD.

The observation of a deformed Fermi surface sets the ba-
sis for future investigations on quantum many-body dipo-
lar phenomena, including dipolar collective excitations [27,
28, 34, 35], and exotic phases in strongly correlated dipolar
gases [18, 19]. Taking advantage of the wide tunability of cold
atom experiments, dipolar Fermi gases are ideally clean sys-
tem for exploring an exotic and topological phases in a highly
controlled manner.
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FIG. 2: Density distributions in real space (upper plots, in
units of k̃3

F ) and in momentum space (lower plots, in units
of R3

F ) for an oblate trap with β0 = 0.5 (left plots) and a

prolate trap with β0 = 2 (right plots). Here r =
√

x2 + y2,

kr =
√

k2
x + k2

y and cddN1/6 = 1.5.

metastable state, the variational energy ε(α, β, λ) satis-
fies the Virial theorem 2Ekin − 2Etr + 3(Ed + Eex) = 0.
Hereafter, we refer to the metastable state as the ground
state.

We find the ground state by numerically minimizing
Eq. (10). Fig. 2 shows the ground state density distri-
butions in both real and momentum space for two dif-
ferent traps. One can see that while the spatial density
distributions are essentially determined by the trap ge-
ometry, the momentum density distributions by contrast
are quite insensitive to the trapping potential and are in
both cases elongated along the dipolar direction. Fur-
ther, the momentum central density at k = 0 decreases
as β0 increases.

The stretch in kz is more clearly illustrated in Fig. 3(a),
where we have plotted the ratio of the root mean square
momentum in kz direction,

√

〈k2
z〉0, and to that in kx di-

rection,
√

〈k2
x〉0, as a function of the trap aspect ratio β0

for several dipolar strengths. It turns out that the dipolar
interaction leads to nonspherical momentum distribution
stretched along the dipolar direction irrespective to the
geometry of trapping potential. This can be attributed
to the Fock exchange energy that becomes negative for
α < 1 as discussed in the homogeneous system. This
result is in stark contrast to the case of dipolar BEC in
which the Fock exchange energy is absent and the shape
of the momentum distribution is related to that of the
spatial distribution through the Fourier transformation.
Note that, for non-interacting fermions, the resulting mo-
mentum distribution is isotropic independent of the trap-
ping potential [17, 18].

Figure 4 shows the real space Thomas-Fermi surface of
the ground state for different trap geometry. The surface
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FIG. 3: (Color online) (a) Aspect ratio in momentum space
√

〈k2
z〉0/〈k2

x〉0 and (b) aspect ratio in real space
√

〈z2〉0/〈x2〉0
normalized to that for a non-interacting system as functions
of β0 for cddN1/6 = 0 (solid line), 0.5 (dashed line), 1 (dotted
line), and 1.5 (dot-dashed line).
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FIG. 4: (Color online) Thomas-Fermi surface in real space of
the ground state for noninteracting case (dashed line) and for
interacting case cddN1/6 = 1.5 (solid line).

of non-interacting fermions has been plotted as dashed
lines for comparison. While the shape of the cloud re-
lies on the trap geometry, the dipolar interaction tends
to stretch the gas along the dipolar direction also in real
space while compress the gas along the perpendicular ra-
dial direction. However, once the trapping potential be-
comes highly elongated (i.e., β0 $ 1), the dipolar inter-
action tends to shrink the whole cloud in both the radial
and the axial directions as shown in the case for β0 = 5
in Fig. 4. This is because, for such a cigar-shaped trap,
a number of dipolar fermions align in the axial (dipolar)
direction and feel strong mutual attractions.

To better quantify the real space deformation, we show
in Fig. 3(b) the aspect ratio of the cloud

√

〈z2〉0/〈x2〉0,
normalized to that of non-interacting Fermi gas, for dif-
ferent trap geometry. The deviation of the aspect ra-
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