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Spinor Bose gases lecture outline 

1. Basic properties 

2. Magnetic order of spinor Bose-Einstein condensates 

3. Imaging spin textures 

4. Spin-mixing dynamics 

5. Magnetic excitations 



1. Basic properties 

a. atomic species 

b. rotationally symmetric interactions 

c. stability against dipolar relaxation 

d. magnetic fields 



The quantum fluids landscape 

pre-1995: a few quantum fluids. 
4He: A scalar superfluid, incompressible, strongly interacting 
Superconductors:  Also scalar (mostly), charged (long-range 
interactions) 

• s-wave, d-wave, p-wave 
3He: Neutral BCS superfluid.  Very interesting 

 
since 1995: A bonanza of quantum fluids! 

atoms, molecules 
bosons, fermions 
resonant and tunable pairing 
lots of “stable” internal states 
 

→  Multistate quantum fluids with multicomponent order parameter 



States related by some accessible transition 
 

“Non-trivial” → (near) degeneracy of low-energy states 
fine tuning or high degree of symmetry 

 
Allowable dynamics 

spatial and/or spin rotation 

vs. 

choice: components of quantum fluid come from an angular momentum manifold 
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Alkali spinor gases 
e.g. 87Rb 
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Breit-Rabi diagram 

𝐻ℎ𝑓 = 𝑎𝑎 𝐼 ⋅ 𝐽 − 𝜇 ⋅ 𝐵  𝜇 = −𝑔𝐽𝜇𝐵 𝐽 + 𝑔𝐼𝜇𝑛 𝐼 

𝑔𝐹 ≃ 2 
𝐹 𝐹 + 1 + 𝐽 𝐽 + 1 − 𝐼(𝐼 + 1)

2𝐹(𝐹 + 1) =  
±1

𝐼 + 1/2 

note: here spin operators 
are dimensionless 



DMSK and M. Ueda, Rev. Mod. Phys. 85, 1191 (2013) 



High-spin atoms 

d-block 

f-block 



High-spin atoms 

Chromium 

configuration: 𝐴𝐴 4𝑠1 3𝑑5  →  S = 3; L = 0; I = 0; J = F = 3 

magnetic moment: 𝜇 = 6 𝜇𝐵 (vs 𝜇 ≤ 1 𝜇𝐵 for alkalis) 
 
 
Dysprosium 

configuration: 𝑋𝑋 6𝑠2 4𝑓10  →  S = 2; L = 6; I = 0; J = F = 8 

magnetic moment: 𝜇 = 10 𝜇𝐵 
 

Erbium 

configuration: 𝑋𝑋 6𝑠2 4𝑓12  →  S = 1; L = 5; I = 0; J = F = 6 

magnetic moment: 𝜇 = 7 𝜇𝐵 
 
Thulium 

configuration: 𝑋𝑋 6𝑠2 4𝑓13  →  S = 1/2; L = 3; I = 1/2; J = 7/2; F = 3 

magnetic moment: 𝜇 = 4 𝜇𝐵 



Rotationally symmetric interactions 

𝑘𝑖𝑖,Ω𝑖𝑖  |𝜒𝑖𝑖〉 

𝑘𝑜𝑜𝑜,Ω𝑜𝑜𝑜  |𝜒𝑜𝑜𝑜〉 

𝑜𝑜𝑜 𝐻 𝑖𝑖 =  𝑆𝑜𝑜𝑜,𝑖𝑖 

𝑘𝑖𝑖,Ω′𝑖𝑖  |𝜒𝜒𝑖𝑖〉 

𝑘𝑜𝑜𝑜 ,Ω′𝑜𝑜𝑜  |𝜒𝜒𝑜𝑜𝑜〉 

𝑆𝑆𝑜𝑜𝑜,𝑖𝑖 = 𝑆𝑜𝑜𝑜,𝑖𝑖 

in case of rotational symmetry 
(isotropic spin-indepenent trap, 
zero external fields) 



Collisions: a series of approximations 

separate short-range and longer-range potential 

internuclear distance range of 
potential 𝑟0 

longer range: 
dominated by magnetic dipole interaction 

between atoms (1/r^3) 

short range: 
complicated molecular physics 

(atoms come apart) 

incident low energy 
short-range potential gives s-wave scattering only 
long-range has to be treated separately and carefully 

 
rotational symmetry 

Total angular momentum (orbital + spin) of colliding pair is conserved 
 
weak dipolar interactions in short-range potential (not valid for all atoms!) 

Spin angular momentum of colliding pair is separately conserved 

𝜆𝑑𝑑 ≪ 𝑟0 



Two spin-dependent interactions 

magnetic dipolar interactions 
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
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θ

contact interactions 

𝑉 =  � �
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here, 𝐹𝑡𝑡𝑡 ∈ 0, 2, 4 … 2 𝐹  
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symmetric under rotation in spin space 
valid in (low) magnetic field 
Zeeman regime, away from F. resonance 
spin conserved in Larmor precessing frame 

symmetric under combined spin/position 
space rotations 
magnetic field breaks this symmetry 



Linear Zeeman shift in a uniform magnetic field 

0=zm

1=zm

1= −zm

However, dipolar relaxation is extremely rare (for alkali atoms) 
→ linear Zeeman shift is irrelevant! 

𝐻 𝐵 = 0 − 𝑔𝐹𝜇𝐵 𝐹𝑧𝐵𝑧 → 𝐻 𝐵 = 0 − 𝑔𝐹𝜇𝐵 𝐹𝑧𝐵𝑧  − 𝜆 𝐹𝑧  

in other words, including the constraint of constant (longitudinal) magnetization 

𝑝 𝐹𝑧 
presto… magnetic field is gone! 



Quadratic Zeeman shifts 
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spin-mixing collisions are allowed 
𝑞 = quadratic Zeeman shift 



2. Magnetic order of spinor Bose-Einstein condensates 

a. Bose-Einstein ferromagnet 

b. entropy, energy 

c. double condensation 

d. mean-field, single mode, spin-1 gases 

e. many-body ground state 

non-interacting 

interacting 



Non-interacting spin-1 Bose gas 
Yamada, “Thermal properties of the system of magnetic Bosons,” 

Prog. Theo. Phys. 67, 443 (1982) 

non-interacting spin-1 Bose gas, no magnetization constraint, in B field 
e.g. Cr: Pasquiou et al, “Thermodynamics of a Bose-Einstein 
condensate with free magnetization,” PRL 108, 045307 (2012) 

or, consider constant longitudinal magnetization and allow spin mixing 
collisions 

𝐵 ∝ 𝑒𝑧 𝜇𝑚𝑚𝑚 𝐵𝑧 
𝜇𝑚=+1 

𝜇𝑚=0 

𝜇𝑚=−1 

chemical equilibrium: 2 𝜇𝑚=0 = 𝜇𝑚=+1 + 𝜇𝑚=−1 

𝜇𝑚=+1 − 𝜇𝑚=0 = 𝜇𝑚=0  −  𝜇𝑚=−1 



𝑔3/2 1  𝜆𝑇−3 

𝑚 = +1 0 -1 

thermal  paramagnet 
fully magnetized in infinite field limit 

two possibilities: 
 

1. 𝜇𝑚=+1 < 0:  non-degenerate gas 

𝜆𝑇 =  
ℎ2

2𝜋 𝑚 𝑘𝐵𝑇
 𝑔3/2 𝑧 = �  

𝑧𝑗

𝑗3/2

∞

𝑗=1

 

𝑛𝑡𝑡𝑡 = 𝑛𝑡𝑡,𝑡𝑡𝑡 = 𝑛𝑡𝑡,+1 + 𝑛𝑡𝑡,0 + 𝑛𝑡𝑡,−1 

𝜇𝑚𝑚𝑚 𝐵𝑧 
𝜇𝑚=+1 

𝜇𝑚=0 

𝜇𝑚=−1 

chemical 
potential 

0 

𝑛𝑡𝑡,𝑚𝑚 = 𝑔3/2 exp
𝜇𝑚=0 + 𝑚𝐹𝜇𝑚𝑚𝑚𝐵𝑧

𝑘𝐵𝑇
 𝜆𝑇−3 



𝑔3/2 1  𝜆𝑇−3 

𝑚 = +1 0 -1 

𝑔3/2 1  𝜆𝑇−3 

𝑚 = +1 0 -1 

condensate is fully magnetized, 
thermal gas is partly magnetized 

two possibilities: 
 

2. 𝜇𝑚=+1 = 0:  degenerate gas 

𝜆𝑇 =  
ℎ2

2𝜋 𝑚 𝑘𝐵𝑇
 𝑔3/2 𝑧 = �  

𝑧𝑗

𝑗3/2

∞

𝑗=1

 

𝜇𝑚𝑚𝑚 𝐵𝑧 
𝜇𝑚=+1 

𝜇𝑚=0 

𝜇𝑚=−1 

chemical 
potential 

0 

𝑛𝑡𝑡𝑡 = 𝑛𝑡𝑡,𝑡𝑡𝑡 + 𝑛𝑐 

𝑛𝑐 

𝑛𝑡𝑡,𝑡𝑡𝑡 



Bose-Einstein magnetism 
magnetization of a non-interacting, spin-1 Bose gas in a magnetic field: 

Yamada, “Thermal Properties of the 
System of Magnetic Bosons,” Prog. 
Theo. Phys. 67, 443 (1982) 

Bose-Einstein condensation 
occurs at lower temperature at 
lower field (opening up spin 
states adds entropy) 
 
Magnetization jump at zero-
field below Bose-Einstein 
condensation transition 

magnetic ordering is “parasitic” 

Expt. with chromium: 
Pasquiou, Laburthe-Tolra et al., 
PRL 106, 255303 (2011). 

𝑇1 𝑇3 𝑇2 



magnetization 

field 𝐵 

+1 

-1 

𝑇1 

𝑇3 

𝑇2 

but wait, how do I describe cold system 
with magnetization constrained in here? 

1. “double condensation” or “magnon 
condensation” 
2. interactions now certainly play a role 

𝑇1 𝑇3 𝑇2 
fie

ld
 𝐵

 



Ground states 

s-wave interactions: 
4 𝜋 ℏ2

𝑚 𝛿3 𝑟  𝑎0𝑃�0 + 𝑎2𝑃�2 + 𝑎4𝑃�4 +  …  

more familiar form (e.g. spin-1): use two identities 

𝐼𝐴  ⊗  𝐼𝐵 = 𝑃�0 + 𝑃�1 + 𝑃�2 

𝑭𝑨 ⋅ 𝑭𝑩 =  � 𝐹𝑝𝑝𝑝𝑝 𝐹𝑝𝑝𝑝𝑝 + 1 − 2 𝐹(𝐹 + 1)  𝑃�𝐹𝐹𝐹𝐹𝐹
𝐹𝑝𝑝𝑝𝑝

 

𝐼𝐴  ⊗  𝐼𝐵 𝑆 = 𝑃�0 + 𝑃�2 restricted to 
symmetric states 

1. Identity operator 

2. Spin dot product (Heisenberg interaction) 

𝑭𝑨 ⋅ 𝑭𝑩 𝑺  = 2 𝑃�2  −  𝑃�0 

spin-1:  
4 𝜋 ℏ2

𝑚 𝛿3 𝑟  
2 𝑎2 + 𝑎0

3  𝐼𝐴 ⊗ 𝐼𝐵 +  
𝑎2 − 𝑎0

3  𝑭𝐴 ⋅ 𝑭𝐵  

=  𝑐0
1 𝛿3 𝑟  + 𝑐1

(1) 𝑭𝐴 ⋅ 𝑭𝐵 𝛿3 𝑟  



Mean-field ground states 

𝐸 = 𝑐1
1 𝑛 𝐹⃗ 2 

Majorana, Nuovo Cimento 9, 43 (1932) 

“magnetic” 
“oriented” 

ˆ 1Ψ = =zR m

“non-magnetic” 
“nematic” 
“aligned” 

ˆ 0Ψ = =zR m

favored for 87Rb  

disfavored for 23Na 

disfavored for 87Rb  

favored for 23Na 

rotational symmetry: look for “most symmetric states” (inert states) 
3He: Barton and Moore, J. Phys. C Solid State 7, 4220 (1974); 8, 970 (1975) 

Spinor gas: Makela and Suominen, PRL 99, 190408 (2007); Yip, PRA 75, 023625 (2007) 



Stenger et al., Nature 
396, 345 (1998) 

Two more ingredients: 

fixed magnetization 
𝑝 𝐹𝑧  

quadratic Zeeman shift 
𝑞 𝐹𝑧2  



Evidence for antiferromagnetic interactions of F=1 Na 

Stenger et al., Nature 396, 345 (1998) 

Miesner et al., PRL  82, 2228 (1999). 



Stenger et al., Nature 
396, 345 (1998) 

Two more ingredients: 

fixed magnetization 
𝑝 𝐹𝑧  

quadratic Zeeman shift 
𝑞 𝐹𝑧2  



Evidence for antiferromagnetic interactions of F=1 Na 

Bookjans, E.M., A. Vinit, and C. Raman, Quantum Phase Transition in an 
Antiferromagnetic Spinor Bose-Einstein Condensate. Physical Review Letters 107,  
195306 (2011). 



Stenger et al., Nature 
396, 345 (1998) 

Two more ingredients: 

fixed magnetization 
𝑝 𝐹𝑧  

quadratic Zeeman shift 
𝑞 𝐹𝑧2  



m = 0 

B 

time 

Bfinal 

m = +1, -1, 0 
m = +1 

m = 0 

m = -1 

Chang, M.-S., et al., Observation of spinor dynamics in optically trapped Rb Bose-
Einstein condensates. PRL 92,  140403 (2004) 
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Ferromagnetic state 

1=

F

points in x-direction 

Polar state !!! 

0=

F

“points nowhere” 
along the y+z axis 
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