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The Tides



…for it is clear that at a point where all the cotidal lines meet, it is 
high water equally at all hours, that is, the tide vanishes…



Cotidal Lines



Some History

Violets
Consider how the violets you smell this spring 
In your forest-bound garden of rocks 
Convey the same surprising scent that Sappho 
Smelled some twenty centuries ago.

While empires crumble and epics fade, 
The scent of the violet 
Drawn from the indifferent dust 
Proclaims the same enduring news: 
The mute and fragrant gospel of the grass.

                                                Cornel Adam Lengyel
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3-D fluids

http://www2.sfu.ca/chemistry/faculty/Williams/phasetypes.html

Liquid Crystals

nematic smectic A smectic Cisotropic

cholesteric

discotic

2-D fluids

Otto Lehman Friedrich Reinitzer
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Smectic Liquid Crystals and Lamellae

Photos by Michi Nakata 

http://www.physics.upenn.edu/~kamien/


Film by Jean Painleve, Liquid Crystals by Yves Bouligand

http://www.physics.upenn.edu/~kamien/


Film by Jean Painleve, Liquid Crystals by Yves Bouligand

http://www.physics.upenn.edu/~kamien/
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Topological Properties of 
Nematics in 3-space 

Ordinary 

K L A U S  JA, N I C H  
Universittit Regensburg, Fakultiit fiir Mathematik, Universitiitsstrasse 31, 
D-8400 Regensburg, West Germany 

(Received: 22 April 1986; revised: 15 July 1986) 

Abstract. This paper describes the topologically possible global defect behavior of ordinary nematics 
in 3-space. It is written for physicists interested in defects of ordered media as well as for topologists, 
but instead of using an 'intermediate' way of presentation, which might appeal to no one, we first state 
the result for physicists and then, discussing the proof, turn to mathematicians and physicists who are 
inclined to read a mathematical paper. 

AMS (MOS) subject classifications (1980). 82A99, 57R25, 57M25. 

Key words, Defects in ordered media, nematic liquids, linking numbers, Poincart-Hopf theorems. 

1. The Problem 

Nematic liquid crystals, or 'nematics' for short, are a type of liquid crystals in 
which the order of the medium at any point outside the 'defect set' A is 
characterized by the spatial orientation of the molecules there. In the simplest, or 
ordinary case, the molecules may be thought of as having an elongated, rodlike 
shape and, hence, their orientation in space is simply given by a direction. We 
assume that the medium has topologically stable point and line defects, and that 
far out all molecules are parallel to the z-axis, say. Thus, mathematically 
speaking we consider continuous maps F from S3\A into the real projective plane 
p 2  where A is a disjoint union A = At U . . .  O Ar U pl U . . .  t3 p~ of one-dimen- 
sional closed connected submanifolds ('knots') Ai and points pj of R3c  S 3= 
R 31.3 0% and we assume F to be not null-homotopic on sufficiently small 'normal' 
spheres around the components of the defect set A (Figure 1). 
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Fig. 1. 

Acta Applicandae Mathematicae 8 (1987), 65-74 
© 1987 by D. Reidel Publishing Company. 

65 

Topological Properties of 
Nematics in 3-space 

Ordinary 

K L A U S  JA, N I C H  
Universittit Regensburg, Fakultiit fiir Mathematik, Universitiitsstrasse 31, 
D-8400 Regensburg, West Germany 

(Received: 22 April 1986; revised: 15 July 1986) 

Abstract. This paper describes the topologically possible global defect behavior of ordinary nematics 
in 3-space. It is written for physicists interested in defects of ordered media as well as for topologists, 
but instead of using an 'intermediate' way of presentation, which might appeal to no one, we first state 
the result for physicists and then, discussing the proof, turn to mathematicians and physicists who are 
inclined to read a mathematical paper. 

AMS (MOS) subject classifications (1980). 82A99, 57R25, 57M25. 

Key words, Defects in ordered media, nematic liquids, linking numbers, Poincart-Hopf theorems. 

1. The Problem 

Nematic liquid crystals, or 'nematics' for short, are a type of liquid crystals in 
which the order of the medium at any point outside the 'defect set' A is 
characterized by the spatial orientation of the molecules there. In the simplest, or 
ordinary case, the molecules may be thought of as having an elongated, rodlike 
shape and, hence, their orientation in space is simply given by a direction. We 
assume that the medium has topologically stable point and line defects, and that 
far out all molecules are parallel to the z-axis, say. Thus, mathematically 
speaking we consider continuous maps F from S3\A into the real projective plane 
p 2  where A is a disjoint union A = At U . . .  O Ar U pl U . . .  t3 p~ of one-dimen- 
sional closed connected submanifolds ('knots') Ai and points pj of R3c  S 3= 
R 31.3 0% and we assume F to be not null-homotopic on sufficiently small 'normal' 
spheres around the components of the defect set A (Figure 1). 

.'1 
I 

Fig. 1. 

Acta Applicandae Mathematicae 8 (1987), 65-74 
© 1987 by D. Reidel Publishing Company. 

65 

Topological Properties of 
Nematics in 3-space 

Ordinary 

K L A U S  JA, N I C H  
Universittit Regensburg, Fakultiit fiir Mathematik, Universitiitsstrasse 31, 
D-8400 Regensburg, West Germany 

(Received: 22 April 1986; revised: 15 July 1986) 

Abstract. This paper describes the topologically possible global defect behavior of ordinary nematics 
in 3-space. It is written for physicists interested in defects of ordered media as well as for topologists, 
but instead of using an 'intermediate' way of presentation, which might appeal to no one, we first state 
the result for physicists and then, discussing the proof, turn to mathematicians and physicists who are 
inclined to read a mathematical paper. 

AMS (MOS) subject classifications (1980). 82A99, 57R25, 57M25. 

Key words, Defects in ordered media, nematic liquids, linking numbers, Poincart-Hopf theorems. 

1. The Problem 

Nematic liquid crystals, or 'nematics' for short, are a type of liquid crystals in 
which the order of the medium at any point outside the 'defect set' A is 
characterized by the spatial orientation of the molecules there. In the simplest, or 
ordinary case, the molecules may be thought of as having an elongated, rodlike 
shape and, hence, their orientation in space is simply given by a direction. We 
assume that the medium has topologically stable point and line defects, and that 
far out all molecules are parallel to the z-axis, say. Thus, mathematically 
speaking we consider continuous maps F from S3\A into the real projective plane 
p 2  where A is a disjoint union A = At U . . .  O Ar U pl U . . .  t3 p~ of one-dimen- 
sional closed connected submanifolds ('knots') Ai and points pj of R3c  S 3= 
R 31.3 0% and we assume F to be not null-homotopic on sufficiently small 'normal' 
spheres around the components of the defect set A (Figure 1). 

.'1 
I 

Fig. 1. 

Seminal Paper on Which My Knowledge is Based

Acta Applicandae Mathematicae 8 (1987), 65-74 
© 1987 by D. Reidel Publishing Company. 

65 

Topological Properties of 
Nematics in 3-space 

Ordinary 

K L A U S  JA, N I C H  
Universittit Regensburg, Fakultiit fiir Mathematik, Universitiitsstrasse 31, 
D-8400 Regensburg, West Germany 

(Received: 22 April 1986; revised: 15 July 1986) 

Abstract. This paper describes the topologically possible global defect behavior of ordinary nematics 
in 3-space. It is written for physicists interested in defects of ordered media as well as for topologists, 
but instead of using an 'intermediate' way of presentation, which might appeal to no one, we first state 
the result for physicists and then, discussing the proof, turn to mathematicians and physicists who are 
inclined to read a mathematical paper. 

AMS (MOS) subject classifications (1980). 82A99, 57R25, 57M25. 

Key words, Defects in ordered media, nematic liquids, linking numbers, Poincart-Hopf theorems. 

1. The Problem 

Nematic liquid crystals, or 'nematics' for short, are a type of liquid crystals in 
which the order of the medium at any point outside the 'defect set' A is 
characterized by the spatial orientation of the molecules there. In the simplest, or 
ordinary case, the molecules may be thought of as having an elongated, rodlike 
shape and, hence, their orientation in space is simply given by a direction. We 
assume that the medium has topologically stable point and line defects, and that 
far out all molecules are parallel to the z-axis, say. Thus, mathematically 
speaking we consider continuous maps F from S3\A into the real projective plane 
p 2  where A is a disjoint union A = At U . . .  O Ar U pl U . . .  t3 p~ of one-dimen- 
sional closed connected submanifolds ('knots') Ai and points pj of R3c  S 3= 
R 31.3 0% and we assume F to be not null-homotopic on sufficiently small 'normal' 
spheres around the components of the defect set A (Figure 1). 

.'1 
I 

Fig. 1. 

 

 

 

S1
i

S2
j

�i
pj

Defect Lines and Defect Points ⇔ Different Generalizations



Second Homotopy Group
Ground State Manifold

B

Sample

T

Maps from �1(B)� �1(T )

defects



Second Homotopy Group
Ground State Manifold

B

Sample

T

Maps from �1(B)� �1(T )

defects



Second Homotopy Group
Ground State ManifoldSample

T

Maps from �1(B)� �1(T )
Maps from ⇡2(B)! ⇡2(T )



Second Homotopy Group
Ground State ManifoldSample

T

Maps from �1(B)� �1(T )
Maps from ⇡2(B)! ⇡2(T )



Terentjev, PRE 51 (1995) 1330

First Homotopy Group - Line Defects

How Do Lines Compensate Points?



Terentjev, PRE 51 (1995) 1330

First Homotopy Group - Line Defects

How Do Lines Compensate Points?



O Topology

M. Ravnik, M. Škarabot, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, I. Muševič, PRL 99 (2007) 247801



Disclination Loop

ht
tp

://
ci

s.
jh

u.
ed

u/
ed

uc
at

io
n/

in
tr

oP
at

te
rn

T
he

or
y/

ch
ap

te
rs

/li
e/

lie
1.

ht
m

l

http://cis.jhu.edu/education/introPatternTheory/chapters/lie/lie1.html


Disclination Loop

ht
tp

://
ci

s.
jh

u.
ed

u/
ed

uc
at

io
n/

in
tr

oP
at

te
rn

T
he

or
y/

ch
ap

te
rs

/li
e/

lie
1.

ht
m

l

http://cis.jhu.edu/education/introPatternTheory/chapters/lie/lie1.html


         are homotopic in uniaxial nematics 

Uniaxial Nematic



         are homotopic in uniaxial nematics 

Uniaxial Nematic



         are homotopic in uniaxial nematics 

Uniaxial Nematic



         are homotopic in uniaxial nematics 

Uniaxial Nematic



         are homotopic in uniaxial nematics 

Uniaxial Nematic



         are homotopic in uniaxial nematics 

Uniaxial Nematic



Point Defects in Two Dimensions

k = �3 k = �2 k = �1

k = +1k = +2k = +3

n = [cos(k�), sin(k�), 0]



ESCAPE!



ESCAPE!



Disclination Loop

         are homotopic in uniaxial nematics 
YES OR NO 



Point Defects in Three Dimensions

hedgehog charge +1



Point Defects in Three Dimensions

hedgehog charge +1



x

z

x

y

Point Defects in Three Dimensions

⇥



Point Defects in Three Dimensions

n = [sin ✓ cos(k�), sin ✓ sin(k�), cos ✓]

⇥k = �3 k = �2 k = �1

k = +1k = +2k = +3

n o

⟸charge k



Point Defects in Three Dimensions

n = [sin ✓ cos(k�), sin ✓ sin(k�), cos ✓]

⇥k = �3 k = �2 k = �1

k = +1k = +2k = +3

n o

n = [sin ✓ cos(k�),� sin ✓ sin(k�),� cos ✓]
180

�
around x̂

⟸charge k



Point Defects in Three Dimensions

n = [sin ✓ cos(k�), sin ✓ sin(k�), cos ✓]

⇥k = �3 k = �2 k = �1

k = +1k = +2k = +3

n o

n = [sin ✓ cos(k�),� sin ✓ sin(k�),� cos ✓]
180

�
around x̂

k ! �k NORTH$ SOUTH
Based Versus Free Homotopy

⟸charge k



Disclination Loop

Focus on the Donut

ht
tp

://
ci

s.
jh

u.
ed

u/
ed

uc
at

io
n/

in
tr

oP
at

te
rn

T
he

or
y/

ch
ap

te
rs

/li
e/

lie
1.

ht
m

l

http://cis.jhu.edu/education/introPatternTheory/chapters/lie/lie1.html


Disclination Loop

Focus on the Donut

ht
tp

://
ci

s.
jh

u.
ed

u/
ed

uc
at

io
n/

in
tr

oP
at

te
rn

T
he

or
y/

ch
ap

te
rs

/li
e/

lie
1.

ht
m

l

http://cis.jhu.edu/education/introPatternTheory/chapters/lie/lie1.html


Charged Tori!

20 μm 20 μm 

Hybrid Anchoring

UPENN MRSEC, Cavallaro et al. Soft Matter 9 (2013) 9099.



Charged Tori!

20 μm 20 μm 

Hybrid Anchoring

Poulin, etc. Science 275 (1997) 1770

UPENN MRSEC, Cavallaro et al. Soft Matter 9 (2013) 9099.



Charged Tori!

20 μm 20 μm 

Hybrid Anchoring

UPENN MRSEC, Cavallaro et al. Soft Matter 9 (2013) 9099.



Charged Tori!

20 μm 20 μm 

Hybrid Anchoring

UPENN MRSEC, Cavallaro et al. Soft Matter 9 (2013) 9099.



R
0

M

T

N

0 n

N
A

 

∼

∂A
∼

R
0

M

T

N

0 n

N
A

 

∼

∂A
∼

What is the Point Charge?

B. Senyuk, Q. Liu, S. He, RDK, R.B. Kusner, T.C. Lubensky, and I.I. Smalyukh, Nature 493 (2013) 205.

q =
1
4⇡

Z
dxdy n · [@

x

n⇥ @

y

n]



What is the Point Charge?

B. Senyuk, Q. Liu, S. He, RDK, R.B. Kusner, T.C. Lubensky, and I.I. Smalyukh, Nature 493 (2013) 205.

q =
1
4⇡

Z
dxdy n · [@

x

n⇥ @

y

n]

ht
tp

://
w

w
w

.s
up

er
m

at
h.

in
fo

/Z
oo

O
fM

at
he

m
at

ic
al

C
re

at
ur

es
.h

tm
l

http://www.supermath.info/ZooOfMathematicalCreatures.html


What is the Point Charge?

B. Senyuk, Q. Liu, S. He, RDK, R.B. Kusner, T.C. Lubensky, and I.I. Smalyukh, Nature 493 (2013) 205.

q =
1
4⇡

Z
dxdy n · [@

x

n⇥ @

y

n]

ht
tp

://
w

w
w

.s
up

er
m

at
h.

in
fo

/Z
oo

O
fM

at
he

m
at

ic
al

C
re

at
ur

es
.h

tm
l

http://www.supermath.info/ZooOfMathematicalCreatures.html


What is the Charge?

a = @

x

n dx

b = @yn dy



What is the Charge?

B. Senyuk, Q. Liu, S. He, RDK, R.B. Kusner, T.C. Lubensky, and I.I. Smalyukh, Nature 493 (2013) 205.

R
0

M

T

N

0 n

N
A

 

∼

∂A
∼

q =
1
4⇡

Z
dxdy n · [@

x

n⇥ @

y

n]

n · (a⇥ b)



Degree of a Map - Integer

12

6

4

2

8

10
1

3

57

9

11



Degree of a Map - Integer

12

6

4

2

8

10
1

3

57

9

11



Degree of a Map - Integer



Degree of a Map - Integer



What is the Charge?

B. Senyuk, Q. Liu, S. He, RDK, R.B. Kusner, T.C. Lubensky, and I.I. Smalyukh, Nature 493 (2013) 205.

R
0

M

T

N

0 n

N
A

 

∼

∂A
∼

q =
1
4⇡

Z
dxdy n · [@

x

n⇥ @

y

n]

n · (a⇥ b)



What is the Charge?

B. Senyuk, Q. Liu, S. He, RDK, R.B. Kusner, T.C. Lubensky, and I.I. Smalyukh, Nature 493 (2013) 205.

R
0

M

T

N

0 n

N
A

 

∼

∂A
∼

q =
1
4⇡

Z
dxdy n · [@

x

n⇥ @

y

n]

n · (a⇥ b)

q de
pen
ds o

n si
gn o

f n!
!!



P

A

Nematics in Two Dimensions



P

A

Nematics in Two Dimensions

…we just need the black lines



Arrows 
point 

from + 
to – 

encode 
charges

P

A

Nematics in Two Dimensions



Arrows 
point 

from + 
to – 

encode 
charges

P

Nematics in Two Dimensions



Arrows 
point 

from + 
to – 

encode 
charges

P

Nematics in Two Dimensions



These directed lines carry all of the topology (Pontryagin-Thom)

2D nematic director fields
up to smooth deformations

pictures of directed lines
up to switching moves

→choose a special orientation

←fill in neighborhoods

1 to 1

Nematics in Two Dimensions



These directed lines carry all of the topology (Pontryagin-Thom)

2D nematic director fields
up to smooth deformations

pictures of directed lines
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Bordisms



instead of considering a single (or two) orientations, 
look at a whole curve of orientations:

space of orientations

Nematics in Three Dimensions

B.G. Chen, P.J. Ackerman, G.P. Alexander, RDK, and I.I. Smalyukh, PRL 110 (2013) 237801.



Point defects in 3D = color phase singularity on a surface
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From 2D to 3D: a visual dictionary of defects

Line defects in 3D = boundaries of surfaces

Point defects in 2D = endpoints of lines

B.G. Chen, P.J. Ackerman, G.P. Alexander, RDK, and I.I. Smalyukh, PRL 110 (2013) 237801.
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direction of color 
winding switches!
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Topological Colloids

B. Senyuk, Q. Liu, S. He, RDK, R.B. Kusner, T.C. Lubensky, and I.I. Smalyukh, Nature 493 (2013) 205.
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see, for instance, RDK, Rev. Mod. Phys. 74 (2002) 953
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Z
KdS= 4π(1�g)

Gauss-Bonnet Theorem



Topological Colloids With Topology!

B. Senyuk, Q. Liu, S. He, RDK, R.B. Kusner, T.C. Lubensky, and I.I. Smalyukh, Nature 493 (2013) 205.
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Taming the toron: From experimental data...

Imaging technique: Trivedi et al, Optics Express 2010

B.G. Chen, P.J. Ackerman, G.P. Alexander, RDK, and I.I. Smalyukh, PRL 110 (2013) 237801.
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→take the inverse image

←fill in neighborhoods

(Thom construction)

1 to 1

Nematics in Three Dimensions



Threading the Needle

B.G. Chen, P.J. Ackerman, G.P. Alexander, RDK, and I.I. Smalyukh, PRL 110 (2013) 237801.
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