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Magnetism
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1st “scientific discussion” on magnetism   
(Thales of Miletus,  around 600 BC). 

Magnesia, Greece 

“The lodestone makes iron come  
or it attracts it.” (Ancient China)

1st Compass 
Shen Kuo  
11th century

William Gilbert: “On 
the Magnet and 
Magnetic 
Bodies…” (1600) 19th Century:  

Oersted, Maxwell, Faraday, Gauss… 
(Electromagnetism)

20th Century:  
QUANTUM

https://en.wikipedia.org/wiki/Thales
https://en.wikipedia.org/wiki/Lodestone
https://en.wikipedia.org/wiki/Shen_Kuo


Magnetic soft matter 

From works of: 
Philipse’s, Erbe’s, Kretchmar’s and Tschöpe’s groups 
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Interactions/Models
hard or soft spheres 

point dipole in the centre 

they can be described with few 
parameters: 
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Magnetic response
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...From Langevin

P.	  Langevin,	  	  Ann.	  de	  chim.	  et	  phys.	  1905.	  

Varenna, July 2015



Susceptibility
...to the Mean-Field	  
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...CHAINS	  

Let us do some maths! 



Susceptibility
...CHAINS!!!!	  
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Dimer	  parGGon	  funcGon	  
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Heff!

Difficult to deal with!

M	  Klokkenburg et	  al.,	  	  J.Phys:	  Cond.	  MaQer,	  	  2008.	  
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…Let us go colder!	  



Ground State
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Also difficult to deal with!

T.	  Prokopyeva et	  al.,	  	  PRE,	  	  2012.	  
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Gas Case
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Snapshots provided by L. Rovigatti and F. Sciortino 



Gas Case

Chains and Rings!

Really difficult to deal with!

Varenna, July 2015



Gas Case

systems with volume fractions ’ ¼ Nv=V " 1, where
N ¼ 5000 is the number of particles, v # !d3=6 is the
volume of a particle, and V is the volume of the system. For
simplicity, we set d ¼ 1, m ¼ 1, and Boltzmann constant
kB ¼ 1. The implementation of advanced volume-bias
techniques [28,31] allows us to equilibrate the system
down to T$ ¼ 0:125 (in units of m2=d3). To accurately
take into account dipole-dipole interactions we used Ewald
summation. The total dipole moment auto-correlation
function was used to check statistical independence of
measurements. It allowed us to reach error bars on the
order of symbol size in all figures. For further details on
the simulation approach, see Ref. [28]. To partition parti-
cles into clusters, we employ a mixed distance-energy
criterion: two particles are considered as bonded if their
interaction energy is negative and if their relative distance
is smaller than rb ¼ 1:3 [29]. A chain contains two single-
bonded particles connected by particles having two neigh-
bors. If all particles in a cluster have only two neighbors
then the cluster is labelled as a ring. Any other kind of
aggregates is labelled as a branched cluster. The fraction
of particles in branched structures is negligible in the
investigated volume fraction range.

Theory.—The key hypothesis of our work is the assump-
tion that the decrease of " at low T arises from the
progressive thermodynamic stabilization of the ring struc-
tures, whose magnetic response we consider to be negli-
gible. We foresee a progressive evolution of " on cooling
which starts from the independent particles value at high T,
and increases anomalously due to the formation of linear
chains at smaller T to pass through a maximum when the
equilibrium between chains and rings starts to favor closed
structures. We start by developing a theoretical approach
to model the density and T dependence of the ratio of
particles in rings and chains, appropriate for the case of
low densities. We write the free energy density for an
ideal mixture of dipolar chains and rings as [30,32–34]

F½fgng; ffng&
VkBT

¼
X1

n¼1

gn ln
gnv

eQn
þ
X1

n¼5

fn ln
fnv

eWn
; (1)

where gn and fn are the equilibrium volume fractions of
chains and rings, respectively; Qn and Wn denote the
corresponding (normalized by V=v) partition functions of
an n-particle chain and ring. The free-energy functional
[Eq. (1)] has to be minimized with respect to the distribu-
tions fgng and ffng preserving ’,

X1

n¼1

gnnþ
X1

n¼5

fnn ¼ ’

v
: (2)

Guided by ground state calculations [35] and numerical
results [28,29,36], we assume that rings smaller than five
particles do not form, so that the ring contribution in
Eq. (2) starts from n ¼ 5. For low temperature, a simple
nearest-neighbor approach would fail to describe the

long-range magnetic dipole-dipole interaction between
the particles belonging to one cluster. As discussed in
detail in the Supplemental Material [37], the partition
functions of a chain and of a ring can be approximated as

QnðT$Þ ¼ qCðnÞ; WnðT$Þ ¼ QnðT$Þ q
RðnÞ*CðnÞ

n3#þ1 ; (3)
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with $ð3Þ denoting the Riemann zeta function of three;
Rðnþ1Þ=2 stands for the residual of division, and ½-& has the
meaning of the integer part of the expression in the brack-
ets. The low-T dimer partition function q (note that
Cð2Þ ¼ 1 and hence Q2ðT$Þ ¼ q), derived first by
de Gennes and Pincus [38], is

qðT$Þ ¼ T$3

3
exp

!
2

T$

"
: (5)

In Eq. (3), # ¼ 0:588 is the self-avoiding random walk
exponent. The term 1=n3#þ1 inWnðT$Þ captures the differ-
ence in entropy between chains and rings arising from the
n ways of opening a ring to form a chain; the difference
between the numbers of self-avoiding paths of chains and
rings is proportional to n3# [39]. Finally, minimizing
Eq. (1), one obtains compact expressions for gn and fn,

gn ¼ 1

v
Qnp

n; fn ¼
1

v
Wnp

n: (6)

Here, p, the Lagrange multiplier to be found from Eq. (2),
has the meaning of activity. Figure 1 shows the resulting
(parameter-free) prediction for the fractions of particles
aggregated in rings and in chains and compares them to
corresponding Monte Carlo (MC) results. The redistribu-
tion of particles between chains and rings becomes vivid.
For all investigated volume fractions, once T$ + 0:12, an
almost complete crossover from chains to rings takes
place.
In order to estimate the ability of the theory to predict

the cluster size distribution of rings and chains at different
T$, we plot in Fig. 2 the ratio fn=gn as a function of n. For
values of the ratio fn=gn greater (smaller) than 1, rings are
more (less) abundant than chains of the same size. The
ratio fn=gn coincides with Wn=Qn [see Eq. (6)] showing
that the equilibrium between chains and rings is controlled
by the subtle interplay between the energetic gain of
forming one additional bond and by the entropic penalty
of joining the two chain ends when converting a chain into
a ring. The numerical results for this ratio, displayed in
Fig. 2, show a small dependence on density at fixed
temperature (for the low densities simulated), supporting
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systems with volume fractions ’ ¼ Nv=V " 1, where
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volume of a particle, and V is the volume of the system. For
simplicity, we set d ¼ 1, m ¼ 1, and Boltzmann constant
kB ¼ 1. The implementation of advanced volume-bias
techniques [28,31] allows us to equilibrate the system
down to T$ ¼ 0:125 (in units of m2=d3). To accurately
take into account dipole-dipole interactions we used Ewald
summation. The total dipole moment auto-correlation
function was used to check statistical independence of
measurements. It allowed us to reach error bars on the
order of symbol size in all figures. For further details on
the simulation approach, see Ref. [28]. To partition parti-
cles into clusters, we employ a mixed distance-energy
criterion: two particles are considered as bonded if their
interaction energy is negative and if their relative distance
is smaller than rb ¼ 1:3 [29]. A chain contains two single-
bonded particles connected by particles having two neigh-
bors. If all particles in a cluster have only two neighbors
then the cluster is labelled as a ring. Any other kind of
aggregates is labelled as a branched cluster. The fraction
of particles in branched structures is negligible in the
investigated volume fraction range.

Theory.—The key hypothesis of our work is the assump-
tion that the decrease of " at low T arises from the
progressive thermodynamic stabilization of the ring struc-
tures, whose magnetic response we consider to be negli-
gible. We foresee a progressive evolution of " on cooling
which starts from the independent particles value at high T,
and increases anomalously due to the formation of linear
chains at smaller T to pass through a maximum when the
equilibrium between chains and rings starts to favor closed
structures. We start by developing a theoretical approach
to model the density and T dependence of the ratio of
particles in rings and chains, appropriate for the case of
low densities. We write the free energy density for an
ideal mixture of dipolar chains and rings as [30,32–34]
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Guided by ground state calculations [35] and numerical
results [28,29,36], we assume that rings smaller than five
particles do not form, so that the ring contribution in
Eq. (2) starts from n ¼ 5. For low temperature, a simple
nearest-neighbor approach would fail to describe the

long-range magnetic dipole-dipole interaction between
the particles belonging to one cluster. As discussed in
detail in the Supplemental Material [37], the partition
functions of a chain and of a ring can be approximated as

QnðT$Þ ¼ qCðnÞ; WnðT$Þ ¼ QnðT$Þ q
RðnÞ*CðnÞ

n3#þ1 ; (3)

where

RðnÞ ¼ n

2
sin3

!

n

 X½ðn*1Þ=2&

k¼1

cos2ð!kn Þ þ 1

sin3ð!kn Þ
þ Rðnþ1Þ=2

!
;

CðnÞ ¼
Xn

k¼1

n* k

k3
+ n$ð3Þ * !2

6
; ðn , 4Þ;

(4)

with $ð3Þ denoting the Riemann zeta function of three;
Rðnþ1Þ=2 stands for the residual of division, and ½-& has the
meaning of the integer part of the expression in the brack-
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In Eq. (3), # ¼ 0:588 is the self-avoiding random walk
exponent. The term 1=n3#þ1 inWnðT$Þ captures the differ-
ence in entropy between chains and rings arising from the
n ways of opening a ring to form a chain; the difference
between the numbers of self-avoiding paths of chains and
rings is proportional to n3# [39]. Finally, minimizing
Eq. (1), one obtains compact expressions for gn and fn,
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Here, p, the Lagrange multiplier to be found from Eq. (2),
has the meaning of activity. Figure 1 shows the resulting
(parameter-free) prediction for the fractions of particles
aggregated in rings and in chains and compares them to
corresponding Monte Carlo (MC) results. The redistribu-
tion of particles between chains and rings becomes vivid.
For all investigated volume fractions, once T$ + 0:12, an
almost complete crossover from chains to rings takes
place.
In order to estimate the ability of the theory to predict

the cluster size distribution of rings and chains at different
T$, we plot in Fig. 2 the ratio fn=gn as a function of n. For
values of the ratio fn=gn greater (smaller) than 1, rings are
more (less) abundant than chains of the same size. The
ratio fn=gn coincides with Wn=Qn [see Eq. (6)] showing
that the equilibrium between chains and rings is controlled
by the subtle interplay between the energetic gain of
forming one additional bond and by the entropic penalty
of joining the two chain ends when converting a chain into
a ring. The numerical results for this ratio, displayed in
Fig. 2, show a small dependence on density at fixed
temperature (for the low densities simulated), supporting
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Gas Phase

Rings lead to a 
MAXIMUM!

S.K.	  ,	  	  A.	  Ivanov,	  L.	  RovigaS,	  J.M.	  Tavares,	  	  F.	  SciorGno,	  PRL	  2013	  
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Getting denser
Chains, Rings and 
various defects!

(...)* difficult to deal with!
*Really-really, for instance 

134901-4 Rovigatti et al.

J. Chem. Phys. 139, 134901 (2013)

FIG. 3. (a) Two s = 1, w = 3 defect clusters. (b) s = 2, w = 2 defect clus-

ters. This kind of defect clusters stems from intra-cluster interactions. (c) s

= 2, w = 4 defect clusters. These form when two linear structures are close

to each other. The result is a weak inter-cluster interaction. (d) s = 3 de-

fect clusters with w = 4 (left) and w = 3 (right). The right defect cluster is

a slightly defective TWJ. The one on the left is similar in nature to the de-

fect clusters having both s and w as even numbers. (e) s = 4, w = 4 defect

clusters. These originate from the interaction between chains, rings, or part of

chain-like structures. (f) Defect clusters with a mixed nature. (Left) A s = 5,

w = 3 defect cluster which can be seen as a combination of an intra-cluster

defect and a TWJ. (Right) A s = 4, w = 5 defect cluster coming from a

s = 4, w = 4 defect cluster and a s = 2, w = 2 defect cluster.
Defect clusters with s = 2 can be divided into two main

categories: defect clusters having w = 2 (Figure 3(b)) and

defect clusters having w = 4 (Figure 3(c)). As shown in

Figure 3(b), the former originate from intra-cluster interac-

tions (or equivalently from the thermal distortion of the clus-

ter) and, as such, possibly do not play a significant role. By

contrast, s = 2, w = 4 defect clusters, shown in Figure 3(c),

are related to inter-cluster interactions. They form when two

linear-like structures (e.g., a chain, a ring, or a part thereof)

are close enough.The majority of the defect clusters having s = 3 has either

w = 3 or w = 4. Figure 3(d) provides two examples of these

structures. They have the same nature of defect clusters with s

= 1, w = 3 (Safran-like defects) and s = 2, w = 4 (chain-ring

interaction), respectively.The most numerous defect clusters with s = 4 are those

with w = 4. Two examples are shown in Figure 3(e). Similar

to the (s = 2, w = 4) and (s = 3, w = 4) cases, these defect

clusters stem from the interaction between chains, rings, or

part of chain-like structures.Every other observed defect cluster is just a combination

of the aforementioned defect clusters. We provide two exam-

ples in Figure 3(f). The left panel contains a “defective” ring

touching a chain. It is a four-way junction (s = 3, w = 4)

plus two intra-cluster defects. In the right panel, two rings are

joined together by a four-way junction (s = 4, w = 4). An

additional monomer makes it a five-way junction.

To summarise, despite the large number of possibilities,

two main classes are found: defect clusters with w = 3 that,

independently from the value of s, are TWJs and can always

be associated with chain branching. By contrast, defect clus-

ters with w = 2 or w = 4, regardless of s, are responsible

for intra-cluster interactions and interactions between rings

or chains, respectively. Therefore, both defect classes do not

involve bonding of loose chain ends.
C. Density and T dependence of the concentration

of defects
Next, we investigate the ρ- and T-dependences of the

density of defect clusters, according to their type.

Figure 4 shows the density of defect clusters ρd for the

four most common sizes s as a function of density for two

temperatures. In all cases, there seems to be a density range

for which all ρd are compatible with power-laws with similar

exponents. As previously noted, at low temperature the num-

ber of defect clusters with s = 2 is larger than the number

of defect clusters with s = 1 for all densities. This is due to

the decrease in the number of s = 1 defect clusters occurring

upon cooling, the physical origin of which will be discussed

at the end of this section.Figure 5 shows ρd as a function of density for defect clus-

ters having 1 < s < 5, accounting also for the different val-

ues of w, i.e., the number of ways out of the junction. Since

every s = 1 defect cluster has w = 3, we omit this class of

junctions from this specific analysis. From the plots it is clear

that, for ρ > 0.01, the most abundant defect clusters having

s > 1 also have w = 4. Among s = 3 defects there is also a

non-negligible number of three-way junctions.
The previous analysis confirms that defect clusters should

be classified according to w and that only junctions having
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FIG. 4. Density of defect clusters having s = 1, 2, 3, 4 for (a) T = 0.140 and

(b) T = 0.170 as a function of the overall density.
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Summary: DHS as we know them

SK, L. Rovigatti, J.M. Tavares, A. Ivanov, F. Sciortino, PCCP, 2015

Varenna, July 2015



Away from  
dipolar hard spheres!

CarrierParticle

Flexible Magnetic Filaments as Micromechanical Sensors

C. Goubault
Laboratoire Colloı̈des et Matériaux Divisés, UMR 7612, ESPCI, 10 rue Vauquelin, 75005 Paris, France
and Laboratoire Physico-Chimie Curie, Institut Curie, UMR 168, 26 Rue d’Ulm, 75005 Paris, France
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Laboratoire Colloı̈des et Matériaux Divisés, UMR 7612, ESPCI, 10 rue Vauquelin, 75005 Paris, France

(Received 24 March 2003; revised manuscript received 2 July 2003; published 30 December 2003)

We propose a new micromechanical approach to probe bending rigidity at molecular scale. Long
flexible filaments made of magnetic colloids and linkers are shown to adopt under magnetic field a
hairpin configuration. Measuring the hairpin curvature as a function of the field intensity and the linker
length from diffracted light allows us to deduce the linker bending rigidity !. The technique is
presented for two types of linkers: a spontaneously adsorbing polymer and a grafted biomolecular.

DOI: 10.1103/PhysRevLett.91.260802 PACS numbers: 07.10.Cm, 07.10.Pz, 82.37.Rs

Superparamagnetic colloids have been used for several
years for widely different applications: applying very
small forces [1] or torques [2] to DNA molecules, directly
measuring colloidal force-distance profiles [3], targetting
and isolating biomolecules or cells [4], and, more re-
cently, separating large DNA fragments [5]. Here, we
describe a novel type of magnetic material: long flexible
filaments made of assembled submicronic superparamag-
netic colloids, which combine the elastic properties of
wormlike chains and the expected response to an exter-
nal field. Indeed, under a magnetic field, these filaments
adopt a multiple hairpin metastable configuration which
depends on their length and on the bending rigidity of
linkers. The linker structure may vary from a single
adsorbed macromolecule to a more complex biological
sandwiched architecture. As a first application of these
assembled structures, we describe a novel technique to
probe the bending rigidity of these various types of
molecular linkers. This technique broadens the range of
micromechanical measurements focused on bending
modes, beyond direct fluctuation analysis [6] or optical
tweezer techniques [7].

The magnetic filaments are obtained by combining the
self-assembling ability of dipolar colloids and the ability
to control the formation of permanent links with field
intensity [8,9]. Using this method, filaments longer than
200 "m with various kinds of linkers can be made. The
curvature of the hairpins can be reversibly controlled by
the field intensity. The bending rigidity of a single mo-
lecular linker can be deduced from the dependence of this
curvature on field intensity, and from the linker length
which can be measured optically [3].

One example of such flexible magnetic filaments is
shown in Fig. 1. They are made from monodisperse super-
paramagnetic colloidal particles (radius a ! 375 nm)
supplied by Ademtech [10], linked by spontaneously ad-

sorbed polyacrylic acid (PAA, Mw ! 250 000, Sigma).
The particles are first suspended at a volume fraction # !
0:1%, in an aqueous solution containing 0:1% in weight of
PAA and 0:1% in weight of nonyl phenol ethoxylate
(surfactant NP10, Sigma). The suspension is introduced
into a thin cell with a thickness of e ! 200 "m, and
subjected to a magnetic field perpendicular to the cell
surface. Upon application of the field, the induced dipole
moment in each particle leads to aggregation of the par-
ticles into filaments, one particle thick, with a length
equal to the cell thickness [11]. Applying a sufficiently
strong field (25 mT) causes the PAA molecules to irre-
versibly link particles [8]. After removing the field, the
chains bend under their own weight, as seen in Fig. 1.

The mechanism of sticking involves the bridging of
adsorbed polymers on adjacent particles. At large inter-
particular distances (larger than the radius of gyration
RG), the colloidal force is repulsive and scales as
exp"#r=RG$ [12]. At shorter distances, imposed by the
magnetic field, the process of bridging can occur and
allows the chains to persist. The distance at which this

FIG. 1. Long flexible monodisperse filament, seen from
above, made in a 200 "m thick cell. The chains are bent by
gravity after field removal.

P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2003VOLUME 91, NUMBER 26

260802-1 0031-9007=03=91(26)=260802(4)$20.00 © 2003 The American Physical Society 260802-1
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How to model the change of  
the carrier? 
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Common:

UWCA(r) =

⇢
ULJ(r)� ULJ(rcut), r < rcut
0, r � rcut

Udd(~rij ; ~µi, ~µj) =
~µi · ~µj

r3
� 3 [~µi · ~rij ] [~µj · ~rij ]

r5
, ULJ(r) = 4✏s[(�/r)

12 � (�/r)6],

+ 

additional bonds/cross-linkers/ 
hydrodynamics



Magnetic Filaments: “simple bonds”

  

Enhancement of experimental 
methods: more flexible chains with 
smaller magnetic beads

Synthesis

R. Dreyfus et al, Nature 437, 862, (2005)

J.J. Benkoski et al, 
J. Polym. Sci. B 46, 
2267 (2008)

J.J.Benkoski et al,
Soft Matter 6, 602, (2010)

● Erglis et al, J. Phys.: Cond. Mat. 20, 204107 (2008)
● Z. Zhou et al, ACS Nano 3, 165, (2009)
● D.Sarkar et al, J. Phys. Chem. C, 116, 3227 (2012)

1 μm
107 nm

  

Enhancement of experimental 
methods: more flexible chains with 
smaller magnetic beads

Synthesis

R. Dreyfus et al, Nature 437, 862, (2005)

J.J. Benkoski et al, 
J. Polym. Sci. B 46, 
2267 (2008)

J.J.Benkoski et al,
Soft Matter 6, 602, (2010)

● Erglis et al, J. Phys.: Cond. Mat. 20, 204107 (2008)
● Z. Zhou et al, ACS Nano 3, 165, (2009)
● D.Sarkar et al, J. Phys. Chem. C, 116, 3227 (2012)

1 μm
107 nm

J.J. Benkoski et al, J. Polym. Sci. B 46, 2267 (2008); 

J.J. Benkoski et al, Soft Matter 6, 602, (2010);  

P. Sanchez et al, Soft Matter, 11, 2963 (2015).

Varenna, July 2015

Carrier



Filaments: possibilities

prebuilt chains 
increase the 
susceptibility	  

P. Sanchez et al, Soft Matter, 11, 2963 (2015).

Varenna, July 2015



Magnetic Gels: linking matrix 

Varenna, July 2015

Carrier
4

FIG. 2. Snapshots of the gel sample after equilibration in three dimensions, based on the diamond cubic (left) and simple
cubic (right) lattice. No external magnetic field is applied. The model is constructed by initially placing the magnetic node
particles (red) on the sites of a regular lattice. Then, the nodes are connected by flexible chains (black), which are attached to
specific spots on the nodes’ surface. The system is studied in periodic boundary conditions. (This figure previously appeared
in Ref. [26])

be isotropic, i.e., when no external field is applied, an op-
timized procedure can be used, which will be explained
in the next section. Even in the field free case, there will
be a small anisotropy in an individual sample of the gel,
because the sum of the randomly drawn initial dipole mo-
ments is never exactly zero. The stress is measured and
averaged for several instances of the system at any given
set of parameters to compensate for this.

The simulation parameters are as follows: The gel con-
sists of N

n

= 64 node particles as well as Ndc

c

= 2N
n

chains in the diamond cubic structure or N sc

c

= 3N
n

chains in the simple cubic structure. The chains con-
sist of 60 or 80 beads, with a diameter of �

c

= 1, whereas
the node particles have a diameter of �

n

= 10. The scale
of the soft sphere interaction (Eqn. 4) is ✏ = 10. The
bonds between neighboring particles in a chain as well as
between the ends of the chains and the virtual sites have
a harmonic potential (Eqn. 3) with an equilibrium elon-
gation of 2

1
6�, coinciding with the cut-o↵ of the WCA-

potential. The spring constant of the harmonic potential
is k = 10.

The simulation is divided into the following steps:

1. The magnetic node particles are placed on the lat-

tice with random dipole orientations. The distance
between the surfaces of adjacent nodes is such that
the chains can be inserted in the straight configu-
ration. Hence, the resulting initial lattice constant
is

a = �
n

+ l
c

�
c

, (5)

where �
n

and �
c

, are the Lennard Jones diameters
of the node and chain particles, and l

c

is the number
of particles in a chain.

2. Chains are connected to the surface of two adjacent
nodes. Four chain ends are connected to a node in
the diamond cubic case and six in the simple cubic
case. Technical details of this bond can be found in
the appendix of Ref. [6].

3. After the network is cross-linked, it is scaled to the
desired shape. This is done by adjusting the box
size in 400 steps from the initial shape to the target
shape. After each deformation step, the system is
equilibrated with the Langevin thermostat for 100
time steps of size dt

reshape

= 0.0006 to disperse the
energy introduced by the deformation.

Magnetoelastic 
coupling	  

R Weeber et al, Soft Matter, (2012).



AnisometryAnisotropy
solutions were 4 wt% poly(methyl methacrylate) (PMMA,
average molecular weight y120 k, Sigma-Aldrich) and 2 wt%
poly(vinyl alcohol) (PVA, molecular weight 22 k, Junsei
Chemical Co., Ltd.) in DMF. The third solution was 2 wt%
PVP and approximately 1 wt% Fe3O4 nanoparticles in EtOH.
The volume ratio of the PMMA solution to the PVA solution in
the mixture was varied between 0 : 1 and 8 : 1 while the
volume ratio of the PVA solution to the PVP solution was fixed
to 1 : 1. Because the densities of PMMA, PVA, and PVP are very
similar as 1.18 g cm23, 1.19 g cm23, and 1.20 g cm23,
respectively, all mass-ratios can be considered as volume ratios
approximately. There was no observable phase separation in
the mixture during the preparation of the samples. The
continuous phase was hexadecane (Sigma-Aldrich) which
contained 2 wt% non-ionic surfactant (Dow Corning 5200,
INCI name: Lauryl PEG/PPG-18/18 Methicone). This surfac-
tant, which is a liquid alkylmethyl silicone polyether copoly-
mer, is amphiphilic to the organic solvent mixture and
hexadecane, and guaranteed the stabilization of emulsion
droplets during the storage of droplets over 24 h for the
evaporation of DMF and EtOH.

Results and discussion

After generating microdroplets from the blend of polymer
solution, evaporation of the solvent from the dispersed phase
resulted in the size-controlled colloidal particles (Fig. 2). The
size and polydispersity of the particles were determined by the
initial size of the generated droplets, which was controlled
with the flow rates in microfluidic channels. For example, the
average diameter of spherical particles in Fig. 2a was 8.7 mm,
and the polydispersity was as low as 5.1%. The volume ratio of
components in the particles was determined by the concen-
tration of each polymer.

In this experiment, three polymers (PMMA, PVA, and PVP)
and Fe3O4 nanoparticles in the emulsion droplets undergo
phase separation to make anisotropic particles after the
evaporation of solvents. When the composition contains ,60
wt% of PVA, PMMA and PVA are incompatible and undergo
phase separation after solvent evaporation.47 PVP is compa-
tible with both PMMA and PVA through dipole–dipole and
hydrogen-bonding interaction, respectively.48,49 Because the
hydrogen-bonding interaction between PVP and PVA can be
stronger than dipole–dipole interaction between PVP and
PMMA,50 we expect that most of PVP partition preferentially
into the PVA compartment. Thus, after the evaporation of
solvents, particles will have two separate compartments, a
PMMA compartment and a PVA+PVP compartment, as shown
in Fig. 2.

By varying the volume ratio between polymers, we can
control the morphology and magnetic anisotropy of the
particles. At the same time, we confirm a hypothesis that
PVP-stabilized Fe3O4 nanoparticles locate preferentially at the
PVP+PVA compartment. The volume ratio between polymers
was varied from PMMA : PVA : PVP = 0 : 1 : 1 to 8 : 1 : 1, and
according to the relative volume ratio of polymers, polymeric

particles show different morphologies. The mass ratio between
PVP and Fe3O4 nanoparticle was maintained at 2 : 1. When
PMMA is absent, PVP+PVA solution makes spherical particles,
as shown in Fig. 2a. These spherical particles resemble
commercially available magnetic beads. They make straight
chains under external magnetic field due to a superparamag-
netic property of Fe3O4 nanoparticles (Fig. 2d). When the
magnetic field is removed, particles disassemble from the
chain structure and re-disperse in the continuous phase.

As the volume fraction of PMMA in the solution increases,
the morphology changes from spheres to acorn-like particles
as shown in Fig. 2b and 2c. Dark regions of the particles,
which are PVP+PVA compartments, result from containing the
most of Fe3O4 nanoparticles.I Because of induced magnetic
dipole–dipole interaction only between PVP+PVA compart-
ments containing Fe3O4 nanoparticles, Janus particles con-
struct zigzag chains under the external magnetic field (Fig. 2e–
f).28,33,34,37,38

Fig. 2 Optical microscopy images of magnetic Janus particles with different
morphologies. The volume ratio between PMMA : PVA : PVP is (a,d) 0 : 1 : 1,
(b,e) 2 : 1 : 1, and (c,f) 8 : 1 : 1. The top row (a–c) shows the particles without
external magnetic field. The bottom row (d–f) shows the chains formed by the
particles in (a–c), respectively, when magnetic field is applied along the direction
of the chain. Fe3O4 nanoparticles are shown at the PVP+PVA compartment (dark
region). (g) A size distribution of the spherical particles in (a). The polydispersity
calculated is the standard deviation of the diameters divided by the average
diameter.

I Judging by more spotted appearance of a dark PVP+PVA compartment in
Fig. 2(b) compared to the particles in Fig. 2(a) and 2(d), there seems to be an
aggregation of Fe3O4 nanoparticles. However, the particles of the same volume
ratio shown in Fig. 4 do not show this aggregation. Presumably this occasional
aggregation behavior depends on the fast rate of solvent evaporation.

This journal is ! The Royal Society of Chemistry 2013 RSC Adv., 2013, 3, 11801–11806 | 11803
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material #2853) was used for calibration. Samples were attached

to the probe with Dow Corning silicone grease #112.

For AC electric field assembly, an alternating electric field was

applied to the electrodes of the observation cell. The square

waveform (with frequencies of 1–400 kHz) was produced by an

Agilent 33120A 15 MHz function generator (Agilent Technolo-

gies, CO). The function generator was connected to a RG-91

ramp generator/amplifier (Burleigh, NY) to produce voltages

ranging from 1–90 V. The electric circuit included a 1 mF
capacitor to remove any direct current component of the signal.

The voltage applied in the chamber was measured with a multi-

meter GDM8024 (Good Will Instrument Co, Taiwan), which

readings were correlated to measurements with an oscilloscope.

A master switch connected to the two co-planar gold electrodes

of the experimental cell allowed the electric field to be turned on

and off.

Demagnetization of chains of magnetic Janus particles was

performed by applying a 60 Hz alternating magnetic field to the

assemblies using a Tenma CRT Demagnetization Coil (MCM

Electronics, Centerville, OH, item #72-785). For demagnetiza-

tion of samples with Fe layers >30 nm, a homemade coil with

a field directed by an E-shaped transformer core was used. The

samples were placed in the center of the demagnetizing coil for

a few seconds and slowly moved away from it (10–15 s). Thus,

the magnitude of the magnetic field at the sample was decreased

continuously as the distance from the coil was increased, while its

direction switched at 60 Hz. This allowed the magnetic sample to

trace ever smaller magnetization hysteresis loops42 until it was

demagnetized.

Numerical simulation

Two-dimensional (2D) magnetostatic calculations were per-

formed using the FEMLAB multiphysics modeling package

(COMSOL, Burlington, MA) to obtain the magnetic field

distribution and magnetic energy distribution around the Janus

particles. The geometry of the system, to scale, was specified as

a 2D cross-sectional top view at the midpoint of the experimental

cell in Fig. 1B. The particle configurations were arranged verti-

cally rather than horizontally in the simulations. The magnetic

and electric field directions were also from top to bottom of the

simulation. The magnetic Janus particles (simulated with 4 mm
diameter) were positioned midway between the applied magnets.

The solution space was divided into three subdomains: water

media, dielectric polystyrene core, and a thin 34 nm iron (Fe)

layer on one-half of the particle. To reproduce the tapering of the

coating towards the sides of the particle, the coating profile was

modeled by the subtraction of two circles with diameters equal to

those of the particle spheres and centers offset by the thickness of

the metal coating (see details in Supplementary Fig. 1).

The physical property values for electrical conductivity (s) and

relative permeability (m) for each of these subdomainswere specified

as: water media (s¼ 1" 10#4 S/m, m¼ 1# cm¼ 1# 9.04" 10#6),

polystyrene core (s¼ 1" 10#16 S/m,m¼ 1# cm¼ 1# 8.21" 10#6),

and iron layer (s¼ 1" 10+7 S/m,m¼ 7.00) where cm is themagnetic

susceptibility. We specified in the simulation a homogeneous

applied magnetic field of 0.15 T (123 400 A/m) from the top to the

bottom side of the box with an electric insulation boundary

condition on the sides. We placed 8 particles in different

configurations inside the box and initiated the FEMLAB simula-

tion. The solution space was then triangulated into a conformal

mesh and the mesh was refined. The program was initialized to

solve the Maxwell equations for all elements to obtain the

magnetic field intensity and magnetic energy density within the

cell. The magnetic energy of the entire 2D configuration was

calculated using the subdomain integration function. This tool

integrated the magnetic energy density over the area (since this was

a 2D simulation) of the system, after selecting all three of the

subdomains. The calculations were repeated with more refined

mesh sizes until the mesh was small enough for the final calculated

values to vary by less than 0.05%. In most simulations the mesh

was refined approximately three times.

To convert to a 3D energy calculation (with effective units of

J), we multiplied the 2D simulation energy by the radius of the

particle, modeling the particle as a cylinder. While the 2D

simulation captures the right trends and distinguishes magnetic

energies between various multi-particle configurations (with

effective units of J/m), we expect that this methodology over-

estimates the absolute interaction values near the inter-particle

contact area.

3. Experimental results

The originally dispersed Janus particles were assembled into

various chain structures using single or combined magnetic and/

Fig. 2 Micrographs of assemblies of Janus particles with 8 nm evapo-

rated Fe layer on the surface. (A) Before the application of magnetic

fields. (B) ‘‘Staggered’’ and (C) ‘‘Double’’ chains that form in a magnetic

field of $0.15 T. Both types of chains in (B) and (C) orient with the

magnetic field, and rotate around their center of mass. Rotation of

a staggered chain is shown in Supplementary Movies 1 and 2. (C)–(F)

illustrate the rotation of an ensemble double chains.

This journal is ª The Royal Society of Chemistry 2009 Soft Matter, 2009, 5, 1285–1292 | 1287
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Anisometry:  

Magnetic Cubes VS Ellipsoids

insignificant parameters. Therefore, in simulation their values
are set to unity to ensure convenient relaxation to equilibrium.
The system was classified in reduced units defined by the cube
side length h, the particle mass M and energy parameter ε.
The reduced forms of relevant quantities are as follows: length
r* = r/h, i.e. corresponding to a reduced cube length of h* = 1,
magnetic moment m*2 = m2/h3ε, time t* = t (ε/Mh2)1/2 and
temperature T* = kT/ε. The energy parameter ε was chosen in a
manner to define a constant magnetic moment of m* = 1. It
follows that the λ parameter scales only as λ ∝ 1/T*. The simu-
lation time-step was set as Δt* = 0.001.

The REMD method was used in combination with LD in
the following manner. A particular temperature range {TR*}
was selected, representing R individual LD simulations (or
replicas) at specific temperatures. Temperatures were sampled
from an exponential distribution, beginning at a sufficiently
high ambient temperature to a target low temperature. A temp-
erature of at least T* = 0.001 was reached for each cluster size.
Each replica consisted of an initial random configuration of
cubic particles for the specific cluster size. A single cycle is
defined as the propagation of each replica for 1 × 103 time-
steps for equilibration, followed by a further 5 × 103 time-steps
for data collection. After the completion of each cycle, an
attempt was made to exchange configurations between replicas
with temperatures adjacent to one another. This exchange is
subject to a metropolis criterion; the probability of an
exchange between two replicas is min (1,exp[−(1/Tb − 1/Ta)-
(Ua − Ub)/k]), where Ux is the total potential energy of configur-
ation x at a temperature Tx. A minimum of 1500 cycles was per-
formed during each simulation. Cluster sizes ranged from
2–25 for the [001] system and 2–16 for [111]. The number of
replicas was adjusted accordingly to ensure acceptance ratios
were no lower than 20%.

2.3. Theoretical considerations

Throughout our analytical treatment of possible cluster geome-
tries, we assumed perfect cube geometry with a point dipole
orientated in either the [001] or [111] directions (see Fig. 2). In
order to make analytical predictions of candidate ground state
structures tractable, a number of constraints were required.
The first was to confine particles to a Q2D layer, which in turn
is quite convenient as many experimental systems have this
dimensionality. Secondly, calculations were performed on
ideal structures with precisely defined geometries, i.e. rigid

structures based on regular arrays of particles. The methods
used here are in line with those applied to spherical particles
with and without an external field, as well as to S-D particles,
rods and ellipsoids.6,11,56–58 It should be emphasised that in
this work we are considering the zero field regime in both
theory and simulation. It is expected that chain and ring struc-
tures characteristic of spherical particles will also manifest in
systems of nanocubes, albeit in a unique manner.

3. Ground state structure of particle
dimers
To begin, it is useful to consider the energy of configurations
of just two dipoles. The lowest energy structures will likely be
the basis for clusters of larger numbers of particles. The
classic collinear head-to-tail dipole structure (the lowest energy
dimer for dipolar spheres) will be used as a point of reference.
For spherical particles, the ground state structure can be
derived quite intuitively. The effect of the particle geometry is
not so intuitively rationalised and, as such, it is useful to
explore the candidates for cube dimers in more detail. In order
to determine their energies, consider the coordinate system
given in Fig. 3(a), shown for [111] but equally applicable to
[001]. The dipole of the first particle is localised at the origin,
resulting in the following dipolar interaction,

Udð1; 2Þ ¼ $ jmj2

jr12j3
3 cos θ sinω sin θ cosðϕ$ ψÞð½ þ cos θ cosωÞ':

ð5Þ

The angles (θ,φ) define the orientation of the displacement
vector and (ω,ψ) define the relative orientation of the second
dipole.

When determining the low energy configuration, a sensible
approach is to place the cubes at the closest possible contact
in order to reduce the distance between dipoles. From here, all

Fig. 2 Theoretical calculations of cluster energies assumed mono-
disperse perfect cubes as shown. Two systems were considered, one with
point dipoles orientated in the [001] crystallographic direction (left hand
side), the other pointed in the direction of [111] (right hand side).

Fig. 3 Ground state configurations for dipolar cube dimers: (a) Coordi-
nate system used for the determination of the dimer energies, shown for
[111] but applicable for [001]. The displacement of the second dipole is
given by coordinates (r,θ,φ) and its orientation by (ω,ψ). (b) Predicted
ground state structure of a [001] dimer, a collinear head-to-tail arrange-
ment. (c) Predicted ground state structure of a [111] dimer; the head-to-
tail structure has adopted a zig-zag pattern.
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insignificant parameters. Therefore, in simulation their values
are set to unity to ensure convenient relaxation to equilibrium.
The system was classified in reduced units defined by the cube
side length h, the particle mass M and energy parameter ε.
The reduced forms of relevant quantities are as follows: length
r* = r/h, i.e. corresponding to a reduced cube length of h* = 1,
magnetic moment m*2 = m2/h3ε, time t* = t (ε/Mh2)1/2 and
temperature T* = kT/ε. The energy parameter ε was chosen in a
manner to define a constant magnetic moment of m* = 1. It
follows that the λ parameter scales only as λ ∝ 1/T*. The simu-
lation time-step was set as Δt* = 0.001.

The REMD method was used in combination with LD in
the following manner. A particular temperature range {TR*}
was selected, representing R individual LD simulations (or
replicas) at specific temperatures. Temperatures were sampled
from an exponential distribution, beginning at a sufficiently
high ambient temperature to a target low temperature. A temp-
erature of at least T* = 0.001 was reached for each cluster size.
Each replica consisted of an initial random configuration of
cubic particles for the specific cluster size. A single cycle is
defined as the propagation of each replica for 1 × 103 time-
steps for equilibration, followed by a further 5 × 103 time-steps
for data collection. After the completion of each cycle, an
attempt was made to exchange configurations between replicas
with temperatures adjacent to one another. This exchange is
subject to a metropolis criterion; the probability of an
exchange between two replicas is min (1,exp[−(1/Tb − 1/Ta)-
(Ua − Ub)/k]), where Ux is the total potential energy of configur-
ation x at a temperature Tx. A minimum of 1500 cycles was per-
formed during each simulation. Cluster sizes ranged from
2–25 for the [001] system and 2–16 for [111]. The number of
replicas was adjusted accordingly to ensure acceptance ratios
were no lower than 20%.

2.3. Theoretical considerations

Throughout our analytical treatment of possible cluster geome-
tries, we assumed perfect cube geometry with a point dipole
orientated in either the [001] or [111] directions (see Fig. 2). In
order to make analytical predictions of candidate ground state
structures tractable, a number of constraints were required.
The first was to confine particles to a Q2D layer, which in turn
is quite convenient as many experimental systems have this
dimensionality. Secondly, calculations were performed on
ideal structures with precisely defined geometries, i.e. rigid

structures based on regular arrays of particles. The methods
used here are in line with those applied to spherical particles
with and without an external field, as well as to S-D particles,
rods and ellipsoids.6,11,56–58 It should be emphasised that in
this work we are considering the zero field regime in both
theory and simulation. It is expected that chain and ring struc-
tures characteristic of spherical particles will also manifest in
systems of nanocubes, albeit in a unique manner.

3. Ground state structure of particle
dimers
To begin, it is useful to consider the energy of configurations
of just two dipoles. The lowest energy structures will likely be
the basis for clusters of larger numbers of particles. The
classic collinear head-to-tail dipole structure (the lowest energy
dimer for dipolar spheres) will be used as a point of reference.
For spherical particles, the ground state structure can be
derived quite intuitively. The effect of the particle geometry is
not so intuitively rationalised and, as such, it is useful to
explore the candidates for cube dimers in more detail. In order
to determine their energies, consider the coordinate system
given in Fig. 3(a), shown for [111] but equally applicable to
[001]. The dipole of the first particle is localised at the origin,
resulting in the following dipolar interaction,

Udð1; 2Þ ¼ $ jmj2

jr12j3
3 cos θ sinω sin θ cosðϕ$ ψÞð½ þ cos θ cosωÞ':

ð5Þ

The angles (θ,φ) define the orientation of the displacement
vector and (ω,ψ) define the relative orientation of the second
dipole.

When determining the low energy configuration, a sensible
approach is to place the cubes at the closest possible contact
in order to reduce the distance between dipoles. From here, all

Fig. 2 Theoretical calculations of cluster energies assumed mono-
disperse perfect cubes as shown. Two systems were considered, one with
point dipoles orientated in the [001] crystallographic direction (left hand
side), the other pointed in the direction of [111] (right hand side).

Fig. 3 Ground state configurations for dipolar cube dimers: (a) Coordi-
nate system used for the determination of the dimer energies, shown for
[111] but applicable for [001]. The displacement of the second dipole is
given by coordinates (r,θ,φ) and its orientation by (ω,ψ). (b) Predicted
ground state structure of a [001] dimer, a collinear head-to-tail arrange-
ment. (c) Predicted ground state structure of a [111] dimer; the head-to-
tail structure has adopted a zig-zag pattern.
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to the crystallographic axes. The magnetic interaction strength
is traditionally characterised for nanoparticles by a dimension-
less parameter λ given by,

λ ¼ jmj2

kTs3
: ð2Þ

It is defined as the energy per particle of two collinear
dipoles at close contact (s) normalised relative to thermal
energy, kT. Based upon the different preferred magnetisation
orientations for cubes found in experiment, two separate
systems with fixed dipole orientation where considered: the
first along the [001] crystallographic axis and the other along
the [111] axis.

All of our simulations were conducted using the simulation
package ESPResSo 3.2.0.50 This allowed us to utilise the avail-
able virtual site construction in order to model the rigid-body
motion of the cubes.51 Each individual cube was constructed
by arranging virtual particles, acting as spherical building
blocks, to form the complete surface area of the cube. A real
site was positioned at the cube’s centre of mass into which the
point dipole of each particle was positioned. The virtual sites
of each individual particle are fixed relative to the motion of
the corresponding real site, enabling rigid-body motion to be
reproduced.

In principle, one can vary the number of virtual sites per
side of a cube in order to tune the coarseness of the cube rep-
resentation. Therefore, the total number of spheres comprising
the surface is given by 6n2 − 12n + 8, where n is the number of
spheres per cube side. Upon increasing n, the surface rough-
ness will decrease and edge sharpness will increase: in the
limit of n → ∞ the particle will tend towards a perfect cube. In
a previous implementation of this model by John et al. (using
n = 3), the spherical units were placed at close contact to one
another.36,37 The virtual site construction employed here
enables sites to overlap, allowing for the approximation to a
cube to be improved. If we denote the total length of a cube as
h, and choose to overlap the surface sites by half the diameter
of each site, the virtual site diameter will scale as σs = 2h/(n + 1).
Evidently, as the value of n increases the computational
cost also increases. A good compromise between simulation
length and the best possible representation of the cube was
found at a value of n = 5. The steric interaction is incorporated
by applying it at each surface site individually, where a scaling
factor is introduced to adjust for the overlaps. The general
form is given by the soft sphere (Weeks–Chandler–Anderson)
potential,

UsðrijÞ ¼
4ε

σs
rij

! "12

$ σs
rij

! "6# $
þ ε; rij , 21=6σs

0; rij & 21=6σs

8
<

:

9
=

;; ð3Þ

where the range parameter σs denotes the surface site dia-
meter.52 An illustration of the specific model used for all simu-
lations is given in Fig. 1.

2.2. Molecular dynamics

Simulations attempting to accurately encapsulate behaviour at
low temperatures are notorious for the added subtleties one
has to be mindful of. Dipolar systems often have extremely
complicated free energy landscapes with many local minima,
which represent locally stable structural configurations.53 It is
necessary to ensure that the system does not become trapped
in any of these metastable states, which do not represent the
true equilibrium energy structure. In order to mitigate this, we
have employed canonical Langevin dynamics (LD) simulations
allowing for an implicit treatment of the carrier fluid, in
combination with the replica-exchange molecular dynamics
(REMD) method.54,55

During simulations, the particles were confined to a square
non-periodic Q2D slab, allowing the magnetic interactions to
be dealt with by explicitly summing over particle pairs. A Lan-
gevin thermostat was imposed in order to achieve constant-
temperature conditions. The one component Langevin
equation of motion for a particle i of mass M is given by,

Mẍi ¼ Fi $ γẋi þ Frandom; ð4Þ

where Fi is the force on particle i due to the interactions
with the other particles, γ is the friction coefficient, and
Frandom is a random Brownian force. The random force is
characterised by a gaussian process obeying the fluctuation-
dissipation theorem. As such, each component of the force is
distributed with a mean of zero and a variance of 〈Frandom2〉 =
2γkT. An equivalent equation of motion is imposed for the
rotational degrees of freedom. Given that we are interested in
purely equilibrium properties, the dynamical quantities, such
as the mass and friction coefficient, are actually physically

Fig. 1 Visualisations of the cube model used in simulations: (a) Cube
particle from simulation where the orange highlight is used to indicate
the [001] orientation of the dipole. (b) Cube from simulation with its
dipole oriented along [111]. (c) Schematic of a cross-sectional view
through the centre of the cube. This view highlights the positioning of
the virtual sites at half diameter intervals. A square boarder is drawn
(orange) to illustrate the approximation to a perfect cube. The length of
the cube is denoted h and the diameter of the constituent spheres by σs.
(d) Interior of the cubes where the central particle (blue) is now visible.
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to the crystallographic axes. The magnetic interaction strength
is traditionally characterised for nanoparticles by a dimension-
less parameter λ given by,

λ ¼ jmj2

kTs3
: ð2Þ

It is defined as the energy per particle of two collinear
dipoles at close contact (s) normalised relative to thermal
energy, kT. Based upon the different preferred magnetisation
orientations for cubes found in experiment, two separate
systems with fixed dipole orientation where considered: the
first along the [001] crystallographic axis and the other along
the [111] axis.

All of our simulations were conducted using the simulation
package ESPResSo 3.2.0.50 This allowed us to utilise the avail-
able virtual site construction in order to model the rigid-body
motion of the cubes.51 Each individual cube was constructed
by arranging virtual particles, acting as spherical building
blocks, to form the complete surface area of the cube. A real
site was positioned at the cube’s centre of mass into which the
point dipole of each particle was positioned. The virtual sites
of each individual particle are fixed relative to the motion of
the corresponding real site, enabling rigid-body motion to be
reproduced.

In principle, one can vary the number of virtual sites per
side of a cube in order to tune the coarseness of the cube rep-
resentation. Therefore, the total number of spheres comprising
the surface is given by 6n2 − 12n + 8, where n is the number of
spheres per cube side. Upon increasing n, the surface rough-
ness will decrease and edge sharpness will increase: in the
limit of n → ∞ the particle will tend towards a perfect cube. In
a previous implementation of this model by John et al. (using
n = 3), the spherical units were placed at close contact to one
another.36,37 The virtual site construction employed here
enables sites to overlap, allowing for the approximation to a
cube to be improved. If we denote the total length of a cube as
h, and choose to overlap the surface sites by half the diameter
of each site, the virtual site diameter will scale as σs = 2h/(n + 1).
Evidently, as the value of n increases the computational
cost also increases. A good compromise between simulation
length and the best possible representation of the cube was
found at a value of n = 5. The steric interaction is incorporated
by applying it at each surface site individually, where a scaling
factor is introduced to adjust for the overlaps. The general
form is given by the soft sphere (Weeks–Chandler–Anderson)
potential,
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where the range parameter σs denotes the surface site dia-
meter.52 An illustration of the specific model used for all simu-
lations is given in Fig. 1.

2.2. Molecular dynamics

Simulations attempting to accurately encapsulate behaviour at
low temperatures are notorious for the added subtleties one
has to be mindful of. Dipolar systems often have extremely
complicated free energy landscapes with many local minima,
which represent locally stable structural configurations.53 It is
necessary to ensure that the system does not become trapped
in any of these metastable states, which do not represent the
true equilibrium energy structure. In order to mitigate this, we
have employed canonical Langevin dynamics (LD) simulations
allowing for an implicit treatment of the carrier fluid, in
combination with the replica-exchange molecular dynamics
(REMD) method.54,55

During simulations, the particles were confined to a square
non-periodic Q2D slab, allowing the magnetic interactions to
be dealt with by explicitly summing over particle pairs. A Lan-
gevin thermostat was imposed in order to achieve constant-
temperature conditions. The one component Langevin
equation of motion for a particle i of mass M is given by,

Mẍi ¼ Fi $ γẋi þ Frandom; ð4Þ

where Fi is the force on particle i due to the interactions
with the other particles, γ is the friction coefficient, and
Frandom is a random Brownian force. The random force is
characterised by a gaussian process obeying the fluctuation-
dissipation theorem. As such, each component of the force is
distributed with a mean of zero and a variance of 〈Frandom2〉 =
2γkT. An equivalent equation of motion is imposed for the
rotational degrees of freedom. Given that we are interested in
purely equilibrium properties, the dynamical quantities, such
as the mass and friction coefficient, are actually physically

Fig. 1 Visualisations of the cube model used in simulations: (a) Cube
particle from simulation where the orange highlight is used to indicate
the [001] orientation of the dipole. (b) Cube from simulation with its
dipole oriented along [111]. (c) Schematic of a cross-sectional view
through the centre of the cube. This view highlights the positioning of
the virtual sites at half diameter intervals. A square boarder is drawn
(orange) to illustrate the approximation to a perfect cube. The length of
the cube is denoted h and the diameter of the constituent spheres by σs.
(d) Interior of the cubes where the central particle (blue) is now visible.
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Anisometric and Anisotropic Magnetic Colloids: How to Tune the Response
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Abstract

We present a comparative study of the anisometric and anisotropic magnetic colloids at low temperatures. As examples we choose
the ellipsoidal and cubic magnetic colloids to illustrate the influence of the shape (particle anisometry) on the ground state structures.
To scrutinise the influence of the internal particle anisotropy we address particles with dipoles shifted out from the centre of mass.
Of the latter, we distinguish between two types: the first type has a dipole moment pointing radially outwards; the other has a dipole
pointing perpendicular to the radius along which it is shifted.

Keywords: magnetic colloids, ground states, anisometry, anisotropy

1. Introduction1

Nowadays, materials whose properties can be fine-tuned by2

external fields of moderate and low strengths are widely stud-3

ied. “Green” environmentally friendly systems and biologically4

compatible materials are of particular interest, especially for5

medical applications. In order to obtain a system with desired6

properties, for example, with a controllable response to elec-7

tric/magnetic fields, one needs to design this system on the level8

of its microstructure. When it comes to dipolar systems, the9

characteristic sizes of this microstructure can vary from several10

Ångström to tens of microns. Experimental studies of these11

new dipolar “smart materials” often involve rather expensive12

equipment and compounds, and can turn out to be very time13

consuming. Thus, the first step would be to predict theoreti-14

cally (analytically and/or in computer simulations) the relation-15

ship between a certain microstructure and the macroscopical16

behaviour of the system.17

The self-assembly of nano and micron sized particles play18

a crucial part in the microstructure formation. Understanding19

and predicting the processes by which these particles assem-20

ble is allowing taylor-made materials to be built from the bot-21

tom up. Usual model to study self-assembly in dipolar soft22

matter employs the system of dipolar hard spheres (DHS) —23

monodisperse hard spheres of diameter d, possessing a point24

dipole moment m in their centres [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].25

The main conclusion of the latter works is that DHS at room26

temperatures form a gas phase, then, on cooling, the chain for-27

mation starts, which at low temperatures is replaced by that of28

rings or branched structures depending on the particle concen-29

tration. There are two possible ways to make the DHS model30

more complex. The first one is to change the properties of the31

carrier, and to introduce a certain magneto-elastic coupling into32

the system, like, for example, in magnetic gels [11] or magne-33

toelastomers [12].34

Email address: joe.donaldson@univie.ac.at (Donaldson J.G.)

Figure 1: Sketch of the dipole orientations in theory and simulations for aniso-
metric particles. Cubes in simulations are made of spheres, whereas the ellip-
soids are modified Gay-Berne gaussians [13]. In simulations the dipole moment
is in the virtual-site particle [14]; the violet particle is just to show the orienta-
tion of the dipole.

Another avenue often exploited in self-assembling systems35

is to keep the carrier matrix simple, but to modify the parti-36

cles themselves [15, 16, 17, 18, 19, 20]. This can come in a37

number of forms: the shape of the particle can be anisotropic38

e.g. spheroids, rods and sphero-cylinders [21, 22], or you can39

manipulate the positioning of the dipole within the spherical40

particle, like with sd-particles or magnetic Janus ones [23].41

In the present manuscript we decided to study one pair of42

anisometric magnetic colloids, namely magnetic ellipsoids [24]43
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to the crystallographic axes. The magnetic interaction strength
is traditionally characterised for nanoparticles by a dimension-
less parameter λ given by,

λ ¼ jmj2

kTs3
: ð2Þ

It is defined as the energy per particle of two collinear
dipoles at close contact (s) normalised relative to thermal
energy, kT. Based upon the different preferred magnetisation
orientations for cubes found in experiment, two separate
systems with fixed dipole orientation where considered: the
first along the [001] crystallographic axis and the other along
the [111] axis.

All of our simulations were conducted using the simulation
package ESPResSo 3.2.0.50 This allowed us to utilise the avail-
able virtual site construction in order to model the rigid-body
motion of the cubes.51 Each individual cube was constructed
by arranging virtual particles, acting as spherical building
blocks, to form the complete surface area of the cube. A real
site was positioned at the cube’s centre of mass into which the
point dipole of each particle was positioned. The virtual sites
of each individual particle are fixed relative to the motion of
the corresponding real site, enabling rigid-body motion to be
reproduced.

In principle, one can vary the number of virtual sites per
side of a cube in order to tune the coarseness of the cube rep-
resentation. Therefore, the total number of spheres comprising
the surface is given by 6n2 − 12n + 8, where n is the number of
spheres per cube side. Upon increasing n, the surface rough-
ness will decrease and edge sharpness will increase: in the
limit of n → ∞ the particle will tend towards a perfect cube. In
a previous implementation of this model by John et al. (using
n = 3), the spherical units were placed at close contact to one
another.36,37 The virtual site construction employed here
enables sites to overlap, allowing for the approximation to a
cube to be improved. If we denote the total length of a cube as
h, and choose to overlap the surface sites by half the diameter
of each site, the virtual site diameter will scale as σs = 2h/(n + 1).
Evidently, as the value of n increases the computational
cost also increases. A good compromise between simulation
length and the best possible representation of the cube was
found at a value of n = 5. The steric interaction is incorporated
by applying it at each surface site individually, where a scaling
factor is introduced to adjust for the overlaps. The general
form is given by the soft sphere (Weeks–Chandler–Anderson)
potential,

UsðrijÞ ¼
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where the range parameter σs denotes the surface site dia-
meter.52 An illustration of the specific model used for all simu-
lations is given in Fig. 1.

2.2. Molecular dynamics

Simulations attempting to accurately encapsulate behaviour at
low temperatures are notorious for the added subtleties one
has to be mindful of. Dipolar systems often have extremely
complicated free energy landscapes with many local minima,
which represent locally stable structural configurations.53 It is
necessary to ensure that the system does not become trapped
in any of these metastable states, which do not represent the
true equilibrium energy structure. In order to mitigate this, we
have employed canonical Langevin dynamics (LD) simulations
allowing for an implicit treatment of the carrier fluid, in
combination with the replica-exchange molecular dynamics
(REMD) method.54,55

During simulations, the particles were confined to a square
non-periodic Q2D slab, allowing the magnetic interactions to
be dealt with by explicitly summing over particle pairs. A Lan-
gevin thermostat was imposed in order to achieve constant-
temperature conditions. The one component Langevin
equation of motion for a particle i of mass M is given by,

Mẍi ¼ Fi $ γẋi þ Frandom; ð4Þ

where Fi is the force on particle i due to the interactions
with the other particles, γ is the friction coefficient, and
Frandom is a random Brownian force. The random force is
characterised by a gaussian process obeying the fluctuation-
dissipation theorem. As such, each component of the force is
distributed with a mean of zero and a variance of 〈Frandom2〉 =
2γkT. An equivalent equation of motion is imposed for the
rotational degrees of freedom. Given that we are interested in
purely equilibrium properties, the dynamical quantities, such
as the mass and friction coefficient, are actually physically

Fig. 1 Visualisations of the cube model used in simulations: (a) Cube
particle from simulation where the orange highlight is used to indicate
the [001] orientation of the dipole. (b) Cube from simulation with its
dipole oriented along [111]. (c) Schematic of a cross-sectional view
through the centre of the cube. This view highlights the positioning of
the virtual sites at half diameter intervals. A square boarder is drawn
(orange) to illustrate the approximation to a perfect cube. The length of
the cube is denoted h and the diameter of the constituent spheres by σs.
(d) Interior of the cubes where the central particle (blue) is now visible.
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Magnetic Ellipsoids: Methods
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Magnetic Ellipsoids:  
                        Ground States

Under these assumptions, we pinpoint two probable
congurations of particles as ground state candidates: a
“carpet” and a “bracelet”, presented in Fig. 1(d). The dipole
moments of any two neighbouring particles in the carpet and in
the bracelet have antiparallel orientation.

The total energy of the carpet can be written as:

U carpet
dd ðn;X0Þ ¼

m0

4p

m2

8a3

Xn$1

i¼1

Xn

j¼iþ1

cos
!
pð j $ 1Þ

"

ð j $ iÞ3
: (5)

The energy of a bracelet will have the following form:
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pð j $ iÞn

" sin3ðp=nÞ: (6)

For a large number of particles in the system (n/ N) we can
calculate theasymptotes for the two latter energies (eqn (5) and (6)):
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:

(7)

Here, z(3) is the z-Riemann function of three. In Fig. 6(a) and
(b), wepresent the energy per particle in a carpet and abracelet as
a function of the number of particles. The energy asymptotes are
also plotted here. In Fig. 6(a), one can see the results for X0¼ 1.4,
which corresponds to the system of moderately elongated
cylinders. In Fig. 6(b), we plot the energy per particle for highly
elongated cylinders (X0 ¼ 10). The saw-like behaviour of the
energy per particle in a bracelet follows from the fact that if the
number of particles in a carpetwas oddandone tried to close it to
form a bracelet, the magnetic moments of the rst and the last
particles would have the same orientation and it corresponds to
the strong repulsion. In other words, the carpet becomes an
energetically favourable conguration for odd number of parti-
cles, and the bracelet is the ground state for even number of
particles. From the asymptotes one can see that the difference
between the energies is decreasing but relatively slow (as 1/n).

In order to summarise the ground state structure investiga-
tion we provide a cartoon (Fig. 7), containing all possible ground
state structures depending on the dimensionality of the system,
direction of the dipolemoment, number of particles and particle
anisotropy. The new topologies found here and in the previous

section are very different from those of spherically symmetrical
dipolar particles.We expect this to inuence the thermodynamic
properties of the systems of dipolar particles with shape
anisotropy. In the next section we compute radial distribution
functions, pressure and initial susceptibility for the systems of
anisotropic particles to elucidate the inuence of the anisotropy.

4 Finite temperature: what remains from
the ground states?

Here, we present the results of molecular dynamics simulations
performed in ESPResSo.62 We used metallic periodic boundary
conditions in all three directions and simulated NVT ensemble
with N ¼ 512 particles initially randomly placed in the box. We
used the dimensionless volume of the simulation box,
measured in the units of a3 (particle's short semiaxis) 2a ¼ 1.
Particles in simulations were interacting via magnetic dipole–
dipole interaction (1) and modied Gay–Berne potential:58–60
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Here, r̂ ¼ rij/rij ¼ (ri $ rj)/rij is the unit vector, coaligned with
the vector connecting particle centres, ui(j) is the unit vector

Fig. 6 Energy per particle, calculated for magnetite (with 2a ¼ 10 nm), in a
bracelet (violet solid line) and in a carpet (blue solid line) versus n. (a) X0 ¼ 1.4 and
(b) X0 ¼ 10. Dashed lines are the asymptotes provided by eqn (7). The absolute
values along the ordinate axes were obtained using the value of material satu-
ration magnetisation 480 kA m$1 (as for magnetite) and were multiplied by 1019.

Fig. 7 Ground state structures found in this manuscript for particles with various
anisotropy in both two and three dimensions.
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Temperature up!
Magnetic Ellipsoids:

(circles and rhombuses), than the one for almost isotropic
particles (squares). It means that the pair formation is strongly
suppressed in the anisotropic particles' system. Another
important observation might be done comparing the initial part
of the RDF r ˛ [1, ., 1.3] for the highest anisotropy (circles) in
Fig. 9(c) and (d): with growing magnetic dipole–dipole interac-
tion there is an emerging shoulder in the RDF, whichmight be a
signature of the antiparallel pair formation.

In order to check the latter hypothesis, we performed a
cluster analysis of the data. We considered two particles to
belong to a cluster of an arbitrary topology, if the distance was
smaller than a certain value (rc), and the dipole–dipole inter-
action between these two particles was negative. This approach
was shown to be robust for systems with various cluster
topologies.24,25,66,67 In Fig. 10 we present simulation snapshots
for two different values of rc and X0 for the same density f ¼ 0.1
and m ¼ 2. In order to make snapshots less crowded we show
only clusters and, additionally, we represent particles by cylin-
ders and not by Gaussian ellipsoids in order to make the
orientations of the dipoles clearer. One can see that for high
anisotropy the number of particles in clusters is much lower
(compare, Fig. 10(a) and (b) or (c) and (d)). The dominant
structures on the le are chains, whereas on the right are
mainly antiparallel pairs. Increasing the value of rc leads to the
higher amount of structures and increases their size. Thus,
longer chains can be seen in Fig. 10(c), than in Fig. 10(a);
signicantly more pairs might be found in Fig. 10(d). Note, that
on the one hand the densities here are low enough, for the
systems to be in a gas phase, and on the other hand, the values
of dipole moment are not high enough for the systems to
exhibit any percolation even for small X0.

In the next gure (Fig. 11), we analyse the particle-related part
of the pressure as a function of the dipolemomentm for different
values of the anisotropy parameter X0. For magnetic uids one

could determine the osmotic pressure related to the colloidal
particles removing the contribution from the carrier liquid.
Here, we consider both contributions to the osmotic pressure,
namely theparts related to the kinetic and the potential energy of
the anisotropic particles. It is known that for isotropic dipolar
particles, with growing strength of dipolar interactions, one
observes a decrease of the particle-related part of pressure.68,69

Thus, aer observing the decrease of the RDF rst peak height
with growing anisotropy, we assume this to affect also the pres-
sure. In fact, in Fig. 11 we observe a strong decrease of pressure
for X0¼ 1.1 (up to 50 per cent, see squares) and, only a change on
the order of 10 per cent for X0 ¼ 2 (circles). This result conrms
the hypothesis that the magnetic correlations in the system
become signicantly weaker, once the particle's anisotropy
becomes large enoughandagreeswellwith thendings of earlier
work.30,32,33,55Here,however,we caneasily quantify the effect, and
pinpoint the values of X0, for which the dipolar correlations start
decaying, being still in the gas phase.

As the next step, we calculate the initial magnetic suscepti-
bility. Initial magnetic susceptibility (cin) is one of the most
important characteristics of magnetic so materials, and is
equal to the slope of the magnetisation curve at zero eld. It
shows how strongly the dipole moments in the system are
correlated and how responsive the system is to the application
of an external innitesimal magnetic eld. In simulations, one
usually employs the uctuation–dissipation theorem to calcu-
late cin:

cin ¼
1

3Vm0T*

!"
M2

#
" hMi2

$
; (9)

whereM is thedimensionless total dipolemoment of the system,
and the averaging h.i is done over all statistically independent
congurations, and V is a dimensionless volume of the system
measured in the units of a. The results of eqn (9) are plotted in
Fig. 12. It is well known that in systems of isotropic magnetic
particles, the formation of chains and the effective eld, arising
from the dipolar interactions, lead to a rapid growth of the initial
magnetic susceptibility.67,70–72 One sees a similar behaviour also
for slightly anisotropic particles (X0 ¼ 1.1, le most points in
both plots). However, once the anisotropy starts growing, not
only the absolute value of the susceptibility decreases, but also
the relative change of it becomes smaller. The distance between
the right most points, meaning the values of the initial

Fig. 10 Simulation snapshots of particle clusters, obtained via an energy crite-
rion for f ¼ 0.1 and m ¼ 2. Arrows depict the particle dipole moments, cylinder
shape is used for the clarity of visualisation. In (a) and (b) the value of rc¼ 1.1; in (c)
and (d) rc ¼ 1.2. The anisotropy parameter is X0 ¼ 1.1 in (a) and (c) and X0 ¼ 2 in
(b) and (d). One can see chains on the left and antiparallel pairs on the right. The
amount of clusters and their size increase from the top to the bottom. The cluster
topology does not depend on rc.

Fig. 11 Internal pressure normalised by the value of the pressure form ¼ 1 as a
function of the dimensionless dipole moment m. (a) f ¼ 0.01 and (b) f ¼ 0.1.
Brown circles are for X0 ¼ 2; blue rhombuses are for X0 ¼ 1.5; pink squares
describe the data for X0 ¼ 1.1. Lines here are just guides for the eye.
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(circles and rhombuses), than the one for almost isotropic
particles (squares). It means that the pair formation is strongly
suppressed in the anisotropic particles' system. Another
important observation might be done comparing the initial part
of the RDF r ˛ [1, ., 1.3] for the highest anisotropy (circles) in
Fig. 9(c) and (d): with growing magnetic dipole–dipole interac-
tion there is an emerging shoulder in the RDF, whichmight be a
signature of the antiparallel pair formation.

In order to check the latter hypothesis, we performed a
cluster analysis of the data. We considered two particles to
belong to a cluster of an arbitrary topology, if the distance was
smaller than a certain value (rc), and the dipole–dipole inter-
action between these two particles was negative. This approach
was shown to be robust for systems with various cluster
topologies.24,25,66,67 In Fig. 10 we present simulation snapshots
for two different values of rc and X0 for the same density f ¼ 0.1
and m ¼ 2. In order to make snapshots less crowded we show
only clusters and, additionally, we represent particles by cylin-
ders and not by Gaussian ellipsoids in order to make the
orientations of the dipoles clearer. One can see that for high
anisotropy the number of particles in clusters is much lower
(compare, Fig. 10(a) and (b) or (c) and (d)). The dominant
structures on the le are chains, whereas on the right are
mainly antiparallel pairs. Increasing the value of rc leads to the
higher amount of structures and increases their size. Thus,
longer chains can be seen in Fig. 10(c), than in Fig. 10(a);
signicantly more pairs might be found in Fig. 10(d). Note, that
on the one hand the densities here are low enough, for the
systems to be in a gas phase, and on the other hand, the values
of dipole moment are not high enough for the systems to
exhibit any percolation even for small X0.

In the next gure (Fig. 11), we analyse the particle-related part
of the pressure as a function of the dipolemomentm for different
values of the anisotropy parameter X0. For magnetic uids one

could determine the osmotic pressure related to the colloidal
particles removing the contribution from the carrier liquid.
Here, we consider both contributions to the osmotic pressure,
namely theparts related to the kinetic and the potential energy of
the anisotropic particles. It is known that for isotropic dipolar
particles, with growing strength of dipolar interactions, one
observes a decrease of the particle-related part of pressure.68,69

Thus, aer observing the decrease of the RDF rst peak height
with growing anisotropy, we assume this to affect also the pres-
sure. In fact, in Fig. 11 we observe a strong decrease of pressure
for X0¼ 1.1 (up to 50 per cent, see squares) and, only a change on
the order of 10 per cent for X0 ¼ 2 (circles). This result conrms
the hypothesis that the magnetic correlations in the system
become signicantly weaker, once the particle's anisotropy
becomes large enoughandagreeswellwith thendings of earlier
work.30,32,33,55Here,however,we caneasily quantify the effect, and
pinpoint the values of X0, for which the dipolar correlations start
decaying, being still in the gas phase.

As the next step, we calculate the initial magnetic suscepti-
bility. Initial magnetic susceptibility (cin) is one of the most
important characteristics of magnetic so materials, and is
equal to the slope of the magnetisation curve at zero eld. It
shows how strongly the dipole moments in the system are
correlated and how responsive the system is to the application
of an external innitesimal magnetic eld. In simulations, one
usually employs the uctuation–dissipation theorem to calcu-
late cin:

cin ¼
1

3Vm0T*

!"
M2

#
" hMi2

$
; (9)

whereM is thedimensionless total dipolemoment of the system,
and the averaging h.i is done over all statistically independent
congurations, and V is a dimensionless volume of the system
measured in the units of a. The results of eqn (9) are plotted in
Fig. 12. It is well known that in systems of isotropic magnetic
particles, the formation of chains and the effective eld, arising
from the dipolar interactions, lead to a rapid growth of the initial
magnetic susceptibility.67,70–72 One sees a similar behaviour also
for slightly anisotropic particles (X0 ¼ 1.1, le most points in
both plots). However, once the anisotropy starts growing, not
only the absolute value of the susceptibility decreases, but also
the relative change of it becomes smaller. The distance between
the right most points, meaning the values of the initial

Fig. 10 Simulation snapshots of particle clusters, obtained via an energy crite-
rion for f ¼ 0.1 and m ¼ 2. Arrows depict the particle dipole moments, cylinder
shape is used for the clarity of visualisation. In (a) and (b) the value of rc¼ 1.1; in (c)
and (d) rc ¼ 1.2. The anisotropy parameter is X0 ¼ 1.1 in (a) and (c) and X0 ¼ 2 in
(b) and (d). One can see chains on the left and antiparallel pairs on the right. The
amount of clusters and their size increase from the top to the bottom. The cluster
topology does not depend on rc.

Fig. 11 Internal pressure normalised by the value of the pressure form ¼ 1 as a
function of the dimensionless dipole moment m. (a) f ¼ 0.01 and (b) f ¼ 0.1.
Brown circles are for X0 ¼ 2; blue rhombuses are for X0 ¼ 1.5; pink squares
describe the data for X0 ¼ 1.1. Lines here are just guides for the eye.
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susceptibility for different dipolar strengths for X0¼ 2, becomes
approximately twice as small as that for X0 ¼ 1.1 (the le-most
points), which agrees with the results of the dielectric
constant,33,55 unfortunately not much statistics was available at
that time, and only qualitative predictions were provided. Here,
in contrast, we can easily quantify the inuence of the particle
anisotropy on the initial susceptibility of the particle systems.
The overall decrease of interparticle dipolar correlations/
magnetic response observed in this work might be explained by
the change of the ground state congurations. Once, the anti-
parallel pair starts being energetically more advantageous, than
the head-to-tail orientation, the two main consequences are the
following: (i) at room temperature, the entropy of the antiparallel
pair is very low, and thus, no stable pairs are formed even if the
dipole moment is large; (ii) the total dipole moment of the
antiparallel pairs is a vanishing quantity, and the susceptibility
of such an object is much lower than that of the head-to-tail
dimer. In other words, the particles' shape anisotropy can
signicantly change the microstructure of the system of
magnetic particles at nite temperature.

5 Conclusion

We analysed in detail the microstructure of the systems of
ellipsoids/rods with the central magnetic dipole at low densi-
ties, where these systems are isotropic.

As the rst step, the ground state structures for dipolar
ellipsoids and rods in two and three dimensions were found
analytically. For ellipsoids with the dipole moment along the
short axis we showed, both for two and three dimensions, that a
chain or a “daisy” (a ring of ellipsoids) are the ground state
topologies. The number of particles for which the transition
between a chain and a daisy occurs depends not only on the
number of particles in the structure (as for the system of
magnetic spheres), but also on the particle shape anisotropy.
The more elongated the ellipsoids are, the more particles are
needed for a daisy to become the ground state. For ellipsoids or
cylinders, whose point dipole is coaligned with the long axis, in
two dimensional case, the ground state might be a chain or a
ring if the elongation of the particles is small, or a carpet made
of side-by-side ellipsoids (cylinders) with neighbouring dipoles
oriented antiparallelly. In 3D, similar to 2D, the ground state of
strongly elongated particles with dipole moment along the

main axis is either a carpet or a bracelet of side-by-side particles
with antiparallel orientation of dipoles.

The antiparallel pair of dipoles in the ground state has a zero
total dipole moment. For nite temperature, when the inter-
particle interaction energy starts being comparable to kBT, in
the case of the formation of the antiparallel pair, its dipole
moment will be still a vanishing quantity. In order to analyse
the inuence of the anisotropy at nite temperature, we inves-
tigated in detail the microscopic structure of the system of
“Gay–Berne-type” ellipsoids with the dipole moment coaligned
with the main axis of the particle using molecular dynamics
simulations. We found that with growing elongation the dipolar
interparticle correlations and their inuence on the system
microstructure become weaker. We analysed the radial distri-
bution functions, internal pressure and initial susceptibility at
nite temperature for various densities, dipolar strengths and
semiaxis ratios. We discovered that for a broad range of dipolar
strength and densities, the cluster formation becomes less
pronounced if the semiaxis ratio grows, the internal pressure
increases and the initial susceptibility decreases.

Finally, using the particle anisotropy as a control parameter
one can change the system from the one full of chains (nearly
spherical particles) to a basically spatially homogeneous system
(for elongated particles), without changing the value of the
saturation magnetisation. This might be very important in
various medical and industrial applications, where the strong
magnetic response of the particles should be combined with the
absence of strong cluster formation. For that, we are planning to
investigate in detail magnetisation, viscosity and diffusion in
systems of anisotropic dipolar particles under the inuence of
an external magnetic eld.
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Under these assumptions, we pinpoint two probable
congurations of particles as ground state candidates: a
“carpet” and a “bracelet”, presented in Fig. 1(d). The dipole
moments of any two neighbouring particles in the carpet and in
the bracelet have antiparallel orientation.

The total energy of the carpet can be written as:

U carpet
dd ðn;X0Þ ¼

m0

4p

m2

8a3

Xn$1

i¼1

Xn

j¼iþ1

cos
!
pð j $ 1Þ

"

ð j $ iÞ3
: (5)

The energy of a bracelet will have the following form:

Ubrac
dd ðn;X0Þ ¼

m0

4p

m2

8a3

Xn$1

i¼1

Xn

j¼iþ1

cos
!
pð j $ 1Þ

"

sin3
!
pð j $ iÞn

" sin3ðp=nÞ: (6)

For a large number of particles in the system (n/ N) we can
calculate theasymptotes for the two latter energies (eqn (5) and (6)):

U carpet
dd ðn/NÞ ¼ $ m0

4p

m2

8a3
3zð3Þ
4

#
1$ 1

n

$
;

Ubrac
dd ðn/NÞ ¼ $ m0

4p

m2

8a3
3zð3Þ
4

:

(7)

Here, z(3) is the z-Riemann function of three. In Fig. 6(a) and
(b), wepresent the energy per particle in a carpet and abracelet as
a function of the number of particles. The energy asymptotes are
also plotted here. In Fig. 6(a), one can see the results for X0¼ 1.4,
which corresponds to the system of moderately elongated
cylinders. In Fig. 6(b), we plot the energy per particle for highly
elongated cylinders (X0 ¼ 10). The saw-like behaviour of the
energy per particle in a bracelet follows from the fact that if the
number of particles in a carpetwas oddandone tried to close it to
form a bracelet, the magnetic moments of the rst and the last
particles would have the same orientation and it corresponds to
the strong repulsion. In other words, the carpet becomes an
energetically favourable conguration for odd number of parti-
cles, and the bracelet is the ground state for even number of
particles. From the asymptotes one can see that the difference
between the energies is decreasing but relatively slow (as 1/n).

In order to summarise the ground state structure investiga-
tion we provide a cartoon (Fig. 7), containing all possible ground
state structures depending on the dimensionality of the system,
direction of the dipolemoment, number of particles and particle
anisotropy. The new topologies found here and in the previous

section are very different from those of spherically symmetrical
dipolar particles.We expect this to inuence the thermodynamic
properties of the systems of dipolar particles with shape
anisotropy. In the next section we compute radial distribution
functions, pressure and initial susceptibility for the systems of
anisotropic particles to elucidate the inuence of the anisotropy.

4 Finite temperature: what remains from
the ground states?

Here, we present the results of molecular dynamics simulations
performed in ESPResSo.62 We used metallic periodic boundary
conditions in all three directions and simulated NVT ensemble
with N ¼ 512 particles initially randomly placed in the box. We
used the dimensionless volume of the simulation box,
measured in the units of a3 (particle's short semiaxis) 2a ¼ 1.
Particles in simulations were interacting via magnetic dipole–
dipole interaction (1) and modied Gay–Berne potential:58–60

UGB

!
ui; uj ; rij

"
¼

%
43ð$Þ½A12ð$Þ $ A6ð$Þ' þ 3ð$Þ; rij # rc
0; rij . rc;

(8)

where

Að$ÞhA
&
ui; uj ; r̂ij

'
¼ s0

.&
rij $ s

&
ui; uj; r̂ij

'
þ s0

'
;

s
&
ui; uj; r̂ij

'
¼ s0

"
1$ cðX0Þ

2
(
(&

r̂ij$ui þ r̂ij$uj
'2

1þ cðX0Þui$uj

þ

&
r̂ij$ui $ r̂ij$uj

'2

1$ cðX0Þui$uj

)#$ 1
2

;

3ð$Þh3
!
ui; uj

"
¼ 30

h
1$ c2ðX0Þ

!
ui$uj

"2i$ 1
2:

Here, r̂ ¼ rij/rij ¼ (ri $ rj)/rij is the unit vector, coaligned with
the vector connecting particle centres, ui(j) is the unit vector

Fig. 6 Energy per particle, calculated for magnetite (with 2a ¼ 10 nm), in a
bracelet (violet solid line) and in a carpet (blue solid line) versus n. (a) X0 ¼ 1.4 and
(b) X0 ¼ 10. Dashed lines are the asymptotes provided by eqn (7). The absolute
values along the ordinate axes were obtained using the value of material satu-
ration magnetisation 480 kA m$1 (as for magnetite) and were multiplied by 1019.

Fig. 7 Ground state structures found in this manuscript for particles with various
anisotropy in both two and three dimensions.
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Antiparallel pair is formed for the ellipsoids 
with the dipole along the long axes 

All ground state structures of ellipsoids have 
a vanishing total dipole moment 

The susceptibility decreases with the 
elongation 

Do not make particles 
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magnetically responsive system	  
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See also: Aleksey Ruditskiy et al, Soft Matter, 2013

Anisotropy: 
    Magnetic Janus Particles (MJP) vs 
            Capped Colloids (CC) 

Behaviour of magnetic Janus-like colloids 4

Figure 1. The sketch of two Janus-like particles. Here, one sees the orientation of
two dipoles m1,(2) and the angles used in the analytical calculations.

the head-to-tail configuration is described by � =  = ⇡/2. Minimising the energy

(1) we obtain that the energetically advantageous configurations are very di↵erent from

those of the central dipoles and drastically change with growing value of the shift s. In

Fig. 2 we plot the ground state energy of the Janus-like particles as a function of the

shift, together with sketches of the ground state configurations.

Figure 2. The energy of the particle pair as a function of the shift s: For the Janus-
like particles, the head-to-tail orientation is the ground state only for s = 0. For high
shifts, the antiparallel pair of dipoles is formed and the energy diverges fast to �1.
The zipper configuration never provides a ground state; rather a perturbed chain is the
energetically favourable configuration in a small range of the initial shifts. Theoretical
prediction goes slightly below the simulation dots due to the soft-core steric potential
assumed in the computer experiment.

Surprisingly enough, and in contrast to the sd-particles studied earlier [1], even

at very small shifts, the standard head-to-tail orientation is not the most energetically

simulations magnetic nanoparticles are modeled as hard or soft

spheres which additionally interact via a dipole–dipole potential,

in other words, a so-called coarse-grained approach is employed.

In this way systems with different geometries, densities and

interaction strengths were investigated by many authors for more

than 15 years, here we provide only few of these works and

address references there in.31–39

As many of the properties of these systems are now under-

stood, in recent years, magnetic nanoparticles and colloids that

deviate in one way or another from the spherical shape were

examined. Some examples are dumbbells, i.e., two overlapping

spheres of opposite charges,40 magnetic core-shell particles,41

elongated ferroparticles,42 and colloidal particles with a magnetic

cap.43 All these models allow fine-tuning of various aspects of the

interactions in the system with the hope of understanding

the peculiarities of magnetic nanoparticles clustering, and – in

the long run – building tailored structures.

In this contribution, we introduce and examine another

‘‘unusual’’ model system, namely, magnetic particles in which the

dipole moment is shifted from the centre of mass towards the

particle’s surface. In this way, an additional anisotropy is

introduced to the particles, which results in quite different

microscopic properties of suspensions. We call such particles –

‘‘sd-particle’’, to abbreviate the term shifted dipole particles.

Although sd-particles are an abstract model, they show similar

structures to those found for colloids with a magnetic cap43 and

they help us to further understand peculiarities of the dipole–

dipole interaction.

In the following sections, first, the model is presented (section

2) and the interaction between two and three sd-particles is dis-

cussed in detail using analytical calculations and simulations,

allowing us to get an understanding of how neighboring particles

influence each other (section 3, 4). In section 5, we explain the

Monte Carlo simulation technique we use, and present results for

the ground state of small clusters. We conclude our contribution

with a first glance at magnetization properties of suspensions at

finite temperatures in section 6.

2 Model

In simulations and analytical calculations, magnetic nano-

particles are typically modeled as hard or soft spheres with

a magnetic dipole moment located at their centre. They interact

via the dipole–dipole interaction

UdðijÞ ¼ $ m0

4p

!
3
ðmi$rijÞðmj$rijÞ

r5
$ ðmi$mjÞ

r3

"
;

rij ¼ ri $ rj ;
##rij

## ¼ r;

where m0 is the vacuum permeability andmi andmj are the dipole

moments of the particles, respectively. This interaction for the

case of hard spheres (the minimal distance between two dipoles in

this case is determined by the hard sphere diameter) has its global

minimum, when the particles are touching and the dipole

moments together with the displacement vector rij are aligned

parallel. A second – local – minimum is found, when the dipole

moments are aligned anti-parallel and the vector connecting the

center of the particles is perpendicular to the dipole moments.

This local minimum will become important for sd-particles.

In sd-particles – the model we introduce in this contribution –

the dipole moment is not located at the centre of mass of the

particle but it is rather shifted outwards towards the particle’s

surface, while still pointing outwards, parallel to the vector

connecting the centre of mass and the position of the dipole

moment. Thus, the particle is symmetric with respect to a rota-

tion around the vector pointing from centre of mass to the dipole

moment. The most important consequence of the shift of the

dipole moment is that the distance between the dipoles now

depends on the sd-particles’ orientation.

A sketch of two sd-particles can be seen in Fig. 1. In the next

section, we examine the interaction of two and three such

particles and find new surprising ground state structures.

3 Interaction of two sd-particles

Even though we do not constrain the magnetic moments in one

plane in this paper, in the sections where we theoretically inves-

tigate the ground state structures of 2 and 3 sd-particles, we

neglect the out of plane fluctuation of dipoles. This approxima-

tion is based on the previous studies of ferroparticle ground state

structures in quasi-2D systems,30 where it was found that for low

temperatures the fluctuations of the moments in the direction

perpendicular to the plane in which particle centres were located,

vanished. Thus, the model depicted in Fig. 1 can be used to find

the ground state structures of sd-particles. The dimensionless

interaction energy for the pair of sd-particles can be written as

Uddð4; j; aÞ ¼
a2 cos2ðj$ 4Þ

ð2a2ð1$ cosðj$ 4ÞÞ þ 4þ 4aðcos4$ cosjÞÞ5=2

$ 2cosðj$ 4Þ½2a2 $ aðcosj$ cos4Þ $ 2'
ð2a2ð1$ cosðj$ 4ÞÞ þ 4þ 4aðcos4$ cosjÞÞ5=2

$ 6½aðcosj$ cos4Þ þ 2cos4cosj' þ 3a2

ð2a2ð1$ cosðj$ 4ÞÞ þ 4þ 4aðcos4$ cosjÞÞ5=2

(1)

Fig. 1 This figure illustrates the geometry that we consider for two

interacting sd-particles of radius R. Both dipole moments are placed at

a distance d from the respective particle’s centre. Both particles can

rotate, and the dipole vector always points outwards radially. The

distance between the dipole moments is denoted by r12. 4 is the angle

between the z axis and the second magnetic moment, m2, and j is the

angle between the z axis and the first magnetic moment, m1.

5218 | Soft Matter, 2011, 7, 5217–5227 This journal is ª The Royal Society of Chemistry 2011
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Behaviour of magnetic Janus-like colloids 3

[33]. Applying an external electric or magnetic field one can assemble such magnetic

Janus particles in staggered chains, chain-like or mesh-like superstructures and double

and staggered chains. While magnetic field serves to magnetise the caps and manipulate

the particles, the influence of an electric field can be of two origins. Firstly, the

semiconducting nature of Fe3O4 makes it responsive to an AC electric field [36];

secondly, if the nonmagnetic part of the particle has an electric dipole, which orientation

is bound to that of the magnetic moment, as in the work [33], the magnetisation of the

system can be manipulated by an electric field. Detailed analysis of the structures

observed in magnetic Janus particles can be found in works [34, 35, 36, 37]. As

for the theory of magnetic Janus particles, to our knowledge there is only one work

[25] addressing the subject; however its focus is shifted from the Janus particles and

the investigation sheds the light on the self-assembly of sd-particles (particles with

dipoles shifted radially outwards out of the particle centre of mass) with various dipolar

orientations.

We would, on the contrary, aim at investigating only one possible dipolar orientation

and use the shift of the dipole, which in Janus particles correspond to the size of the

magnetic side, as a control parameter to investigate both ground state structures and

thermodynamically equilibrium self-assembly. The manuscript is organised as follows.

The first section is dedicated to the ground states of small clusters. In the second section

we study structural properties of magnetic Janus-like particles both without and with an

applied magnetic field at room temperature. The manuscript ends with a brief summary

and outlook.

2. Ground states: Small Clusters

We investigate a quasi two-dimensional system, in which all particle centres are fixed

in one plane, whereas the dipoles are free to rotate. The choice of this geometry was

driven by the experimental approaches, used for investigations of magnetic colloids, such

as cryo-TEM [?] or optical, scanning electron, and atomic force microscopies [34, 36].

In the first step we assume particles (diameter d) to have a permanent dipole moment

m shifted out of the particle centre (by dimensionless value of the shift s = 2S/d) and

oriented perpendicular to the particle radius (which more closely corresponds to the

system studied in [31]). For two particles, the geometry is presented in Fig. 1.

Introducing x = sin [( � �) /2] and y = sin [( + �) /2] an interparticle magnetic

dipole-dipole interaction between two Janus-like particles at close contact can be written

in the following form:

UJ
dd(s, x, y) =

s2x4 � 2sx3y + (s2 + 1) x2 � 2sxy + 3y2 � 2

(s2x2 � 2sxy + 1)5/2
. (1)

Note that in contrast to the interaction of two particles with central dipoles, the

interdipolar distance is changing depending on the mutual orientations of the dipoles.

The units of this interaction are that of the ratio m2/d3. For the Janus-like particles,
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Figure 1. The sketch of two Janus-like particles. Here, one sees the orientation of
two dipoles m1,(2) and the angles used in the analytical calculations.

the head-to-tail configuration is described by � =  = ⇡/2. Minimising the energy

(1) we obtain that the energetically advantageous configurations are very di↵erent from

those of the central dipoles and drastically change with growing value of the shift s. In

Fig. 2 we plot the ground state energy of the Janus-like particles as a function of the

shift, together with sketches of the ground state configurations.

Figure 2. The energy of the particle pair as a function of the shift s: For the Janus-
like particles, the head-to-tail orientation is the ground state only for s = 0. For high
shifts, the antiparallel pair of dipoles is formed and the energy diverges fast to �1.
The zipper configuration never provides a ground state; rather a perturbed chain is the
energetically favourable configuration in a small range of the initial shifts. Theoretical
prediction goes slightly below the simulation dots due to the soft-core steric potential
assumed in the computer experiment.

Surprisingly enough, and in contrast to the sd-particles studied earlier [1], even

at very small shifts, the standard head-to-tail orientation is not the most energetically

ULJ(r) = 4✏s[(�/r)
12 � (�/r)6],

UWCA(r) =

=

⇢
ULJ(r)� ULJ(rcut), r < rcut
0, r � rcut

.
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contribute to the energy of the ground state. At even higher shifts the second transition

will take place, namely the four-particle ring will split into two antiparallel particle

pairs.

Figure 4. Left: structures observed in parallel tempering for various shifts and various
number of particles. Here, one clearly sees that the larger clusters are made of two- and
three-particle ground states building blocks. Right: the energies of the ground state
structures calculated per particle as functions of the shift; circles are the simulation
data for the total energy, triangles are the simulation data for the pure magnetic
energy, the solid line is the analytical expression for the total energy of the ring with
the corresponding radius [8]. The structural transition occurs at the value of the shift
at which the simulation data becomes lower than the analytical energy of a ring.

Thus, the main conclusion of this section is the following. For two particles, the

energetically most advantageous configurations are the perturbed chain, in which a

shorter distance between the dipoles provides a larger energy gain than the loss due

of the imperfect head-to-tail orientation, if the shifts are small; for larger shifts two

particles tend to orient their dipoles antiparallely. Three-particle ground states are

the zipper, the triangle and the antiparallel pair with the third particle being almost

irrelevant. These findings allow us to predict the structures of small clusters ground

states as the two- and three-particle ones play the part of building blocks. In the next

section we will consider if there is any reminiscence of the ground state structures in

the thermodynamic behaviour of the larger systems of Janus-like particles.

MJP: Ground States

E.Novak, E.Pyanzina, SK, JP:CM, 2015
Varenna, July 2015
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4.3 The field-free case

4.3.1 Ground states of two sd-particles

In this section, the ground states for two sd-particles at close contact is obtained.
This is done by using approximate results from a simulated annealing simulation
to identify candidates for ground states and the symmetries they obey. Based
on these results, a simplified analytical minimization problem is formulated by
exploiting these symmetries. The material was first published in Refs. [33, 31]

The analytical derivation is done under the assumption that for the ground
states, the dipole vectors as well as the vector connecting the particles’ centers
all lie in a plane. In Ref. [54], it has been shown that this is true for the ground
states of particles with central dipoles in a monolayer. Furthermore, as will
be seen later, the ground states of sd-particles obtained analytically under this
assumption match those obtained by computer simulations which do not make
this assumption.

The energy of two sd-particles is given by

Udd(', , s) =
s2 cos2( � ')� 2 cos( � ')

⇥
2s2 � s (cos � cos')� 2

⇤

(2s2 (1� cos( � ')) + 4 + 4s (cos'� cos ))5/2
+

(4.2)

+
�6 [s(cos � cos') + 2 cos' cos ] + 3s2

(2s2 (1� cos( � ')) + 4 + 4s (cos'� cos ))5/2
.

Here, s is the shift of the dipole moment normalized by the particle radius. The
angles ', and  are defined as in Fig. 4.1. This equation is obtained by inserting
the distance between the dipoles at given angles and shift into the equation for
the dipole-dipole interaction. All energies in this section are normalized by
µ
0

m2/4⇡R3.
To obtain the ground state configurations for a given shift, it is necessary to

minimize Eqn. 4.2 with respect to the angles ' and  .
The details of the analytical calculations can be found in Ref. [33]. Four

qualitatively di↵erent regimes can be identified depending on the shift. For no
shift (s = 0), the global minimum and maximum correspond to the head-to-
tail orientation and head-to-head configuration of moments, respectively. This
minimum, albeit continuously flattening with increasing shift, remains the global
one up to the value s = 0.408. This can be seen in the first part of figure
4.2a, where the angles ' and  in the ground state are plotted as a function
of the relative shift s. After the shift reaches s = 0.408 the configuration
of dipoles changes drastically. This is because the energy of the previous local
minimum has decreased and became equal to the energy of the global minimum.
Thus, one can see in Fig. 4.2a that, without loss of generality, the moment of
the upper particle in its ground state configuration starts rotating clockwise
with increasing s. Hence, ' decreases fast from 2⇡ until it reaches the value
'(0.597) ' 1.2⇡. By that time the moment of the lower particle moves only
slightly and reaches the value  (0.597) ' 0.2⇡. Hence, at s = 0.597 the moments
reach an antiparallel orientation (' �  = ⇡). The description of this second

4.2. MODEL 41

Figure 4.1: Sketch of two interacting sd-particles of radius R in two dimensions.
Both dipole moments are placed at a distance d from the respective particle’s
centre. Both particles can rotate, and the dipole vector always points outwards
radially. Hence, a rotation of the particle implies a rotation of the dipole mo-
ment, and vice versa. The distance between the dipole moments is denoted by
r
12

and in contrast to particles with central dipoles, it depends on the particles’
orientation. ' is the angle between the z axis and the second magnetic moment,
m

2

, and  is the angle between the z axis and the first magnetic moment, m
1

.

UWCA(r) =

⇢
ULJ(r)� ULJ(rcut), r < rcut
0, r � rcut

ULJ(r) = 4✏s[(�/r)
12 � (�/r)6]
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Figure 4.4: Lowest energy states of small clusters obtained using simulated

annealing. T
he number next to

every configuratio
n denotes the

shift value s at

which the structure was observed. At low shifts, rings
and chains are formed.

At higher shifts, the structures become more closely packed where the dipoles

take on a triangular or an anti-parallel
configuratio

n. The right most number

N stands for th
e number of partic

les.

54 CHAPTER 4. FERROFLUIDS WITH SHIFTED-DIPOLE PARTICLES

Figure 4.12: A stable cluster containing twelve colloidal particles observed in

experiment and adapted from the paper of Baraban et al.[7]. (Right: photogra-

phy of the observed cluster, left: illustration of the arrangement of the magnetic

moment in the cluster).

s = 0.2
s = 0.4

s = 0.47

s = 0.5
s = 0.62

s = 0.63

Figure 4.13: Magic number cluster structure of twelve particles obtained from

the simulations with the sd-particle model.

Klinkigt, Weeber, SK, Holm, 2011-2013

Antiparallel pairs win! M=0 No metastable 
states!
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Figure 4.3: Snapshots of ground states of three sd-particles (left) and plot of

the the analytical dependence of the angles '/⇡ (red, middle dashed curve),

 /⇡ (black, upper solid curve) and ⇠/⇡ (blue, lower dash-dotted curve) on the

value of the shift s. There are four qualitatively di↵erent regimes: a chain with

constant energy provides the ground state for s 2 (0, 0.258); the next ground

state is given by the triangular configuration for s 2 (0.258, 0.799); the third

interval of shifts is s 2 (0.799, 0.848), where the magnetic moment of the 3rd

sd-particle is immobile (⇠/⇡ = 1/2), and the 1st and the 2nd moments rotate

symmetrically inwards towards  /⇡ ! 5/3 and '/⇡ ! 2/3; the ground state

becomes totally asymmetrical at s = 0.848 when the moment of the 3rd particle

starts rotating towards the moment of the 1st particle ⇠/⇡ ! 2/3, the moment of

the 1st particle keeps rotating counter clockwise  /⇡ ! 5/3 until the symmetry

is partially restored at the value of s = 0.963, when  /⇡ � ⇠/⇡ = 1 and the

angles keep changing linearly (⇠/⇡ = 0.644s+0.023,  /⇡ = ⇠/⇡+1) decreasing

the distance between the moments to zero and driving to an energy divergence

similar to the one observed for two sd-particles In the last regime, the moment

of the second sd-particle slowly rotates clockwise till '/⇡ = 1.264, after that

the rotation stops.

Varenna, July 2015
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Figure 4.27: Snapshots of suspensions of sd-particles at shift s = 0 (top) and
s = 0.725 (bottom) for no external magnetic field (left) and a field of ↵ = 12
(right).
It can be seen that, in the case of central dipoles, the application of an external
field leads to strong chain formation in the suspension. When the dipole mo-
ments are shifted towards the particles’ surface, the dipoles are still aligned to
the field but no chains form. At the same time, small clusters with anti-parallel
dipole alignment are broken apart by the external field.
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Figure 4.32: Magnetization curves (upper part) and di↵erence between observed

magnetization curve and that for non-interacting dipoles (lower part) for a 2d

Suspension at an area fraction of � = 0.21 (left) and a 3D system at a volume

fraction of � = 0.03 (right). In both systems, the dipolar interaction parameter

is �⇤ = 4. It can be seen that the magnetization curve is significantly above the

Langevin curve for zero shift. It falls back toward the Langevin curve for higher

shifts, as the cluster size decreases and neighboring particles tend to have more

anti-parallel orientations. For some configurations, the magnetization curve

even falls below the Langevin law. Note that on the left hand side, the curves

for s = 0.65 and s = 0.8 co-incide. Small di↵erences can be observed on the

right hand side.

Only when the field is stronger, the clusters get broken apart, as the magnetic

particles get aligned by the field. In some cases, this leads to a decrease of

cluster size versus the applied field as shown in Fig. 4.30. This is quite opposite

to what is observed in suspensions with central dipoles [28, 36].

In addition to the complete magnetization curves, it is helpful to study the

initial susceptibility, i.e. the slope of the magnetization curve in the limit of zero

external field. This will allow for a quantitative comparison of the dependency of

the low-field magnetization behavior on parameters like the shift. In computer

simulations, the initial susceptibility can be obtained either from a linear fit to

the magnetization curve, or, typically more accurately, from the fluctuation of

the system’s total magnetic moment at zero external field[63]. Here we employ

the latter approach. The fluctuation formula for the susceptibility for metallic

Ewald boundary conditions at infinity is given by:

� = �hM 2i
4⇡r3N

,

(4.25)

where M is the total dipole moment of the system. In contrast to Ref. [63], this

is written in terms of the volume fraction � rather than the number density. In

Fig. 4.33, the initial susceptibility is shown for volume fractions between 0.03

and 0.09 and dipolar interaction parameters of �⇤ = 3 and �⇤ = 4. It can be

seen that the susceptibility drops by a factor of approximately three when the

shift is increased. For strong interaction parameters, the initial susceptibility

falls below the Langevin susceptibility at a shift of approximately 0.65. For even

Susceptibility lower  
than the Langevin one!

Klinkigt, Weeber, SK, Holm, 2011-2013

Spatially isotropic  
in field!
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The antiparallel pair and a ring 
of dipoles become the most 
favourable configurations

Janus-like particles form rings or 
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states. Zipper is the ground state for 
a small shift range only



Conclusions
 Self-assembly of various building 

blocks can be used to control the 
magnetic response in dipolar soft 
matter, both to enhance and to weaken
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Figure 4.12: A stable cluster containing twelve colloidal particles observed in
experiment and adapted from the paper of Baraban et al.[7]. (Right: photogra-
phy of the observed cluster, left: illustration of the arrangement of the magnetic
moment in the cluster).

s = 0.2 s = 0.4 s = 0.47

s = 0.5 s = 0.62 s = 0.63

Figure 4.13: Magic number cluster structure of twelve particles obtained from
the simulations with the sd-particle model.

insignificant parameters. Therefore, in simulation their values
are set to unity to ensure convenient relaxation to equilibrium.
The system was classified in reduced units defined by the cube
side length h, the particle mass M and energy parameter ε.
The reduced forms of relevant quantities are as follows: length
r* = r/h, i.e. corresponding to a reduced cube length of h* = 1,
magnetic moment m*2 = m2/h3ε, time t* = t (ε/Mh2)1/2 and
temperature T* = kT/ε. The energy parameter ε was chosen in a
manner to define a constant magnetic moment of m* = 1. It
follows that the λ parameter scales only as λ ∝ 1/T*. The simu-
lation time-step was set as Δt* = 0.001.

The REMD method was used in combination with LD in
the following manner. A particular temperature range {TR*}
was selected, representing R individual LD simulations (or
replicas) at specific temperatures. Temperatures were sampled
from an exponential distribution, beginning at a sufficiently
high ambient temperature to a target low temperature. A temp-
erature of at least T* = 0.001 was reached for each cluster size.
Each replica consisted of an initial random configuration of
cubic particles for the specific cluster size. A single cycle is
defined as the propagation of each replica for 1 × 103 time-
steps for equilibration, followed by a further 5 × 103 time-steps
for data collection. After the completion of each cycle, an
attempt was made to exchange configurations between replicas
with temperatures adjacent to one another. This exchange is
subject to a metropolis criterion; the probability of an
exchange between two replicas is min (1,exp[−(1/Tb − 1/Ta)-
(Ua − Ub)/k]), where Ux is the total potential energy of configur-
ation x at a temperature Tx. A minimum of 1500 cycles was per-
formed during each simulation. Cluster sizes ranged from
2–25 for the [001] system and 2–16 for [111]. The number of
replicas was adjusted accordingly to ensure acceptance ratios
were no lower than 20%.

2.3. Theoretical considerations

Throughout our analytical treatment of possible cluster geome-
tries, we assumed perfect cube geometry with a point dipole
orientated in either the [001] or [111] directions (see Fig. 2). In
order to make analytical predictions of candidate ground state
structures tractable, a number of constraints were required.
The first was to confine particles to a Q2D layer, which in turn
is quite convenient as many experimental systems have this
dimensionality. Secondly, calculations were performed on
ideal structures with precisely defined geometries, i.e. rigid

structures based on regular arrays of particles. The methods
used here are in line with those applied to spherical particles
with and without an external field, as well as to S-D particles,
rods and ellipsoids.6,11,56–58 It should be emphasised that in
this work we are considering the zero field regime in both
theory and simulation. It is expected that chain and ring struc-
tures characteristic of spherical particles will also manifest in
systems of nanocubes, albeit in a unique manner.

3. Ground state structure of particle
dimers
To begin, it is useful to consider the energy of configurations
of just two dipoles. The lowest energy structures will likely be
the basis for clusters of larger numbers of particles. The
classic collinear head-to-tail dipole structure (the lowest energy
dimer for dipolar spheres) will be used as a point of reference.
For spherical particles, the ground state structure can be
derived quite intuitively. The effect of the particle geometry is
not so intuitively rationalised and, as such, it is useful to
explore the candidates for cube dimers in more detail. In order
to determine their energies, consider the coordinate system
given in Fig. 3(a), shown for [111] but equally applicable to
[001]. The dipole of the first particle is localised at the origin,
resulting in the following dipolar interaction,

Udð1; 2Þ ¼ $ jmj2

jr12j3
3 cos θ sinω sin θ cosðϕ$ ψÞð½ þ cos θ cosωÞ':

ð5Þ

The angles (θ,φ) define the orientation of the displacement
vector and (ω,ψ) define the relative orientation of the second
dipole.

When determining the low energy configuration, a sensible
approach is to place the cubes at the closest possible contact
in order to reduce the distance between dipoles. From here, all

Fig. 2 Theoretical calculations of cluster energies assumed mono-
disperse perfect cubes as shown. Two systems were considered, one with
point dipoles orientated in the [001] crystallographic direction (left hand
side), the other pointed in the direction of [111] (right hand side).

Fig. 3 Ground state configurations for dipolar cube dimers: (a) Coordi-
nate system used for the determination of the dimer energies, shown for
[111] but applicable for [001]. The displacement of the second dipole is
given by coordinates (r,θ,φ) and its orientation by (ω,ψ). (b) Predicted
ground state structure of a [001] dimer, a collinear head-to-tail arrange-
ment. (c) Predicted ground state structure of a [111] dimer; the head-to-
tail structure has adopted a zig-zag pattern.
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Conclusions

 However, it is difficult to increase 
the susceptibility, as if the structure’s 
energy grows, it tends to close the 
magnetic flux
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