Lecture III

Path Sampling Methods

Outline

- 1. Introduction: Simple vs. complex
- 2. Transition path ensemble
- 3. Sampling the transition path ensemble: Monte Carlo simulation in trajectory space
- 4. Shooting and Shifting
- 5. Kinetics from the transition path ensemble
- 6. Transition interface sampling (& PPTIS)
- 7. Forward flux sampling
- 8. Applying TPS: freezing of LJ and GCM

$$\phi(r) = \varepsilon e^{-(r/\sigma)^2}$$

Protonated water trimer

P. L. Geissler, T. v. Voorhis, C. Dellago, CPL 324, 149 (2000)

Autoionization in liquid water

Average life time > 10 h

M. Eigen and L. De Maeyer, Z. Elektrochemie 59, 987 (1955)

Transition path sampling

C. Dellago, P. G. Bolhuis, F. S. Csajka, D. Chandler, JCP 108, 1964 (1998) C. Dellago, P. L. Geissler, P. G. Bolhuis, Adv. Chem. Phys. 123, 1 (2002)

Path probability density

 $x(\mathcal{T}) \equiv \{x_0, x_{\Delta t}, x_{2\Delta t}, \dots, x_{\mathcal{T}}\}$ Path = Sequence of states

$$\mathcal{P}[x(\mathcal{T})] = \rho(x_0) \prod_{i=0}^{\mathcal{T}/\Delta t - 1} p(x_{i\Delta t} \to x_{(i+1)\Delta t})$$

Transition path ensemble

$$\mathcal{P}_{AB}[x(\mathcal{T})] \equiv h_A(x_0)\mathcal{P}[x(\mathcal{T})]h_B(x_{\mathcal{T}})/Z_{AB}(\mathcal{T})$$

$$Z_{AB}(\mathcal{T}) \equiv \int \mathcal{D}x(\mathcal{T}) h_A(x_0) \mathcal{P}[x(\mathcal{T})] h_B(x_{\mathcal{T}})$$

$$\int \mathcal{D}x(\mathcal{T}) \equiv \int \cdots \int dx_0 dx_{\Delta t} dx_{2\Delta t} \cdots dx_{\mathcal{T}}$$

Transition proabilities

Initial conditions

Canonical:
$$\rho(x) = \exp\{-\beta \mathcal{H}(x)\}/Q$$
 $Q(\beta) = \int dx \exp\{-\beta \mathcal{H}(x)\}$
Microcanonical: $\rho(x) = \delta[E - \mathcal{H}(x)]/g(E)$ $g(E) = \int dx \delta[E - \mathcal{H}(x)]$

Brownian dynamics

$$\begin{split} p(r_t \to r_{t+\Delta t}) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(r_{t+\Delta t} - r_t + \frac{\Delta t}{\gamma m} \frac{\partial V}{\partial r})^2}{2\sigma^2}\right\} \\ \sigma^2 &= \frac{2k_{\rm B}T}{m\gamma} \Delta t \end{split}$$

Newtonian dynamics

Defining the stable states

Sampling the path ensemble

Monte Carlo simulation

transition path sampling

Metropolis MC of pathways

1. Generate **new** path from **old** one

$$x^{(o)}(\mathcal{T}) \longrightarrow x^{(n)}(\mathcal{T})$$

2. Accept **new** path according to **detailed balance**:

$$\mathcal{P}_{AB}[x^{(o)}(\mathcal{T})]\pi[x^{(o)}(\mathcal{T}) \to x^{(n)}(\mathcal{T})] = \mathcal{P}_{AB}[x^{(n)}(\mathcal{T})]\pi[x^{(n)}(\mathcal{T}) \to x^{(o)}(\mathcal{T})]$$

$$\pi[x^{(o)}(\mathcal{T}) \to x^{(n)}(\mathcal{T})] = P_{\text{gen}}[x^{(o)}(\mathcal{T}) \to x^{(n)}(\mathcal{T})] \times P_{\text{acc}}[x^{(o)}(\mathcal{T}) \to x^{(n)}(\mathcal{T})]$$

3. Satisfy detailed balance with the **Metropolis rule**:

$$\left\{P_{\rm acc}[x^{(\rm o)}(\mathcal{T}) \to x^{(\rm n)}(\mathcal{T})] = h_A[x_0^{(\rm n)}]h_B[x_{\mathcal{T}}^{(\rm n)}]\min\left\{1, \frac{\mathcal{P}[x^{(\rm n)}(\mathcal{T})]P_{\rm gen}[x^{(\rm n)}(\mathcal{T}) \to x^{(\rm o)}(\mathcal{T})]}{\mathcal{P}[x^{(\rm o)}(\mathcal{T})]P_{\rm gen}[x^{(\rm o)}(\mathcal{T}) \to x^{(\rm n)}(\mathcal{T})]}\right\}$$

Shooting

Shooting algorithm

$$P_{\text{gen}}^{\text{f}}[x^{\text{o}}(\mathcal{T}) \to x^{\text{n}}(\mathcal{T})] = \prod_{i=t'/\Delta t}^{\mathcal{T}/\Delta t-1} p\left(x_{i\Delta t}^{(n)} \to x_{(i+1)\Delta t}^{(n)}\right)$$
$$P_{\text{gen}}^{\text{b}}[x^{\text{o}}(\mathcal{T}) \to x^{\text{n}}(\mathcal{T})] = \prod_{i=1}^{t'/\Delta t} \bar{p}\left(x_{i\Delta t}^{(n)} \to x_{(i-1)\Delta t}^{(n)}\right)$$

$$P_{\text{gen}}[x^{(\text{o})}(\mathcal{T}) \to x^{(\text{n})}(\mathcal{T})] = p_{\text{gen}}[x_{t'}^{(\text{o})} \to x_{t'}^{(\text{n})}] \prod_{i=t'/\Delta t}^{\mathcal{T}/\Delta t-1} p\left(x_{i\Delta t}^{(\text{n})} \to x_{(i+1)\Delta t}^{(\text{n})}\right) \times \prod_{i=1}^{t'/\Delta t} \bar{p}\left(x_{i\Delta t}^{(\text{n})} \to x_{(i-1)\Delta t}^{(\text{n})}\right)$$

$$P_{\rm acc}[x^{(o)}(\mathcal{T}) \to x^{(n)}(\mathcal{T})] = h_A[x_0^{(n)}]h_B[x_{\mathcal{T}}^{(n)}] \min\left[1, \frac{\rho\left(x_0^{(n)}\right)}{\rho\left(x_0^{(o)}\right)} \prod_{i=0}^{t'/\Delta t-1} \frac{p\left(x_{i\Delta t}^{(n)} \to x_{(i+1)\Delta t}^{(n)}\right)}{\bar{p}\left(x_{(i+1)\Delta t}^{(n)} \to x_{i\Delta t}^{(n)}\right)} \times \frac{\bar{p}\left(x_{(i+1)\Delta t}^{(o)} \to x_{i\Delta t}^{(o)}\right)}{p\left(x_{i\Delta t}^{(o)} \to x_{(i+1)\Delta t}^{(o)}\right)}\right]$$

Detailed balance:
$$\frac{p(x \to y)}{\bar{p}(y \to x)} = \frac{\rho_0(y)}{\rho_0(x)}$$

$$P_{\text{acc}}[x^{(\text{o})}(\mathcal{T}) \to x^{(\text{n})}(\mathcal{T})] = h_A[x_0^{(\text{n})}]h_B[x_{\mathcal{T}}^{(\text{n})}]\min\left[1, \frac{\rho(x_{t'}^{(\text{n})})}{\rho(x_{t'}^{(\text{o})})}\right] \qquad P_{\text{acc}}[x^{(\text{o})}(\mathcal{T}) \to x^{(\text{n})}(\mathcal{T})] = h_A[x_0^{(\text{n})}]h_B[x_{\mathcal{T}}^{(\text{n})}]$$

Autoionization in liquid water

P. L. Geissler, C. Dellago, D. Chandler, J. Hutter, M. Parrinello, Science 291, 2121 (2001)

Structural transformation in CdSe

S. H. Tolbert and A. P. Alivisatos, JCP 102, 4642 (1995); Science 265, 373 (1994)

What is the mechanism?

C. C. Chen, A. B. Herhold, C. S. Johnson, A. P. Alivisatos, Science 276, 398 (1997)

Molecular dynamics simulation

Empirical pair potential [E. Rabani, JCP 116, 258 (2002)]

- Faceted and spherical crystals (N=120-5000, R=10-30Å)
- T=300K, pressure increased in steps of 0.25 GPa / 10 ps

Ideal gas pressure bath

- Atmosphere of ideal gas
- Gas particles stream in through surface
- N_{id}=350.000 (at p=11GPa)
- Thermostat & barostat
- Pressure hydrostatic
- E, V, N fluctuate
- thermodynamically consistent volume

$$V_{\rm crys} = V - N_{\rm gas} k_{\rm B} T / p$$

M. Grünwald and C. Dellago, Mol. Phys. 104, 3709 (2006)
M. Grünwald, P. L. Geissler and C. Dellago, J. Chem. Phys. 127, 154718 (2007)

Transition mechanism - hysteresis

p = 6 GPa

p = 0.5 GPa

TPS for the CdSe transition

M. Grünwald, P. L. Geissler, and C. Dellago, JCP 127, 154718 (2007) D. Zahn, Y Grin, and S. Leoni, PRB 72, 064110 (2005) S. H. Tolbert and A. P. Alivisatos, JCP 102, 4642 (1995)

Transition Mechanism - TPS

p = 3GPa

Trajectory 1

Trajectory 101

Transition Mechanism - TPS

p = 3GPa

Trajectory 217

Trajectory 423

Ergodic Sampling of Trajectory Space

E. Borrero and C. Dellago, JCP 133, 134112 (2010)

T. J. H. Vlugt and B. Smit, Phys. Chem. Comm. 2, 1 (2001)

Shooting moves + metadynamics

TPS + metadynamics

Kinetics - macroscopic picture

Populations
$$c_A(t)$$
, $c_B(t)$
 $\dot{c}_A(t) = -k_{AB} c_A(t) + k_{BA} c_B(t)$
 $\dot{c}_B(t) = k_{AB} c_A(t) - k_{BA} c_B(t)$

$$\Delta c_A(t) = c_A(t) - \langle c_A \rangle$$

$$\Delta c_A(t) = \Delta c_A(0) \exp(-t/\tau_{\rm rxn})$$

$$\tau_{\rm rxn}^{-1} = k_{AB} + k_{BA}$$

Reaction time au_{rxn}

Microscopic picture

definition of stables states A and B

$$h_{A}[q(x)] = \theta [q^{*} - q(x)] = \begin{cases} 1 & \text{if } q(x) < q^{*} \\ 0 & \text{else} \end{cases}$$
$$h_{B}[q(x)] = \theta [q(x) - q^{*}] = \begin{cases} 1 & \text{if } q(x) > q^{*} \\ 0 & \text{else} \end{cases}$$

Reaction rate constants from TPS

$$P(B,t|A,0) = \frac{\langle h_A(x_0)h_B(x_t)\rangle}{\langle h_A\rangle}$$

$$\frac{\langle h_A(x_0)h_B(x_t)\rangle}{\langle h_A\rangle} = \langle h_B\rangle \left(1 - e^{-t/\tau_{\rm rxn}}\right)$$

for
$$au_{
m mol} < t \ll au_{
m rxn}$$

$$C(t) \equiv \frac{\langle h_A(x_0)h_B(x_t)\rangle}{\langle h_A\rangle} = k_{AB}t$$

Free energy of path ensembles

$$C(t) = \frac{\int \mathcal{D}x(t) h_A(x_0) \mathcal{P}[x(t)] h_B(x_t)}{\int \mathcal{D}x(t) h_A(x_0) \mathcal{P}[x(t)]} = \frac{Z_{AB}(t)}{Z_A}$$

C. Dellago and P. L. Geissler, AIP Conf. Proc. 690, (2003) P. L. Geissler and C. Dellago, JPC B 108, 6667 (2004)

Umbrella sampling

Reversible work to change t

$$C(t) = \frac{\langle h_A(x_0)h_B(x_t)\rangle}{\langle h_A(x_0)h_B(x_{t'})\rangle} \times C(t')$$

$$\exp(-\Delta W_{AB}(t,t')) = \frac{C(t)}{C(t')}$$

$$W_{AB}(t) = W_{AB}(t') + \Delta W_{AB}(t;t')$$

$$\exp(-\Delta W_{AB}(t,t')) = \frac{\langle h_A(x_0)h_B(x_t)H_B[x(\mathcal{T})]\rangle}{\langle h_A(x_0)H_B[x(\mathcal{T})]\rangle} \times \frac{\langle h_A(x_0)H_B[x(\mathcal{T})]\rangle}{\langle h_A(x_0)h_B(x_{t'})H_B[x(\mathcal{T})]\rangle}$$

Transition interface sampling B $\frac{\mathcal{A}}{\mathcal{B}}$ going back in time A reached first **Overall states** in phase space: going *back in time* **B** reached first $\mathcal{C}(t) \equiv \frac{\langle h_{\mathcal{A}}(x_0)h_{\mathcal{B}}(x_t)\rangle}{\langle h_{\mathcal{A}}\rangle}$ $k_{AB} = \frac{\langle h_{\mathcal{A}}(x_0)h_{\mathcal{B}}(x_0)\rangle}{\langle h_{\mathcal{A}}\rangle} = \frac{\langle \phi_{AB}\rangle}{\langle h_{\mathcal{A}}\rangle}$

Effective positive flux $\left< \phi_{AB} \right>$

T. S. van Erp, D. Moroni and P. G. Bolhuis, J. Chem. Phys. 118, 7762 (2003) T. S. van Erp and P. G. Bolhuis, J. Comp. Phys. 205, 157 (2005)

 $\mathcal{P}_A(i+1|i)$ = probability that path crossing i for first time after leaving A reaches i+1 before A

$$\left(k_{AB} = \frac{\langle \phi_{AB} \rangle}{\langle h_{\mathcal{A}} \rangle} = \frac{\langle \phi_{A1} \rangle}{\langle h_{\mathcal{A}} \rangle} \prod_{i=1}^{n-1} \mathcal{P}_A(i+1|i)\right)$$

Crystallization in Lennard-Jonesium

n = size of the largest crystalline cluster

D. Moroni, P. R. ten Wolde, and P. G. Bolhuis, Phys. Rev. Lett. 94, 235703 (2005)

TIS for crystallization of LJ

D. Moroni, P. R. ten Wolde, and P. G. Bolhuis, Phys. Rev. Lett. 94, 235703 (2005)

Crystallization on tiny templates

S. Jungblut and C. Dellago, Europhys. Lett. 96, 56006 (2011)

• TIS

Crystallization Pathways

fcc template

icosahedral template

Seeded crystallization in LJ

Two icosahedral seeds

Seeded crystallization in LJ

Two **fcc** seeds

© W. Lechner

Structure of Critical Clusters

Generalized exponential model GEM4

$$\phi(r) = \varepsilon \exp\{-(r/\sigma)^4\}$$

B. M. Mladek, P. Charbonneau and D. Frenkel, PRL 99, 235702 (2007) Kai Zhang, P. Charbonneau and B. M. Mladek, PRL 105, 245701 (2010)

Generalized exponential model GEM4

Cavitation in water at negative pressure

Free energetics and kinetics of bubble formation

$$\beta G(V_{\text{bubble}}) = -\ln \rho(V_{\text{bubble}})$$

Umbrella sampling with hybrid MC moves

Forward flux sampling

R. J. Allen, D. Frenkel, P. R. ten Wolde, J. Chem. Phys. 124, 024102 (2006) R. J. Allen, P. B. Warren, P. R. ten Wolde, Phys. Rev. Lett. 124, 018104 (2005)

Forward flux sampling

path sampling	f_A	$\mathcal{P}_A(\lambda_n \lambda_0)$	$\mathbf{k} = f_A imes \mathcal{P}_A(\lambda_n \lambda_0)$	
TIS	$0.263 \pm 1\%$	$1.52\cdot 10^{-6}\pm 20\%$	$4.02\cdot 10^{-7}\pm 20\%$	
PPTIS	$0.263 \pm 1\%$	$1.04\cdot 10^{-6}\pm 19\%$	$2.73\cdot 10^{-7}\pm 19\%$	
RETIS	$0.265 \pm 1\%^{*}$	$1.05\cdot 10^{-6}\pm 25\%^{*}$	$2.79\cdot 10^{-7}\pm 25\%^{*}$	
FFS (long MD run)	$0.263 \pm 1\%$	$4.69\cdot 10^{-8}\pm 6\%^*$	$1.23\cdot 10^{-8}\pm 6\%^*$	
FFS (short MD run)	$0.259 \pm 2\%$	$8.45\cdot 10^{-9}\pm 9\%^*$	$2.18\cdot 10^{-9}\pm 9\%^*$	

T. van Erp, Adv. Chem. Phys., 151, 27 (2012)

autoionization in water

solvation dynamics

hydrophobic collapse

Jarzynski theorem

DNA binding

ionic dissociation

crystallization

nonequilibrium dynamics

protein folding

chemical reactions

proton transfer

biomolecular isomerization

hydrophobic effect

chaotic dynamics