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Non-equilibrium systems:  
examples in quantum physics 

• Particle creation and  
expansion in the early universe: 

–  Baryogenesis, Inflation 
 
 
 

• Electron transport :  
 

–  molecular electronics  
 

• De-Coherence :  
 

–  Measurement problem 
– Quantum Computer 
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Motivation  

Thermal equilibrium  

H0 � H1 
Ψ0 � Ψ0                  Ψ(t) 

Quench:  

time 

Non-equilibrium  
state 

isolated quantum  
many-body system 
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Motivation  

Thermal equilibrium  

Non-equilibrium  
state 

Scenario 2: 
one timescale 

Open problem on 
vastly different  
energy, time and 

length scales! 
 

Scenario 3: 
more timescales 

slow further evolution 
towards equilibrium 

rapid establishement of 
a quasi-steady state 

 

Scenario 1: 
unitary evolution 

without relaxation  

Study using a  
model system: 

 

1D Bose gas 
isolated & controllable 
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Non-equilibrum system 
–  Coherently split 1d quantum gas 

Tools to probe the quantum states 
–  Full distribution functions of interference 

Approach towards equilibrium  
–  Probing dynamics 

•  Pre-Thermalization  
Emergence of a new length scale 

•  Light cone like spreading of de-coherence 
•  Generalized Gibbs ensemble 
•  Relaxation from the pre-thermalized state 

–  Improving Interferometry 
•  Large spin squeezing and entanglement 

Other Non-equilibrum systems 
–  Decay of excited state -> twin beams 
–  Fast cooling in 1d 

Outlook 

Outline 

AtomChip 
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One – dimensional 
Systems 

 
experimentalist point of view 

      www.AtomChip.org 
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System under investigation 

uniform density fluctuating phase 

quasi-condensate 

!?

Weakly interacting 1d Bose gas 

All energies   µ, kBT  << ħω⊥ 

thermal gas 1D „quasi condensate“ 
•   macroscopic wave function 
•   fluctuating phase:  lφ<L  
 

„true“ 1D condensate 
•  longe range phase coh. 
•  quantum fluctuations 

quasi condensate regime 
T T=0  Tφ: lϕ=L ~1000 nK 

~5 nK 

experiments: 20-150 nK 

Bd kNT /||ω!=

Tϕ ≈ n1d  ξh  ω ||

ξh = 
m  n1dg1d

With interaction energy:                     and 1d interaction strength: dd gnI 11= sd ag ⊥= ω!21
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System under investigation 

uniform density fluctuating phase 

quasi-condensate 

!?

Weakly interacting 1d Bose gas 

All energies   µ, kBT  << ħω⊥ 

Excitations play an enhanced role in 1d 

thermally populated 
thermalization expected 
to be slow 

Homogeneous 1d Bose gas integrable 

Kinoshita et al. Nature 440, 900, 2006 The longitudinal phase fluctuations 
are key for our experiments 

Theory: Lieb-Liniger model   
•  Exactly solvable Integrable theory 

Luttinger-liquid 
•  excitations are soundwaves (phonons), which 

do NOT interact 
•  Linear dispersion relation 
•  dynamics described through the dephasing of 

the phonons  

Model for interacting many body systems 
which can be described by a field theory 
with long lived excitations. 
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Combine the robustness of nano-fabrication 
an the quantum tools of atomic physics and 
quantum optics to build a toolbox for quantum 
experiments 
 
•  1d elongated traps 

 
•  Easy to create a BEC 

•  Very stable and reproducible  
laboratory for quantum experiments 

 
•  Fast operation  

•  Well controlled splitting and 
interference 

3000-10000 atoms 
T = 20-100 nK 
ωR ≈ 2π x 2 - 3 kHz 
ωL  ≈ 2π x 5 - 10 Hz 
 

µ, kBT  << ħωR 
 

AtomChip 
Integrated Circuits for Ultracold Quantum Matter 

φ(z) 
λT 
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Probing the 
quantum state 

 
full distribution function of 

interference 
      www.AtomChip.org 
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•  Matter-wave interferometry: repeat many times 

•  Plot as circular statistics full distribution function of 
phase & contrast 

i>100 

contrasti 

phasei 

phase, contrast 

FDF of phase and contrast 

FDF contains information about  
all order correlation functions 
in solid state: Full Counting Statistics  

Theory:  Polkovnikov et al. PNAS 103, 6125 (2006) 
 Gritsev et al. Nature Phys. 2, 705 (2006) 

Exp:  Hofferberth et al.  Nature Phys. 4, 489 (2008) 
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Interfering independent   
1d Quantum Liquids 

x1 

d 

x2 

A   is a quantum operator.  
     Its measured value will fluctuate from shot to shot. 
 
 
 
 
For independent BEC‘s: expectation value of contrast:   

  due to random rel. Phases 
 
Look at  

E. Demmler, A. Polkovnikov, V. Gritsev,  
A. Imambekov E. Altman 

A = 0

A. Polkovnikov, et al., PNAS 103, 6125 (2006) 
V. Gritsev, et al., Nature Phys. 2, 705 (2006) 

A. Imambekov et al. Phys. Rev. A 77, 063606 (2008) 

A 2
=
1
n1d
2 dz1

−L/2

L/2

∫ dz2∫ a1
+(z1)a1(z2 ) a2

+(z2 )a2(z1)

A = 1
n1d

a1
+(z)a2(z)dz

−L/2

L/2

∫

A 2

2nd order correlation function 2nd moment of fringe 
(„average contrast“) 
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Analysis of interference 
patterns: contrast analysis 

∫
−

+=
2/

2/
21

1
)()(1 L

Ld
Q dzzaza

n
Acontrast of integrated profile: 

expectation value of contrast:  0=QA due to random rel. phases 

Hofferberth et al Nature Phys. 4, 489 (2008) 

TOFtmdQ !/=wave vector of fringe separation: 
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full contrast statistics 
theory predictions 

theoretically expected distribution functions for the average contrast: 

2

2

Q

Q

A

A
=α

quantum coherence: 
asymetric Gumbel distribution 
(low temp. T or short length L) 
 
thermal fluctuations: 
broad Poissonians distribution 
(high temp T or long length L) 
 
intermediate regime: 
double-peak strukture 

A. Polkovnikov, et al., PNAS 103, 6125 (2006) 
V. Gritsev, et al., Nature Phys. 2, 705 (2006) 

A. Imambekov et al. Phys. Rev. A 77, 063606 (2008) 
 
 

Semi-classical approach:  Stimming et al.  et al. PRL  (2010) 



J. Schmiedmayer: Does an Isolated Quantum System Relax?                 15 

full contrast statistics 
experiment 

ωT  = 2π 3 kHz 
n1d  = 60 µm-1 

K  = 46 
T  = 30 nK 
ξT  = 0.9 µm 

ωT  = 2π 3 kHz 
n1d  = 60 µm-1 

K  = 46 
T  = 60 nK 
ξT  = 0.45 µm 

No free parameters! 

experimentally measured distribution functions 
for the average contrast: 

experiment records entire distribution function of interference contrast 
→ high order correlations can be derived 

quantum coherence: 
asymetric Gumbel distribution 
(low temp. T or short length L) 
 
thermal fluctuations: 
broad Poissonians distribution 
(high temp T or long length L) 
 
intermediate regime: 
double-peak strukture 

Hofferberth et al Nature Phys. 4, 489 (2008) 
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Probing the 
quantum state 

 
density-density correlations 

after expansion 

      www.AtomChip.org 
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Correlations as a probe 

strongly interacting 

weakly interacting 

for long TOF, everything 
looks like an ideal gas 

relevant  
timescale: 

strongly interacting: 
λc: particle distance 
 
weakly interacting 
λc: coherence length 
 
 Conclusion:  

don‘t take TOF too long or look in-situ 

 A. Imambekov et al PRA 80, 33604 (2009) 

Phase fluctuations in the trapped quantum 
gas will translate into density fluctuations 
 
Interference leads to a matter wave spackle 
pattern  
 
If the propagation is free (no final state 
interaction) one can infer back to the 
properties of the trapped quantum gas  
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2nd order correlations of a BEC: 
“correlation thermometry” 

In 1d system we can neglect the interactions in 
expansion and get information about the properties of 

the trapped 1d gas 
 

Recent experiments for 2d systems:   
Jae-yoon Choi, Sang Won Seo, Woo Jin Kwon, Yong-il Shin 

Probing Phase Fluctuations in a 2D Degenerate Bose Gas by Free Expansion  
 

absorption images of expanding BEC  Th: A. Imambekov et al PRA 80, 33604 (2009) 
Exp: St. Manz et al  Phys. Rev. A 81, 031610 (2010)  
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Creating a non 
equilibrium state by 
coherent splitting  

a 1d system 

      www.AtomChip.org 
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Coherent splitting of a 1d BEC 
RF traps on a chip 

•  Deform the single trap into a double-well 
by coupling of atomic states by RF fields 

•  A coherent beamsplitter for 
matterwaves! 

•  Observe the interference by releasing 
the BEC and let it expand to overlap  
in time of flight 

Schumm et al, Nature Phys. 1, 57 (2005) 
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n̂s = n̂1 + n̂2, φ̂s = φ̂1 + φ̂2

n̂a = n̂1 − n̂2, φ̂a = φ̂1 − φ̂2

equal thermal population 

symmetric 

anti symm. 

n̂s = n̂1 + n̂2, φ̂s = φ̂1 + φ̂2

n̂a = n̂1 − n̂2, φ̂a = φ̂1 − φ̂2

+

+

Thermal equilibrium state 
two independent quantum gases 

hold time 

thermally populated 

populated by quantum fluctuations 

equal  
(thermal)  
populated 

Split 1d-bose-gas as non-
equilibrium system 

n̂1(x),  φ̂1(x)

n̂2(x),  φ̂2(x)

symmetric 

anti symm. 

Initial state 
coherently split quantum gas 
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create two independet samples 
classically separated 

interference of phase 
fluctuating 1D condensates 

Study the dynamics of excitations on a quantum field 

ϕ1 ϕn …. ϕ2 

ϕ1 ϕn …. ϕ2 

create a copy by splitting 
quantum connected 

ϕn 

ϕn‘ 

ϕ1 …. ϕ2 

ϕ1‘ …. ϕ2‘ 
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Probing the 
Dynamics of  

(de) coherence 

      www.AtomChip.org 

Experiment: M. Gring, M. Kuhnert, T. Langen et al. (VCQ, Vienna) 
Theory:        T. Kitagawa, E. Demler  (Harvard) 

    I. Mazets (VCQ, Vienna) 
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Experimental Procedure 
Gring et al., Science 337, 1318 (2012) 
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Decay of the mean contrast 

initial rapid evolution 

slow  further decay? 

quasi-steady state 

M
ea

n 
sq
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d 
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 <

C
2 >
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Initially reduced phase spread shows coherence 
of the splitting. Over time, two regimes emerge:  
 

•  long length scale: 
significant occupation of phonon modes with λ<L leads to 
random phaseswith in L and to loss of contrast on the 
same timescale as the phase diffuses 
contrast decay regime (spin decay) 
 

•  short length scale:  
only significant occupation of phonon modes with λ>L   
-> only phase diffusion 
phase diffusion regime (spin diffusion) 
 

Theory description: Luttinger-liquid 
•  Excitations are soundwaves (phonons) 

•  dynamics described through the dephasing of the phonons  
does not describe a thermalisation process 

 

���� ����� ����� ����� 	
�����

�

��
��
�
�

��
�
�

��
�
�

��
�
�

��
��

�
��

��
�

��
��

�
��

��
�

��
��

��
��
	

�

��

��
��

�

�

�� ��
��
���

� � � � � � � � � �
���� ����� ����� ����� 	
�����

�

��
��
�
�

��
�
�

��
�
�

��
�
�

��
��

�
��

��
�

��
��

�
��

��
�

��
��

��
��
	

�

��

��
��

�

�

�� ��
��
���

� � � � � � � � � �

ev
ol

ut
io

n 
ti

m
e 

t e  

integration length L 

Experimental observation 
two regimes 

theory: Kitagawa et al., PRL 104, 255302 (2010);  NJP  13 073018  (2011) 
exp: Kuhnert et al., PRL 110, 090405 (2013)  
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FDF of Phase and Contrast 
comparison to theory 
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theory: Kitagawa et al. 

Kuhnert et al., PRL 110, 090405 (2013)  
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2.5 ms

0

5

10

4.5 ms

0

5

10

7.5 ms

0

5

10

12.5 ms

0

5

10

17.5 ms

0 0.2 0.4 0.6
0

5

10

0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6

27.5 ms

Contrast Squared, C2

Pr
ob

ab
ilit

y 
De

ns
ity

Gring et al., Science 337, 1318 (2012) 
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full contrast statistics 
experiment 

ωT  = 2π 3 kHz 
n1d  = 60 µm-1 

K  = 46 
T  = 30 nK 
ξT  = 0.9 µm 

ωT  = 2π 3 kHz 
n1d  = 60 µm-1 

K  = 46 
T  = 60 nK 
ξT  = 0.45 µm 

No free parameters! 

experimentally measured distribution functions 
for the average contrast: 

experiment records entire distribution function of interference contrast 
→ high order correlations can be derived 

quantum coherence: 
asymetric Gumbel distribution 
(low temp. T or short length L) 
 
thermal fluctuations: 
broad Poissonians distribution 
(high temp T or long length L) 
 
intermediate regime: 
double-peak strukture 

Theory: 
     A. Polkovnikov, et al., PNAS 103, 6125 (2006). 
     V. Gritsev, et al., Nature Phys. 2, 705 (2006). 
Experiment: 
     S. Hofferberth et al Nature Phys. 4, 489 (2008) 
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Measure effective temperature by comparing to equilibrium distributions: 

 
 
 
 
 
 
 
 
 
Effective temperature is ~ 8 times colder  
than the initial kinetic temperature! 

Steady state 
thermal like 

Teff=12 ± 3 nK               Tkin~ 100nK 

exp 

                                                                           
Lth(Teff) = 12 ± 4 µm ~ L0 

Gring et al., Science 337, 1318 (2012) 

Theory for equilibrium : 
     A. Polkovnikov, et al., PNAS 103, 6125 (2006). 
     V. Gritsev, et al., Nature Phys. 2, 705 (2006). 
Experiment for equilibrium: 
     S. Hofferberth et al Nature Phys. 4, 489 (2008) 
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Interpretation 
•  Our 1d many body quantum system is close  

to an integrable system (perfect 1d system) 
•  Fast evolution is the de-phasing of the phonon modes of the initial 

state of the split 1d system (‘relaxation’ in an integrable system) 
•  (quasi) steady state is the quantum state the integrable system 

relaxes to.  It can be described by a generalized Gibbs ensemble 
–  Quasi steady state is determined by the conserved quantities in the 1d 

Luttinger liquid model (phonon occupation numbers) 
–  The fast splitting process leads to equipartition of energy in the 

(antisymmetric) modes  ⇒  thermal like state 
–  Prediction: effective temperature for the quasi steady state given by the 

quantum shot noise introduced by the splitting process 
 
 
 

  
•  Expect:  - Revivals by re-phasing of the phonons 

  - Over long times the quasi steady state should slowly decay 
•  Example of a Pre-thermalized state (Berges 2004) 

3

FIG. 2: (a) Evolution of hC2i for interference patterns in-
tegrated over the whole length of the 1d systems. We ob-
serve a rapid decay followed by a long slow further evolu-
tion. Error bars are standard errors of the mean. insert :
Experimental non-equilibrium distributions of C2/hC2i at
t
e

= 22.5ms, 47.5ms, and 122.5ms respectively (histograms)
and a fit of a theoretical equilibrium distributions leading to
Te↵ = 15±4

3 nK, 14±2
2 nK, and 31±5

6 nK respectively (red solid
line). For comparison the calculated equilibrium distributions
for T = 78 ± 10 nK (blue dashed line) are added. (b): Evo-
lution of Te↵ for the whole data set extracted by fitting equi-
librium distributions. A linear fit indicates an increase of Te↵

over time of 0.14±0.04 nK/ms. The yellow area indicates the
measured heating rate of our atom trap of 0.11± 0.06 nK/ms

this we extract the full quantum mechanical probabil-
ity distribution function (FDF) P (C2)dC2, which gives
the probability to observe a value C2 in the interval be-
tween C2 and C2 + dC2. The higher moments hC2ni are
directly related to P (C2) by hC2ni =

R
C2nP (C2)dC2.

Consequently the FDF is a direct measure of all relative
phase correlations between the gases and hence deter-
mines the state of the system with unprecedented detail
[20, 21]. In particular, high phase coherence between the
two halves of the system results in a peaked Gumbel-like
distribution, whereas the distribution is exponential in
form when the phase coherence is low [20–23].

Using a statistically large set of data we can map the
time evolution of the FDFs for di↵erent length scales L.
For times > 12ms, i.e. directly after the initial rapid evo-
lution shown in Fig. 2a, we find remarkable agreement in

the functional form of the measured FDFs with theoret-
ical equilibrium distributions on all length scales probed
(see insets in Fig. 2a). Surprisingly, the e↵ective tem-
perature extracted from a fit of calculated FDFs to the
measured data (Te↵ = 13±4

3, 13±5
2, 15±4

3 nK, at te =
12,5, 17.5, 22.5 ms respectively), is more then a factor of
five lower than the initial temperature of the un-split sys-
tem (T = 78 ± 10 nK). The observed steady-state hence
cannot be the true thermal equilibrium state of the sys-
tem. (For a direct comparison of FDFs for the thermal
equilibrium distributions in the same double-well system,
see SOM.)
In contrast, for evolution times te < 12ms the shapes

of the measured FDFs are not consistent with equilib-
rium theory. The thermal-like appearance of the state is
established only during the evolution of the system.
To analyze the subsequent further slow evolution ob-

served in Fig. 2a, we extract the e↵ective temperature for
all times after the initial decay. The measured values of
Te↵ are plotted in Fig. 2b. We find an increase of Te↵

over time of 0.14± 0.04 nK/ms. This is, however, consis-
tent with the measured heating rate of our atom trap of
0.11±0.06 nK/ms which we characterized independently
using equilibrium quasi-condensates (see SOM). This in-
dicates that either no thermalization is present in this
nearly integrable system, or, if it is present, that it is a
very slow process.
To describe the fast evolution from the splitting to the

emergence of the quasi-steady state, we employ a fully
integrable theory based on a Tomonaga-Luttinger liquid
formalism [24, 25] (for details see SOM). The evolution
of the local phase di↵erence between the two halves of
the system ��(z) is thereby described by a set of un-
coupled collective modes with momentum k, i.e. sound
waves, which modulate the relative density and phase at
a wave-length � = 2⇡/k and with an amplitude given by
the population of the mode. A sudden splitting creates
an equipartition of energy between all the k-modes, which
initially are all in phase. The rapid evolution of the sys-
tem seen over the first ⇠ 10ms is then the dephasing of
these k-modes. The FDFs calculated by this integrable
theory [24, 25], using input parameters independently ex-
tracted from the experiment, show remarkable agreement
without any free parameter (Fig. 3).
The model also predicts a steady state, to which the

integrable system will relax: The dephasing, along with
the equipartition of energy between the k-modes intro-
duced by the fast splitting, results in the FDFs of the
quasi-steady state being indistinguishable from those of
a system in thermal equilibrium at some e↵ective tem-
perature Te↵ , which is determined by the energy given to
the relative degrees of freedom by the quantum shot noise
introduced in the splitting. The full calculation gives [25]

kBTe↵ = g⇢/2 , (1)

where g = 2h̄!?as is the 1d interaction strength for

Gring et al., Science 337, 1318 (2012)  
Kuhnert et al., PRL 110, 090405 (2013) 

Smith et al., NJP 15, 075011 (2013)   

theory: Kitagawa et al., PRL 104, 255302 (2010);  NJP  13 073018  (2011) 
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Scaling of Teff    
Gring et al., Science 337, 1318 (2012) 

theory: Kitagawa et al., PRL 104, 255302 (2010);  NJP  13 073018  (2011) 

Teff  scales linearely with density 

Teff is independent on initial Temperature 

3

FIG. 2: (a) Evolution of hC2i for interference patterns in-
tegrated over the whole length of the 1d systems. We ob-
serve a rapid decay followed by a long slow further evolu-
tion. Error bars are standard errors of the mean. insert :
Experimental non-equilibrium distributions of C2/hC2i at
t
e

= 22.5ms, 47.5ms, and 122.5ms respectively (histograms)
and a fit of a theoretical equilibrium distributions leading to
Te↵ = 15±4

3 nK, 14±2
2 nK, and 31±5

6 nK respectively (red solid
line). For comparison the calculated equilibrium distributions
for T = 78 ± 10 nK (blue dashed line) are added. (b): Evo-
lution of Te↵ for the whole data set extracted by fitting equi-
librium distributions. A linear fit indicates an increase of Te↵

over time of 0.14±0.04 nK/ms. The yellow area indicates the
measured heating rate of our atom trap of 0.11± 0.06 nK/ms

this we extract the full quantum mechanical probabil-
ity distribution function (FDF) P (C2)dC2, which gives
the probability to observe a value C2 in the interval be-
tween C2 and C2 + dC2. The higher moments hC2ni are
directly related to P (C2) by hC2ni =

R
C2nP (C2)dC2.

Consequently the FDF is a direct measure of all relative
phase correlations between the gases and hence deter-
mines the state of the system with unprecedented detail
[20, 21]. In particular, high phase coherence between the
two halves of the system results in a peaked Gumbel-like
distribution, whereas the distribution is exponential in
form when the phase coherence is low [20–23].

Using a statistically large set of data we can map the
time evolution of the FDFs for di↵erent length scales L.
For times > 12ms, i.e. directly after the initial rapid evo-
lution shown in Fig. 2a, we find remarkable agreement in

the functional form of the measured FDFs with theoret-
ical equilibrium distributions on all length scales probed
(see insets in Fig. 2a). Surprisingly, the e↵ective tem-
perature extracted from a fit of calculated FDFs to the
measured data (Te↵ = 13±4

3, 13±5
2, 15±4

3 nK, at te =
12,5, 17.5, 22.5 ms respectively), is more then a factor of
five lower than the initial temperature of the un-split sys-
tem (T = 78 ± 10 nK). The observed steady-state hence
cannot be the true thermal equilibrium state of the sys-
tem. (For a direct comparison of FDFs for the thermal
equilibrium distributions in the same double-well system,
see SOM.)
In contrast, for evolution times te < 12ms the shapes

of the measured FDFs are not consistent with equilib-
rium theory. The thermal-like appearance of the state is
established only during the evolution of the system.
To analyze the subsequent further slow evolution ob-

served in Fig. 2a, we extract the e↵ective temperature for
all times after the initial decay. The measured values of
Te↵ are plotted in Fig. 2b. We find an increase of Te↵

over time of 0.14± 0.04 nK/ms. This is, however, consis-
tent with the measured heating rate of our atom trap of
0.11±0.06 nK/ms which we characterized independently
using equilibrium quasi-condensates (see SOM). This in-
dicates that either no thermalization is present in this
nearly integrable system, or, if it is present, that it is a
very slow process.
To describe the fast evolution from the splitting to the

emergence of the quasi-steady state, we employ a fully
integrable theory based on a Tomonaga-Luttinger liquid
formalism [24, 25] (for details see SOM). The evolution
of the local phase di↵erence between the two halves of
the system ��(z) is thereby described by a set of un-
coupled collective modes with momentum k, i.e. sound
waves, which modulate the relative density and phase at
a wave-length � = 2⇡/k and with an amplitude given by
the population of the mode. A sudden splitting creates
an equipartition of energy between all the k-modes, which
initially are all in phase. The rapid evolution of the sys-
tem seen over the first ⇠ 10ms is then the dephasing of
these k-modes. The FDFs calculated by this integrable
theory [24, 25], using input parameters independently ex-
tracted from the experiment, show remarkable agreement
without any free parameter (Fig. 3).
The model also predicts a steady state, to which the

integrable system will relax: The dephasing, along with
the equipartition of energy between the k-modes intro-
duced by the fast splitting, results in the FDFs of the
quasi-steady state being indistinguishable from those of
a system in thermal equilibrium at some e↵ective tem-
perature Te↵ , which is determined by the energy given to
the relative degrees of freedom by the quantum shot noise
introduced in the splitting. The full calculation gives [25]

kBTe↵ = g⇢/2 , (1)

where g = 2h̄!?as is the 1d interaction strength for

Luttinger liquid 
prediction 

 
 
 
 
effective temperature 
for the quasi steady 
state given by the 
quantum shot noise 
introduced by the 
splitting process 
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Theory introduces a new characteristic 
“thermal-like“ length scale L0: 
•  Transition between decay and  

diffusion regime occurs around  
integration length L0 = 8K2/π2n1d 
 

•  This is much longer than the  
thermal coherence length: 

 

Theory:        L0 = 15.8 ± 0.9 µm 
Measured:    λth(Teff) = 16.9 ± 0.9 µm ~ L0 
Initial T :       λth ~1/T = 1.5 → 10 µm 

Pre-Thermalization 
Effective length scale 

Kuhnert et al., PRL 110, 090405 (2013) 
theory: Kitagawa et al., PRL 104, 255302 (2010);   

NJP  13 073018  (2011) 
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Decay of the mean contrast 

initial rapid evolution 

slow  further decay? 
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Emergence of the 
relaxed state 

      www.AtomChip.org 
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Local observation of 
relaxation 

How does the system acquire  
thermal-like properties? 

(prethermalized) 

T. Langen et al NatPhys 9, 460 (2013)  

Linear disperison relation of the phonons relates this to the questions asked by:  
Calabrese, P. & Cardy, J.   Phys. Rev. Lett. 96, 011368 (2006) 



J. Schmiedmayer: Does an Isolated Quantum System Relax?                 37 

Light-cone-like decay of correlations in a mesoscopic quantum many-body system

T. Langen,1 R. Geiger,1 M. Kuhnert,1 B. Rauer,1 M. Gring(?),1 V. Kasper,2 J. Berges,2 and J. Schmiedmayer1, ⇤

1Vienna Center for Quantum Science and Technology,
Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria

2Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120 Heidelberg, Germany
(Dated: March 24, 2013)

It is one of the crucial features of thermal-
ization that the thermal equilibrium state which
a system reaches has no memory of the initial
non-equilibrium state. Understanding how the
memory of a quantum state is progressively lost
is thus an essential prerequisite for the compre-
hension of non-equilibrium dynamics and has far
reaching consequences for applications of quan-
tum information schemes and the e�cient simu-
lation of quantum many-body systems on classi-
cal computers. In this context it is known that
some microscopic spin models exhibit an intrin-
sic maximum velocity, which limits the propaga-
tion of correlations and entanglement to an ef-
fective light-cone. However, a direct connection
to the relaxation of mesoscopic quantum many-
body systems and the establishment of thermal
properties has so far been elusive. Here, we re-
port the observation of such an e↵ective light-
cone governing the local emergence of thermal-
like features in an isolated quantum many-body
system. In our experiment, we quench a one-
dimensional (1D) Bose gas and directly monitor
how strong correlations introduced through the
quench decay in a light-cone-like evolution to-
wards a prethermalized state. We complement
our experimental observations with simulations
of the full quantum many-body problem, which
justifies the use of e↵ective low-energy theories
to describe the dynamics. Our results shed new
light on Lieb-Robinson bounds and their connec-
tion to the emergence of thermal features in iso-
lated quantum many-body systems.

Over the last years, ultracold atoms have been estab-
lished as ideal systems to study the dynamics of isolated
quantum many-body systems8,11,13–15. The possibility
to tune several parameters of these systems and to probe
them with high accuracy, in combination with a high
isolation from the environment has triggered a strong
interest in non-equilibrium phenomena and thermaliza-
tion8,11,18.

These problems are intimately connected to the ques-
tion of how fast correlations and entanglement can prop-
agate through a non-relativistic quantum system. Tra-
ditionally, this question has been predominately studied
using microscopic spin models3,5–7,16. While current ex-
perimental realizations of these lattice systems typically
contain only tens of particles9, we experimentally estab-
lish the connection to continuous, mesoscopic quantum

FIG. 1: Dynamics of correlations in a coherently split

1D Bose gas. (a) The quench creates two 1D Bose gases with
almost identical longitudinal phase profiles ✓1(z) and ✓2(z).
The relative phase field �(z) = ✓1(z) � ✓2(z) shows long-
range order characterized by a diverging correlation length
��. This strongly phase-correlated state relaxes towards a
prethermalized state with exponentially decaying phase cor-
relations (finite correlation length �e↵ . (b) The evolution of
the system can be probed via the two-point correlation func-
tion C(z̄ ' z � z0, t = 0). It is measured using matterwave
interferometry in time-of-flight.

systems that consist of several thousands of particles.

The principle of the experiment is depicted in Fig. 1.
A phase-fluctuating 1D Bose gas is quenched by splitting
it coherently. The quench creates a non-equilibrium state
consisting of two gases with almost identical phase pro-
files. Interactions in the many-body system drive the re-
laxation of this highly phase-correlated state to a prether-
malized state characterized by thermal-like phase corre-
lations8,25. The dynamics is monitored by time-resolved
measurements of the relative phase field using matter-

Decay of coherence 

Time evolution of the  
phase correlation function 

 
  C(z = z - ′z ) = i(ϕ (z)−ϕ ( ′z ))e

ODLRO 

‘thermal’ 
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2 ms 

 
3 ms 

 
4 ms 
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. 
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T. Langen et al NatPhys 9, 460 (2013)  
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Light-Cone dynamics in the 
decay of coherence 

The region with the final form of the phase correlation function expands with sound velocity 
Linear dispersion relation -> Light-Cone dynamics  

2

radio-frequency fields via additional wires on the chip, we
transform the initial harmonic trapping potential into a
double well potential, thereby realizing the matterwave
analogue of a coherent beam splitter17,19 (see Methods).

After a certain evolution time t in the double well,
the gases are released from the trap and interfere af-
ter a time-of-flight of 15.7ms. The resulting interfer-
ence pattern exhibits longitudinally modulated interfer-
ence fringes and allows to extract the relative phase
�(z) = ✓1(z)� ✓2(z) along the length of the system (see
Fig. 1). Repeating this procedure about 150 times for
each value of t, we determine the two-point correlation
function C(z̄ = z � z

0
, t) = h ̂1(z) ̂

†
2(z) ̂

†
1(z

0) ̂2(z0)i '
hei�(z)�i�(z0)i with z and z

0 denoting arbitrary positions
along the length of the system23,24, and  ̂1,2(z, t) the
time-dependent quantum many-body fields of the two
gases. In contrast to the integrated visibility of the in-
terference patterns, which was previously used to iden-
tify the prethermalized state8,25, the phase correlation
function provides a local probe for the dynamics, and is
therefore ideally suited to study the propagation of cor-
relations.

Our experimental results are presented in Fig. 2a. Di-
rectly after the quench, the relative phase �(z) exhibits
long-range order with a correlation function close to unity
along the entire gas. After a given evolution time t, the
phase correlation function decays exponentially up to a
distance z̄c(t), beyond which the initial long-range order
is retained. Over time, the height of the long-range or-
dered plateaus C(z̄ > z̄c, t) decreases and the position
of z̄c shifts to larger distances. This evolution describes
how an arbitrary point in the gas locally looses the mem-
ory of the strongly-correlated initial state and acquires
thermal-like properties, while long-range order still per-
sists outside a characteristic distance. The evolution con-
tinues until the system reaches the prethermalized state
for t > 6ms, where correlations are completely thermal-
like and decay exponentially throughout the entire sys-
tem.

From the experimental data, we can extract the
crossover points z̄c through the level of long-range or-
der correlations. To this end, we consider for each t the
region where the correlation function is constant, extrap-
olate the plateau to smaller z̄ and determine the position
z̄c where the plateau and the prethermalized correlation
function cross. Note that in the experimental data the
sharp crossover points at z̄c are smeared out by the fi-
nite resolution of the imaging system (Methods). Our
method reliably overcomes this problem. The results are
shown in Fig. 2b. We observe a clear linear scaling of the
front characterizing the decay of correlations with time.
The experimental data thus indicates that the decay of
correlations is governed by a light-cone like evolution,
with z̄c = 2ct, where c is a characteristic velocity of the
quantum many-body system. For the data presented in
Fig. 2b a linear fit allows to extract a characteristic ve-
locity of c = XXXmm/s.

To explain this light-cone like decay we describe

FIG. 2: Light-cone-like decay of correlation func-

tions. (a) Experimental two-point correlation functions
C(z̄, t) (filled circles) compared to theoretical calculations
(solid lines). Evolution times t increase from 1.3ms to 9.3ms
in steps of 1ms from top to bottom. (b) For each t, the con-
stant values of C(z̄, t) at large z̄ can be used to determine
the the characteristic crossover points z̄c up to which the sys-
tem forgets the initial long-range order (see text for details).
Position of z̄c as a function of evolution time t revealing the
e↵ective light-cone decay of correlations. Solid lines are a lin-
ear fit with the shaded area denoting the fit error. The slope
of this fit corresponds to twice the characteristic velocity. (c)
Schematic visualization of the dynamics between the initial
and the prethermalized state. The decay of correlations is
characterized by a front moving with a finite velocity: for
a given time t, C(z̄, t) is exponential only up to a distance
z̄c = 2ct, with c denoting the characteristic velocity of corre-
lations. Up to this point, the system looks thermal. Beyond
the front, the initial long-range order is retained.

the time-evolution of the relative phase using a Lut-
tinger Liquid (LL) model (Supplementary Information).
Within this model, the system is described by a large
number of independent momentum modes with a linear
dispersion relation !k = c|k|. After the quench, all modes
are initialized in phase, leading to the initially perfect
correlations. Over time, dephasing is known to result
in the establishment of correlations that decay exponen-
tially in space8,20,25. For any given finite distance z̄, the
dephasing happens on a timescale td = ⇡/!k, given by
half the oscillation period of the principal mode within
that distance, i.e. the mode with momentum k ⇠ 2⇡/z̄.
For a given time, the system will thus only be able

3

izes all modes in phase, leading to perfect phase correla-
tions. Over time, dephasing of these modes results in the
establishment of correlations that decay exponentially in
space20,25. For a given separation z̄ between two points in
the gas, the dephasing happens on a timescale td = ⇡/!k

given by half the oscillation period of the principal mode
k ⇠ 2⇡/z̄ within the length z̄. During the time t, the sys-
tem will thus only be able to dephase and establish ex-
ponentially decaying correlations on a length scale given
by the light-cone condition z̄c = 2ct. Modes with longer
wavelengths than z̄c result in an overall phase shift af-
fecting all points outside the light-cone in the same way.
Therefore, thermal-like correlations cannot establish and
long-range order remains.

Within the LL model, the dynamics can be calcu-
lated analytically and explicitely reveals the light-cone-
like condition for the emergence of thermal-like correla-
tions (see Methods). In Fig. 2a we compare this cal-
culation to our measured data, taking into account the
finite resolution of our imaging system (Methods). We
find very good agreement, using independently measured
experimental parameters as the input for the theory.

In contrast to the previously studied propagation of
a density defect in a single mode gas at the speed of
sound26,27, the phenomenon which we observe here is a
collective, non-mean field e↵ect that does not just hap-
pen at a single spatial location, but simultaneously at
every point in the gas. The observation of the long range
order that persists in the system (plateaus of C(z̄)) for
di↵erent t is remarkable because of the high level of fluc-
tuations characterizing 1D systems. This achievement
requires a stringent stability of the experiment and high
statistics (see Supplementary Information) to reveal the
interference of several momentum modes and the e↵ec-
tive light-cone dynamics.

WHERE TO PUT THIS? In a particle-like picture,
we see that the emergence of the thermal-like correlation
results from the propagation of quasi particles moving
in opposite directions, as the mode with momentum |k|
describes a pair of quasi-particles with opposite momenta
k and �k. This picture shows strong similarities with
microscopic models for the spread of correlations close to
a critical point as theoretically studied in5 and in lattice
systems as experimentally observed in9.

Finally, we studied the quench dynamics for varying
number of particles N in the mesoscopic system. We
found the same light-cone-like emergence of the thermal-
like correlations in the explored range (N ⇠ 4000�12000)
and extracted the corresponding characteristic velocities.
The results are presented in Fig. 3 (filled circles). We
compare our measurements to the speed of sound c

0

for
an homogeneous system (gray line) as well as the speed
c̃ = ⇡c

0

/4 calculated for a trapped gas (red line, see
SI for the derivation of c̃). The latter better describes
the data within the experimental resolution. We thus
conclude that the dynamics of the inhomogeneous Lut-
tinger Liquid with a local speed of sound c(z) e↵ectively
reduces to the light-cone-like evolution characterized by

FIG. 3: Scaling of the characteristic velocity with par-

ticle number. The gray (red) line is the calculated speed
of sound for an homogeneous (trapped) system. Shaded ar-
eas correspond to the uncertainty on the measured densities.
Error bars denote one standard deviation.

the macroscopic parameter, c̃.

We have shown that the emergence of thermal-like cor-
relations after a quench in a quantum many-body sys-
tem takes the form of an e↵ective light-cone. Our re-
sults indicate a possible pathway on how the memory of
a strongly-correlated initial state is lost in a mesoscopic
quantum system, a situation with direct relevance to the
study of thermalization, decoherence and to the emer-
gence of classical features from quantum systems12. To-
gether with other theoretical [REF] and experimental9

studies, our results show that genuine quantum many-
body dynamics can be reduced to a characteristic velocity
describing the evolution of correlations and suggesting an
e↵ective Lorentz-invariant form of the equations of mo-
tion. In analogy with equilibrium statistical mechanics,
great e↵ort is currently undertaken to define universality
classes for dynamical problems [Ref Gazenzer] and to find
the parameters that can e↵ectively describe the accessi-
ble observables. A prime example is the introduction of
the Generalized Gibbs ensemble to describe the transient
states of integrable systems [REF Rigol] In this context,
we conjecture that the observation of light-cone dynamics
may be the sign for e↵ective theories underlying complex
quantum many-body problems.

Methods

Splitting process. The quench is performed by linearly
increasing the amplitude of the RF current in the chip
wires to 24mA within 12ms. This results in an exponen-
tial decay of the tunnel coupling between the two gases.
Simulations of the chip potential and experiments with
quasi-condensates in thermal equilibrium23 (see Supple-
mentary Information) indicate that the decoupling of the
two gases happens within approximatively 200µs, which

LL in a trap 

sound velocity  
in infinite system 

T. Langen et al NatPhys 9, 460 (2013) 
LL theory in trap: R. Geiger et al. arXiv:1312.7568   

Linear disperison relation of the phonons relates to the questions asked in:  
  CFT:   Calabrese, P. & Cardy, J.   Phys. Rev. Lett. 96, 011368 (2006)  
  Lattice model:  Cramer, M., et al.   Phys. Rev. Lett. 100, 030602 (2008).  

scaling with density 
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Phase correlation function: 
 
 
 
Initially the spitting process creates excitations 
(phonons with ωk=c0k ) in the density quadrature. 
(density fluctuations from the beam splitter)  
 
With time the density quadrature of the phonons 
oscillate into the phase quadrature (with ωk) 
 
Equipartition created by a fast splitting results 
in a 1/k population of the modes 
 
Time evolution of the phase variance: 
 
 
 
 
Fourier decomposition of a ramp with a flat 
plateau starting at z=c0t  

Emergence of Light-Cone 
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Figure S4: (a) Time evolution of the phase variance h��2
zz0i for c0 = 1.8 mm/s. For a given

evolution time, the phase variance grows linearly up to a distance z̄c = 2c0t. Beyond that sharp

crossover point the phase variance is constant, revealing the persisting long-range phase coherence

in the system. (b) Derivative of the phase variance visualizing how the front of correlations travels

through the system.

the relative phase fluctuations �̂(z, t) = ✓̂1 � ✓̂2 and relative density fluctuations n̂(z, t) =

(n̂1 � n̂2)/2 in the trapped 1D Bose gas reads13:

Ĥ =
h̄

2⇡

Z
dz

⇥
vN(z)(⇡n̂)

2 + vJ(z)(@z�̂)
2
⇤
. (S5)

In the local density approximation, the generalized velocities can be written as

vN(z) =
c(z)

K(z)
=

2g

⇡h̄
(S6)

and

vJ(z) = c(z)K(z) =
⇡h̄

2m
nTF(z). (S7)

They fulfil the relation vNvJ = c(z)2, where c(z) denotes the local speed of sound, K(z)

is the local Luttinger parameter and nTF(z) = n0[1 � (z/RTF)2] is the local density in the

9

Methods

Splitting process. The splitting is performed by linearly increasing the amplitude of the RF

current in the chip wires to 24mA within 12ms. To minimize longitudinal excitations during

the splitting, the initial gas is prepared in a slightly dressed RF trap that has the same longi-

tudinal confinement as the final double well potential (Supplementary Information for more

details). The increase of RF current results in a rapid decay of the tunnel coupling between

the two gases. Simulations of the chip potential and experiments with quasi-condensates in

thermal equilibrium23 (Supplementary Information) indicate that the decoupling of the two

gases happens within less than 500µs. This is faster than the characteristic timescale of the

dynamics and therefore realizes a quench.

Relative phase measurement. The interference patterns are recorded after a time-of-flight

expansion of 15.7ms using absorption imaging. The point spread function of the optical

system has a measured rms width of 3.6µm. The phase �(z) of the interference patterns is

extracted by fitting each pixel line (of size �
px

= 2µm) with a cosine-modulated Gaussian

function.

Theoretical model. Within the Luttinger Liquid theory the phase correlation function can

be written as C(z, z0, t) = exp(�1

2

h��zz0(t)2i). In the homogeneous limit, the local phase

variance is given by28,29

h��zz0(t)
2i = 2⇡2

LK2

X

k 6=0

sin(!kt)2

k2

(1� cos(kz̄)) , (2)

with L being the length of the system, k = 2⇡n/L the momentum of the excitations (n 6= 0

integer) and K the Luttinger parameter. The amount of fluctuations is thus determined by

the interference of several longitudinal modes of the 1D system.

The first term in the sum (2) represents the growth and subsequent oscillations in the

amplitude of the phase fluctuations as they get converted from the initial density fluctua-

tions. The factor 1/k2 in the amplitude reflects the 1/k scaling of the excitation occupation

numbers associated with the equipartition of energy induced by the fast splitting. The sec-

ond term in the sum corresponds to the spatial fluctuations. Expression (2) is the Fourier
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Figure S3: Visualization of the light-cone-condition for c0 = 1mm/s and t = 5ms. The relative

phase of the system is randomized by a superposition of many modes (solid lines). Initially,

the contribution of all these modes grows in amplitude (arrows), leading to a linear increase in

the variance of the phase (bottom plot). For the correlation function, this corresponds to the

establishment of thermal correlations up to z̄c. Beyond z̄c = 2c0t, modes with a wavelength larger

than z̄c would be needed for a further randomization of the phase. However, while these long-

wavelength modes grow in amplitude for z̄ > z̄c, modes with shorter wavelength start to decrease

again in amplitude. Overall, this leads to a constant phase variance beyond z̄c.

More rigorously, computing the derivative of the phase variance with respect to the

position z̄, we find
@h��zz0(t)2i

@z̄
⇠ ⇥(2c0t� z̄), (S4)

where ⇥(x) is the Heaviside step function. The phase thus randomizes as a function of z̄

with a constant rate, up to the point where z̄ = 2c0t. Beyond that point, long-range phase

coherence is retained. The full time evolution of the phase variance and its derivative is

shown in Fig. S4.

Trapped system. To derive the dynamics for the trapped system we follow the procedure

used in the homogeneous case2. The Luttinger Hamiltonian describing the dynamics of

8
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gases happens within less than 500µs. This is faster than the characteristic timescale of the

dynamics and therefore realizes a quench.

Relative phase measurement. The interference patterns are recorded after a time-of-flight

expansion of 15.7ms using absorption imaging. The point spread function of the optical

system has a measured rms width of 3.6µm. The phase �(z) of the interference patterns is

extracted by fitting each pixel line (of size �
px

= 2µm) with a cosine-modulated Gaussian

function.

Theoretical model. Within the Luttinger Liquid theory the phase correlation function can

be written as C(z, z0, t) = exp(�1

2

h��zz0(t)2i). In the homogeneous limit, the local phase

variance is given by28,29

h��zz0(t)
2i = 2⇡2

LK2

X

k 6=0

sin(!kt)2

k2

(1� cos(kz̄)) , (2)

with L being the length of the system, k = 2⇡n/L the momentum of the excitations (n 6= 0

integer) and K the Luttinger parameter. The amount of fluctuations is thus determined by

the interference of several longitudinal modes of the 1D system.

The first term in the sum (2) represents the growth and subsequent oscillations in the

amplitude of the phase fluctuations as they get converted from the initial density fluctua-

tions. The factor 1/k2 in the amplitude reflects the 1/k scaling of the excitation occupation

numbers associated with the equipartition of energy induced by the fast splitting. The sec-

ond term in the sum corresponds to the spatial fluctuations. Expression (2) is the Fourier

6

R. Geiger et al. NJP 16 053034  (2014) 
 arXiv:1312.7568  
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Figure 7. Time evolution of the relative-phase correlation function for the
homogeneous (left, a and c) and trapped (right, b and d) systems. The color-scale
indicates the degree of correlation (red: high correlation, blue: low correlation). The
top row illustrates the relaxation to the prethermalized state with the speed of sound
as characteristic velocity for the decay of correlations (dahsed line is z̄ = 2ct). In
the homogeneous case, the initial state is re-established at times which are multiples
of the system length divided by the characteristic velocity. In the trapped case,
the recurrences are only partial and the more complex structure is due to the
incommensurate ratios of the mode frequencies !j . In this time window (0-300 ms),
the strongest recurrence is observed at 202 ms (!/2⇡ = 7 Hz).

completes its fifth oscillation. Even at longer evolution times, full recurrence (C(z̄) = 1)

cannot be observed for the trap system because of the incommensurate ratio of the mode

frequencies !j.

For a more intuitive illustration of the recurrences, we show in Fig. 9 the time

evolution of the mean squared contrast (integrated over a region of length L), C2(t),

which is a simple measure of coherence in the system [20]. It can be calculated from

a double integration of the PCF, and is directly accessible in experiments from the

interference patterns integrated over a size L. Here again, we observe the more complex

structure of the dynamics due to the trap, with a clear shift of the recurrence time with

respect to the homogeneous case, and a di↵erent form of the recurrence.

  Box potential   harmonic trap 
homogeneous system 

clear revivals with an 
‘inverse light cone’ 

complicated dynamics due to 
unequal spacing of phonon 

frequencies 

box potential  

harmonic trap 

R. Geiger et al. NJP 16 053034  (2014) 
 arXiv:1312.7568  
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Generalized  
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1D Bose gas is a (nearly) integrable system 
  � many conserved quantities inhibit thermalization 
 

Conjecture: 
Quantum system to relax to maximum entropy 
state decribed by a generalized Gibbs ensemble: 
 
 
 
 
 
 
 

The generalized Gibbs 
ensemble 

conserved quantities: 
 

       mode occupations 

Lagrange multiplier partition 
function 

€ 

λm →  βm =1/kBTm
striking feature: a temperature for every mode! 
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2d phase correlation 
function for ‘Light Cone’ 

Choose different starting points to evaluate the  
phase correlation function C(z1, z2)   

 
Observation: the decay of phase correlation function is independent on starting point z1 
 
Data is described by a model with a single temperatures for ponon modes in the anti 
symmetric state. 

C(z1, z2 )= i(ϕ (z1)−ϕ (z2 ))e
T. Langen et al. (2014) 
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FIG. 2: Two-point phase correlation functions C(z1, z2) for increasing evolution time, showing a characteristic maximum on
the diagonal and a light-cone-like decay of correlations away from the diagonal. The experimental observations are in good
agreement with the theoretical model assuming (A) a single temperature Te↵ or (B) two distinct temperatures Te↵ ±�T , with
�T = 0.6 ⇥ Te↵ . For the latter an additional maximum arises on the anti-diagonal, due to the unequal population of even
and odd modes. The dynamics lead to the establishment of a relaxed state which is well described by a GGE with the same
parameters. The center of the system is located at z = 0, color marks the amount of correlations between 0 and 1. To decrease
the noise in the experimental phase correlation function, we typically average over approximately 150 experimental realizations.

mogeneous gas of 1D bosons with contact interactions,
which is one of the prototypical examples of an integrable
system [15, 16]. In the thermodynamic limit, its exact
Bethe Ansatz solutions imply an infinite number of con-
served quantities, which make it impossible for the gas to
forget an initial non-equilibrium state, forcing it to relax
to a GGE. Recent experiments have shown that also the
trapped 1D Bose gas behaves approximately integrable
for very long time scales, enabling the detailed investi-
gation of integrable dynamics [5, 6, 8, 17, 18]. Changing
the initial state of the non-equilibrium evolution in our
experiment, we demonstrate that the relaxed state of this
system can indeed be identified with a GGE.

Our experiments start with a phase fluctuating 1D
Bose gas of 87Rb atoms which is prepared and trapped
using an atom chip [19]. We initialize the non-equilibrium
dynamics by splitting this single 1D gas coherently into
two halves. Information about the system is extracted
using matter-wave interferometry [5, 17, 18, 20]. This en-

ables the time-resolved measurement of individual two-
point and higher-order N -point phase correlation func-
tions C(z1, z2, . . . , zN ), where z1, z2, . . . , zN are N coor-
dinates along the length of the system (see Fig. 1 and
Supplementary Materials). These correlation functions
reveal detailed information about the dynamics and the
relaxed states of the system.

We first start with the two-point correlation func-
tion C(z1, z2) ⇠ h 1(z1) 

†
2(z1) 

†
1(z2) 2(z2)i ⇠

hei'(z1)�i'(z2)i. Previously, this correlation function was
studied in regions where the system is approximately
translation invariant [18, 21], i.e. C(z1, z2) = C(z1 � z2).
Here, more comprehensive information about generic
many-body states is obtained by mapping the full cor-
relation function C(z1, z2) for any combination of the co-
ordinates z1 and z2 (see Fig. 1). As every point in the
system is perfectly correlated with itself, the correlation
functions exhibit a maximum on the diagonal z1 = z2 for
all times.
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FIG. 2: Two-point phase correlation functions C(z1, z2) for increasing evolution time, showing a characteristic maximum on
the diagonal and a light-cone-like decay of correlations away from the diagonal. The experimental observations are in good
agreement with the theoretical model assuming (A) a single temperature Te↵ or (B) two distinct temperatures Te↵ ±�T , with
�T = 0.6 ⇥ Te↵ . For the latter an additional maximum arises on the anti-diagonal, due to the unequal population of even
and odd modes. The dynamics lead to the establishment of a relaxed state which is well described by a GGE with the same
parameters. The center of the system is located at z = 0, color marks the amount of correlations between 0 and 1. To decrease
the noise in the experimental phase correlation function, we typically average over approximately 150 experimental realizations.

mogeneous gas of 1D bosons with contact interactions,
which is one of the prototypical examples of an integrable
system [15, 16]. In the thermodynamic limit, its exact
Bethe Ansatz solutions imply an infinite number of con-
served quantities, which make it impossible for the gas to
forget an initial non-equilibrium state, forcing it to relax
to a GGE. Recent experiments have shown that also the
trapped 1D Bose gas behaves approximately integrable
for very long time scales, enabling the detailed investi-
gation of integrable dynamics [5, 6, 8, 17, 18]. Changing
the initial state of the non-equilibrium evolution in our
experiment, we demonstrate that the relaxed state of this
system can indeed be identified with a GGE.

Our experiments start with a phase fluctuating 1D
Bose gas of 87Rb atoms which is prepared and trapped
using an atom chip [19]. We initialize the non-equilibrium
dynamics by splitting this single 1D gas coherently into
two halves. Information about the system is extracted
using matter-wave interferometry [5, 17, 18, 20]. This en-

ables the time-resolved measurement of individual two-
point and higher-order N -point phase correlation func-
tions C(z1, z2, . . . , zN ), where z1, z2, . . . , zN are N coor-
dinates along the length of the system (see Fig. 1 and
Supplementary Materials). These correlation functions
reveal detailed information about the dynamics and the
relaxed states of the system.

We first start with the two-point correlation func-
tion C(z1, z2) ⇠ h 1(z1) 

†
2(z1) 

†
1(z2) 2(z2)i ⇠

hei'(z1)�i'(z2)i. Previously, this correlation function was
studied in regions where the system is approximately
translation invariant [18, 21], i.e. C(z1, z2) = C(z1 � z2).
Here, more comprehensive information about generic
many-body states is obtained by mapping the full cor-
relation function C(z1, z2) for any combination of the co-
ordinates z1 and z2 (see Fig. 1). As every point in the
system is perfectly correlated with itself, the correlation
functions exhibit a maximum on the diagonal z1 = z2 for
all times.

Choose different starting points to evaluate the  
phase correlation function C(z1, z2)   

 
Observation: For specific splitting procedures (=initial conditions) the decay of phase 
correlation function depends on starting point z1 and shows ‚revivals‘ of coherence 
 
Data is described by a model with different temperatures for even phonon modes and 
odd phonon modes in the anti symmetric state. 

Generalized Gibbs 
Ensemble 

C(z1, z2 )= i(ϕ (z1)−ϕ (z2 ))e

need at least 3 temperatures 

T. Langen et al. (2014) 
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Higher order phase 
correlation functions 

Evaluation of higher order correlation functions 
Data is well described by GGE 
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FIG. 3: Examples of experimental 4-point, 6-point and 10-point correlation functions reveal that the relaxed
state also agrees very well with the GGE prediction for higher-order correlation functions. The coordinates are
C(z1, 10, z2, 10), C(z1,�12, z2, 14), C(z1, 10, 10, z2,�20, 10), C(z1,�8, 8, z2,�24,�20), C(z1, 4, 10, z2,�8, z2,�22,�18, 10,�4)
and C(z1,�22,�8, z2,�22,�26,�22, z2,�26,�24) (from left to right, all numbers in µm). In particular, di↵erences between
the relaxation to the state described by a single temperature (A) and the state described by two temperatures (B) are significant
and can very well be captured by the theoretical model.

Our observations for a standard fast splitting are sum-
marized in Fig. 2A. Away from the diagonal, the system
shows a light-cone-like decay of correlations [18] leading
to a prethermalized state [5, 22–25].

From a theoretical point of view, the emergence of this
prethermalized state can be described by a dephasing of
phononic excitations [25–28], their respective occupation
numbers nm being the conserved quantities of the cor-
responding integrable model (see Supplementary Materi-
als). With this knowledge, we can directly calculate the
Lagrange multipliers �m for the GGE. In terms of the ex-
citation energies ✏m they can be written as �m = �m✏m
which defines an e↵ective temperature �m for every ex-
citation mode.

For the prethermalized state illustrated in Fig. 2A
the proportionality factor �m can be well described by
�m ⇡ �e↵ = 1/kBTe↵ which is independent of m. While
being a GGE in principle, for our experiment which only
observes the relative phase between the two halves of the
system, it becomes formally equivalent to the usual Gibbs

ensemble with a single temperature Te↵ (see Supplemen-
tary Materials).

To obtain direct experimental signatures of a genuine
GGE, we modify the initial state so that it exhibits di↵er-
ent temperatures for di↵erent excitation modes. This is
accomplished by changing the ramp that splits the initial
gas into two halves (see Supplementary Materials). The
results are shown in Fig. 2B. In addition to the maximum
of correlations on the diagonal, we observe a pronounced
second maximum on the anti-diagonal. This corresponds
to enhanced correlations of the points z1 = �z2, which
are located symmetrically around the center of the sys-
tem. These correlations are a direct consequence of an in-
creased population of excitations with the same symme-
try, which correspond to the even quasi-particle modes.

The measured correlation functions can be well de-
scribed by the above theoretical model but with di↵er-
ent temperatures, �2m = 1/[kB(Te↵ +�T )] for the even
and �2m�1 = 1/[kB(Te↵ � �T )] for the odd modes, re-
spectively. Comparing to the experimental data of the
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Higher order phase 
correlation functions 

4

relaxed state we find that the temperatures for the even
and odd modes are changed by �T = 0.6 ⇥ Te↵ . Given
these temperatures, our theoretical model also describes
the complete dynamics towards the relaxed state. This
clearly demonstrates that the observed di↵erence in pop-
ulations of even and odd modes was imprinted onto the
system by the splitting quench and is conserved during
the whole dephasing dynamics. Correspondingly the ob-
served correlation functions in Fig. 2B are a direct illus-
tration of the relaxation to a prethermalized state de-
scribed by a GGE with two di↵erent temperatures.

In general, deviations of relaxed states from the GGE
description are expected to manifest first in higher-order
correlation functions. To provide further evidence for our
theoretical description and the presence of a GGE, we
show in Fig. 3 examples of measured four-point, six-point
and ten-point correlation functions of the relaxed state.
As the two-point correlation functions, they are in very
good agreement with the theoretical model and clearly
reveal the presence of the di↵erent temperatures for even
and odd quasi-particle modes. This clearly shows that
the description based on a GGE extracted for our the-
oretical model from the two-point correlation functions
also describes many-body observables at least up to the
10th order.

Our work raises the interesting question how many
Lagrange multipliers are needed to describe the relaxed
state of a realistic integrable quantum system. Similar
as in classical mechanics, where N conserved quantities
exist for a generic integrable system with N degrees of
freedom, integrability in quantum many-body systems
has been proposed to be characterized by the fact that
the number of independent local conserved quantities
scales with the number of particles. Here we conjec-
ture that most of the experimentally obtainable initial
states evolve in time into relaxed states, which can be
described to a reasonable precision by far less than N
Lagrange multipliers [7]. This would have the appeal of
a strong similarity to thermodynamics, where also only
few parameters are needed to describe the properties of
a system on macroscopic scales.

To illustrate this, we investigate in Fig. 4 how many
distinct Lagrange multipliers need to be included in the
GGE to describe our data. First, we find that in general
only the first few low-energy modes are relevant to de-
scribe our experimental observations. Second, to describe
the data with di↵erent temperatures, we need an imbal-
ance in the population of all relevant low-energy modes,
leading to a description of the prethermalized state by
a genuine GGE with two distinct temperatures. Note
that assuming a di↵erent temperature only for a part of
these modes, or occupations that fluctuate from shot to
shot, cannot explain the observations (see Supplemen-
tary Materials). Although we only need a maximum of
two distinct Lagrange multipliers (temperatures) in the
GGE to describe our data, more temperatures might be
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FIG. 4: Convergence of the 2-, 4-, 6-, and 10-point correla-
tion functions towards the experimentally observed steady-
state, for di↵erent mode populations. The coordinates of the
higher-order correlation functions are the same as in Fig. 3,
respectively. The GGE for a single temperature (dashed line,
A) lies close to the predictions of a thermal Gibbs ensem-
ble (solid line). Shifting the occupation of 2, 4, 6 modes
to the respective temperatures of the two-temperature model
(dotted-dashed lines, B) reveals that the measured phase cor-
relation functions cannot be explained by only a few excited
modes, but shows rapid convergence to the full two tempera-
ture model.

present (e.g. in modes with higher energy) but they are
not necessary to describe the system to the given preci-
sion. Our experiments thus show that the complexity of
the initial state and the observable under study are im-
portant in determining the number of distinct Lagrange
multipliers �m in the GGE.

In conclusion, we have observed direct experimental
signatures for the emergence of a generalized Gibbs en-
semble in a quantum many-body system. This substan-
tiates the importance of the generalized Gibbs ensemble
as a key aspect of statistical mechanics. We expect our
measurements of correlation functions to high order to
play an important role in future tomography techniques
for complex quantum many-body states [29]. Moreover,
the observed tuneability of the observed non-equilibrium
states suggests that our splitting process could in the
future be used to prepare tailored states for precision
metrology [30].
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Decay of the  
pre-thermalized state 

scattering of phonons 
beyond Luttinger Liquid 

      www.AtomChip.org 
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Possible sources of 
thermalization in 1d systems 

Elastic 2-body collisions …can only contribute to thermalization if they 
lead to transverse excitations in the final state 

⊥
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 Experiment: 1
2  02.0 −≈Γ sb

drops exponentially for kBT < �ω⊥ 

Effective 3-body collisions via virtual excited states 

l = 0 
l 

-l 
-l 

effective 3-body colissions lead to thermalization 

57.53 ≈bC
2

33   ζω⊥≈Γ bb C independent of temp. 
I. Mazets et al. PRL 100, 210403 (2008), PRA  79, 061603 (2009), NJP 12, 055023 (2010) 

see also: Shina Tan et al. PRL 105, 090404 (2010) 

Phonon – Phonon scattering 
Linear dispersion relation prevents thermalizing phonon phonon scattering in LL. 
Andreev: Assume k-state with finite width and determine width self-consistently:  

  -> Γk  ~  k3/2 

A.F. Andreev, Sov. Phys. JETP 51, 1038 (1980) 
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0 100 200 300

Tin=69�11 nK, n3d = 4.3 x1014 cm3

Tin=120�17 nK, n3d = 4.3 x1014 cm3

Tin=177�17 nK, n3d = 2.8 x1014 cm3

Time evolution of the 
relative phase 

System reaches final steady state! 
  
 

Tin = 120±17nK 

Tin = 69±11nK 

        Tin = 320±50nK 

    Tin = 177±17nK 
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Phonon-phonon scattering: 
Assume that each k-state has its 
finite width and determine this width 
self-consistently:  
 

Γk  ~  k3/2 
 

Relaxation of 1D Bose gas:  
 

1)  Dephasing of excitations 
 

2)  Damping of excitations from effective 
phonon-phonon scattering 
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non-linear relaxation 

3-body negligible 

I. E. Mazets, PRA 83, 023618 (2011) 
A.F. Andreev, Sov. Phys. JETP 51, 1038 (1980) 
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M. Kuhnert et al.,  in preparation 
Theory by I. Mazets  
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Steady state 

long time limit    Tfin = (Tcom,in+Trel,in)/2 
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Relaxation of 1D Bose gas:  

1)  Dephasing of excitations -> Prethermalized State 
2)  Damping of excitations from effective phonon-phonon scattering 

M. Kuhnert et al.,  in preparation 
Theory by I. Mazets  

After relaxation the system looks like two separaely created 1d quantum gases 
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Emergence of classical world 
from quantum evolution 

dephasing of many body 
eigenstates ? © W. Zurek 
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Decay of the mean contrast 

light-cone-like evolution 
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Decay of the  
pre-thermalized state 

mixing of modes 

      www.AtomChip.org 
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Balanced double well 
 
 
 
 
 
Imbalanced double well 
 
 
 
 
 

Imbalanced double well 

HL HR 

H+ 

H- 

common phase 
φ = [φL(z) + φR(z)]/2                                  

relative phase 
Δφ = φL(z) - φR(z)                                  

Phonon modes are ‘identical‘ in left and right mode (nL ≈ nR) 
Mixing between H+ and H- only though processes beyond the 1D model 

φL(z), nL(z) φR(z), nR(z) 

HL HR 

H+ 

H- 

common phase 
φ = [φL(z) + φR(z)]/2                                  

relative phase 
Δφ = φL(z) - φR(z)                                  

Phonon modes are different in left and right mode (nL ≠ nR) 
H+ and H- are not eigenmodes  � mixing though dephasing 

φL(z), nL(z) φR(z), nR(z) 

Hmix  ~ (n1-n2) T 

T. Langen preliminary 
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Imbalanced double well 
Evolution of phase correlations 

final state ~ (Tin+Teff)/2 

How can we probe this? 

slower 2nd evolution prethermalization 

1st light cone 

T. Langen preliminary 
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Phase correlations  
with  imaging resolution 

Optical resolution works in our favour! 

correlations look  
almost thermal! 
 
“ approximate T “ 

T. Langen preliminary 
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Apparent thermalization  
by dephasing 

long time limit 
Tfin ≈ (Tin+Teff)/2 

A non-equilibrium system approaches to appears thermal, 
if one looks at an observable not connected to conserved quantities 

low tilt 

high tilt 

ap
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im
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re

 

T. Langen preliminary 
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Non trivial (squeezed) 
initial states 

Improved interferometry 

      www.AtomChip.org 
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Optimal Control of Splitting 
fast squeezing in a multi mode system 

Optimal Controll applied to the 
problem of the fluctuation 
properties in splitting a BEC 

J. Grond et al. PRA 79, 021603 R (2009) 
J. Grond et al. PRA 80, 053625 (2009) 

–  Fancy splitting ramps inspired 
by OCT: t1+t2 = 17ms  

–  Leads to dramatic change of 
statistical distribution of 
interference 

 

 

8ms tHold t2 t1  10 ms          20ms           30ms          40ms 

full cloud 140 µm long 

Adiabatic  
splitting 

T. Langen et al.  Preliminary 
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number'and'phase'distribu/on'
(black:(measured,(blue:(binomial,(red:(detec4on(noise)(

Squeezing  

 

RMS fluctuations of the phase 
 
Whereas 
 
 

RMS fluctuations of the number difference 

 
Whereas 

Spin squeezing: 

Implies that ≈ 150 atoms are entangled! 
 

Almost ground state 

T. Berrada, et al., Nat. Comm 4, 2077 (2013) 
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Squeezing  

 

RMS fluctuations of the phase 
 
Whereas 
 
 

T. Berrada, et al., Nat. Comm 4, 2077 (2013) 
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Interferometer  
trapped 1d quantum gas 

Interferometer signal stays with full contrast for t>80ms !      -> 1d dephasing is irrelevant     
=> emerging prethermalized lengthscale >> system size 

T. Berrada, et al., Nat. Comm 4, 2077 (2013) 

3x slower then expected 
from phase diffusion 

Phase diffusion Castin & Dalibard, PRA 55, 4330 (1997) 
Javanainen & Wilkens, PRL 78, 4675 (1997) 

Number squeezing reduces phase diffusion 
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Interferomtry with 
non classical trapped 

states of a BEC 

      www.AtomChip.org 
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Ramsey interferometer 
trapped many body states 

Together with T. Calarco, we developed an OCT sequence to build a Ramsey interferometer 
with trapped atoms, the two arms being internal motional states of the trap. 
 
Challenge: design an OCT sequence that is a pi/2 pulse for any initial condition in an 
interferometer. 
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S. Van Frank NatureComm 5, 4009 (2014)  
 arXiv:1402.0377 
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Ramsey interferometer 
trapped many body states 

3

written in terms of the overlap fidelity F :

J (1) = 1� F = 1�<
h
h 

target

| (T (1)

⇡/2)i
i
2

, (2)

with the target state defined as

| 
target

i = |0yi+ |1yip
2

. (3)

Here | (T (1)

⇡/2)i represents the state of the system at the

end of the first ⇡/2 pulse.
The optimization was carried out for di↵erent dura-

tions of the OCT pulse. We opted for a theoretical fi-
delity of 98.6% and a pulse duration of 1.19ms. This is
only about twice the timescale set by the level spacing
⌫�1

01

= h/E
01

= 0.56ms, which is the typical timescale of
a classical dipole oscillation.
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Figure 2. Dynamics of the excitation and interference
patterns observed during and after the first ⇡/2 pulse.
(a) Optimized trap displacement �(t) along the y-direction
(red) and simulation of the in-situ density after the pulse.
(b) Simulated momentum distribution during and after the
pulse. (c) Measured momentum distribution. The images in
time-of-flight were integrated along the longitudinal direction
and concatenated to show the time evolution. (d)Momentum
distribution obtained from a fit to the measured momentum
distribution.

PHASE ACCUMULATION TIME

After creating a coherent superposition of |0yi and |1yi
(with small admixtures of higher modes), the wavefunc-
tion is held in a static potential for an adjustable phase

accumulation time t
hold

. The energy di↵erence between
the levels leads to a linear evolution of the phase. In
a simplified linear two-mode picture, this phase evolu-
tion can be represented by a state vector rotating on the
equatorial plane of the Bloch sphere with an angular fre-
quency given by the energy di↵erence between the levels
(see Fig. 1(c)), in close analogy to the Ramsey time. In
our weakly interacting and slightly non-linear system, the
exact value of this energy di↵erence corresponds to the
vibrational levels’ energy splitting with a correction from
mean-field e↵ects. One period of the oscillation of the
relative phase is then T ⇡ 0.58ms for a balanced super-
position. This phase accumulation time t

hold

is varied to
observe interferometric fringes in the Ramsey sequence.

FULL RAMSEY SEQUENCE

The second ⇡/2 pulse, contrary to the first one, does
not target a specific state starting from a known inital
state. It rather realizes, in the simplified Bloch sphere
picture, a 90� rotation around the Jy-axis, as depicted
in Fig. 1(c). Therefore, we optimized the second pulse
by maximizing the visibility of the interferometer while
keeping the transfer of population to higher energy levels
as low as possible (see methods).
The result of the optimization provides an evolution of

the populations p
0

and p
1

as a function of the relative
phase with the highest possible visibility, as shown in
Fig. 3(b). The simulations indicate that p

0

and p
1

oscil-
late with a periodicity of 0.58 ms. The contrast, defined
as

C =
max(p

1

)�min(p
1

)

max(p
1

) + min(p
1

)
, (4)

reaches 96.8%. A fraction of the order of 10% of
the wavefunction occupies higher excited states (see
Fig. 3(c)). We note that, although the second pulse is
designed to optimize the contrast of the interferometric
fringe and not its shape, the final fringe evolution is close
to a sine function.
Figure 3(a) shows the experimentally realized Ramsey

signal as obtained by our state analysis. The experi-
mental results are in good agreement with the numer-
ical simulation on the first interferometric fringe. The
constrast reaches 92(5)%, the Ramsey frequency mea-
sures to 1.75(6) kHz. The fit residual, composed of higher
excited states and an incoherent fraction, amounts to
15%–25% depending on t

hold

.
We point out that the holding times t

hold

chosen for
the experiment di↵er from the ones used for the numeri-
cal optimization of the second ⇡/2 pulse. This indicates
that the pulse seems to be valid for all points on the equa-
tor of the Bloch sphere. We have investigated this fur-
ther numerically with other states within the two-modes
subspace (not necessarily on the equator) and find that

3

not target a specific state starting from a known initial
state. It rather realises, in the simplified Bloch sphere
picture, a 90� rotation around the Jy-axis, as depicted
in Fig. 1(c). To optimise this pulse, the following cost
function was minimised:

J (2) = max
t
hold

(1� p
0

� p
1

)

+ |1�max
t
hold

(p
0

) + min
t
hold

(p
0

)|

+ |1�max
t
hold

(p
1

) + min
t
hold

(p
1

)| (2)

where p
0

(resp. p
1

) is the ground state (resp. first excited
state) population at the end of the second pulse, and
the maximum is taken over Nh = 15 di↵erent values of
the phase accumulation time t

hold

for which the numeri-
cal optimisation was performed. The first term of Eq. (2)
minimises the transfer of population to higher energy lev-
els, while the second term (resp. third term) maximises
the amplitude of the oscillation of p

0

(resp. p
1

). The
pulse obtained is almost as short as the first pulse with
a duration of 1.6ms.

When simulating the whole interferometric sequence,
we observe an oscillation of p

0

and p
1

as a function of
t
hold

, with a periodicity of 0.58ms. The contrast, de-
fined as C(pi) = (max(pi)�min(pi))/(max(pi)+min(pi)),
reaches C(p

0

) ⇡ C(p
1

) ⇡ 97% in the numerical simula-
tions. As shown in Fig 3(c), a limited transfer of pop-
ulation to higher excited states on the order 10% also
takes place. Although the second pulse is designed to
optimise the amplitude of the interferometric fringe and
not its shape, the final fringe evolution is close to a sine
function.

Figure 3(a) shows the experimentally realised Ramsey
signal as obtained by our state analysis. The experimen-
tal results are in good agreement with the numerical sim-
ulation on the first interferometric fringes. The contrast
reaches 92(5)%, and the Ramsey frequency measured
is 1.75(6) kHz. The fit residuals, interpreted as popula-
tion in higher excited states and an incoherent fraction,
amount to 15%–25% depending on t

hold

.
We point out that the holding times t

hold

chosen for the
experiment di↵er from the ones used for the numerical
optimisation of the second ⇡/2 pulse. This indicates that
the pulse is valid for all points on the equator of the Bloch
sphere. We have investigated this further numerically
with other states within the two-modes subspace, but
not necessarily lying on the equator of the Bloch sphere.
We found that the second ⇡/2 pulse performs a close-
to-unitary operation, similar to a Hadamard gate, with
limited leakage to higher excited states.

Looking at longer times t
hold

we observe a reduction of
contrast, indicating a loss of coherence in the created su-
perpositions over time. A fit of an exponentially damped
sine to the experimental fringes reveals a damping time
constant of 1.6(7)ms. This decay is not accounted for by
our 1D GPE model.
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Figure 3. Interference fringes of the motional-states
interferometer. (a) Experimental data. Populations of the
ground state p

0

(blue circles) and first excited state p

1

(red
diamonds), extracted from a fit to the experimental density
images, as a function of the phase accumulation time t

hold

.
The error bars indicate the 1� confidence interval of the fit.
The blue and red dashed lines are exponentially damped sines.
(b) OCT optimisation data. Populations of the ground state
p

0

(blue dashed line) and first excited state p

1

(red line) as a
function of the phase accumulation time t

hold

(c) Populations
in higher excited states in the optimisation (black solid line)
compared to residual part in the fits to experimental data
(black diamonds). The top insets are examples of experimen-
tal momentum distributions (upper) and their corresponding
fitted GPE momentum distribution (lower) for the 3 di↵erent
hold times indicated by the vertical dashed lines in panel (a).

We investigated three possible mechanisms, however
none of them demonstrated decay processes. (i) Pertur-
bations of the wavefunction could arise from a coupling
between the di↵erent transverse modes and to longitudi-
nal modes. However, simulations using a 3D GPE solver
revealed no such e↵ect. (ii) We evaluated the rate of
dephasing [19, 20] between the two modes arising from
interactions and binomial number fluctuations in each
mode and found R ⇠ 52mradms�1, which is too small
to account for the observed decay. (iii) Decay of the
quantum gas trapped in the excited states would lead to
emission of momentum correlated atom pairs [10]. We do
not observe such pair creation in the present experiment,
likely due to the lower excitation rates and the shorter

π/2 pulse final interferometer sequence  

S. Van Frank NatureComm 5, 4009 (2014)  
 arXiv:1402.0377 
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What have we learned 
•  generalization of homodyne measurement:  

the full distribution functions of observables give detailed 
insight into (quantum) physics 

•  in ensemble averages the central limit theorem of Gaussian 
statistics hides the (quantum) physics 

•  Relaxation in quantum systems does  
not proceed through a simple path. 

•  establishment of a ‘prethermalized’ state 
Generalized Gibbs Ensemble 

•  Relaxed state emerges localy and spreads  
throughout the many body system  
in a light cone like fashion 

•  ‘prethermalized’ state decays by  
non trivial phonon-phonon processes 

•  Experiments allow to probe how  
classical statistical properties emerge  
from microscopic quantum evolution through  
dephasing of many body eigenstates. 

Gring et al., Science 337, 1318 (2012) 
Kuhnert et al., PRL 110, 090405 (2013)  

Smith et al. NJP 15, 075011 (2013)   
Langen et al., Nature Physics 9, 460 (2013) 

R. Geiger et al. NJP 16 053034  (2014) 
T. Berrada, et al., Nat. Comm 4, 2077 (2013) 

S. Van Frank, et al., Nat. Comm 5, 4009 (2014)  
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Decay of an excited 1d system  
-> Single mode Twin Atoms 
 

•  Use OCT to create a BEC in  
transverse excited state 

•  Trap level design and Bose statistics  
ensures a single decay channel 

•  Collisions between atoms create pairs 
•  Sub shot noise atom number statistics  

better then 0.11 x shot noise 
•  dynamics of a matter wave OPO  
Outlook: 

 two-particle interference 
 CV entanglement 

 

Bücker et al. Nature Physics 7, 608 (2011) 
Bücker et al. Phys. Rev. A 86, 013638 (2012) 4
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FIG. 3: (Color online) (Main figure) Relative population
of twin-atom modes. The data points with error bars report
the experimental results for optimal (black) and scaled ex-
citation (other colors) with scaling factors of approximately
0.3 (blue), 0.5 (green), 0.8 (red), and 1.2 (yellow). Solid
lines: corresponding theory results. Dashed black line: theory
for optimal excitation, where additional spontaneous emis-
sion processes are neglected. Dash-dotted purple line: Upper
bound imposed by the condensed fraction of the source. (In-
set) Variance of emitted fraction, relative to binomial (bin),
for optimal excitation (black) and scaling 0.3 (blue). Each
point is an average over seven adjacent times and corrected
for imaging noise [17].

for all scalings. The values finally used for the calcula-
tions are compatible with estimates derived from obser-
vation of the transversal momentum distribution during
the excitation (see Appendix). Note, that for the low-
est scaling the twin atom creation is almost exclusively
due to spontaneous emission, which provides a stringent
means for determining the fitting parameter �.
To illustrate the amplified character of the twin-bean

creation, we investigate the fluctuations of the twin
beams population at di↵erent times. In Fig. 3c we show
the measured variances of the relative population of emit-
ted pairs over many experimental realizations, normal-
ized to a binomial emission probability distribution. For
optimal excitation (black dots), a pronounced peak near
the maximum slope of the population growth indicates
the exponential amplification of initial fluctuations. Such
behavior is absent in the experiment run with the weak-
est coupling (blue dots). In contrast, the relative number
fluctuations of the twin-atom clouds are strongly sup-
pressed, as shown in [6].
In conclusion, we have derived a simple model to quan-

titatively analyze amplified emission of matter waves, as
demonstrated in various experiments. For the first time,
we were able to include several aspects that are of high
significance for experimental realizations, including spa-

tial dynamics, phase fluctuations, and continuous pump-
ing. Our experimental results are in good agreement to
the model, suggesting that the approximations made are
valid, and that the essential features underlying the am-
plified emission of twin-atoms in a real experiment are
captured.
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Non-equilibrium condensation 
in a 1d-Bose gas 

Expect: Power law k-2  for k<ξ-1 

and exponential drop-off beyond  
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Fast cooling in double well 
solitons as π phase flips 

Fast cooling -> solitons ? 
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