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The story line of my (4) lectures: 

Self – assembly onto templates:  
 
 - The grand ensemble in stat phyisics (1) 
 
 -  Langmuir adsorption (1) 
 
 -  template has > 1 state : allostery / MWC model (1) 
 
 - multiple component adsorption onto templates with 
    multiple sites:  genetic regulation (2) 

 
Self – assembly without templates: 
 
 -  (empty) virus capsids  (3) 
 
 -  colloid and protein clusters stabilized by (long-range) electrostatic  
    interactions (4) 

 
  



Self-assembly on templates: reversible adsorption & allostery 

Part 1: ‘simple’ adsorption –> template has single state 

Part 2: allostery –> template has >1 state 



Ensembles  

E, V, N T, V, N T, V, μ 



Ensembles: pick the one that is convenient for your problem – 
                     in terms of constraints 
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density of states 

Canonical partition function 

Grand (canonical) partition function 

Laplace transforms 

Lagrange multiplier for N (total) 

Lagrange multiplier for E (total) 

Average # of particles 

Probability distribution of the # of particles  
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First published 1902 

... the most brilliant  
person most people 
have never heard of. 
 
Bill Bryson  



First published 1902 

Grand ensemble is the ensemble 
of choice if fixed particle constraint(s) 
become awkward.. 
 
..such as in compartmentalization / 
multi – component demixing. 



uncorrelated adsorption on template with nmax sites  

μ, nmax, T 

… that’s the [ weight of an empty site + weight of an occupied site ]^nmax  



Take Np of those templates 

In the case of uncorrelated adsorption, spatial distribution of lattice sites 
irrelevant. --> may as well take single lattice with Np x nmax sites. 

For a single template 







= nmax 

Fluctuations 



λ is Lagrange multiplier coupled to conservation of adsorbing species 

Here the # of templates enters 
the problem ... could also be a distribution 
of sizes.  

Occupancy of a single template is coupled 
to all other (Np) templates. 
 
Method of undetermined (Lagrange)  
multipliers is ‘designed’ for these kind of  
problems. 

Express boundary condition in λ via <n>, x1* and solve for λ 
-> Can be generalized for any number of reservoirs (of arbitrary nature). <-  



λ is Lagrange multiplier coupled to conservation of adsorbing species 



.. If                    ->   
 
.. If                    -> 
 
..            is the coexisting  (with aggregates)  concentration of monomers  
 
.. analog of the ‘cmc’ for molecules / particles adsorbing onto templates 
 
.. here, x1*  increases again once N > Nads 
 
-> all association equilibria have a critical concentration below which 
      there is no aggregation.  
     
 -> check, e.g. for dimer association  [F. Sciortino lecture]. 
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Toy models in stat physics: The Ising model 

Just two spin states 
coupling parameter 
on/off external field 

(ferro) 
magnetism 

phase transitions 
critical point  
 (scaling) 

scale invariance (RG) 
 
... many, many more examples 



Toy models in molecular biology: MWC 

The statistical mechanics of ‘all or nothing’ 
(in small systems)  

It took a while before this paper was picked up ... Why?  



Original papers of new concepts are not always easy to read ... 
      ... but always fascinating!  



Oxygen binding by red blood cells: heme groups 

oxygen pressure 



Basic idea of  MWC theory: ground state (T) has weak affinity for 
ligand, excited state (R) has strong(er) affinity: cooperativity  

(T) == ‘Tense’ state 
(R) == ‘Relaxed’ state 

Translate these ideas in language of grand ensemble  
      -> easy(er) to generalize  



(T) == ‘Tense’ state 

Translate these ideas in language of grand ensemble  
       

(R) == ‘Relaxed’ state 
self-energy: 0 self-energy: ε 

binding-energy: εT  binding-energy: εR  

weight: 

oxygen 
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state state weight weight 

1 e 

4

1
Te

  
 
 

22
4

2
Te

  
 
 

33
4

3
Te

  
 
 

44 Te
 

4

1
Re e

  
 
 

22
4

2
Re e

  
 
 

33
4

3
Re e

  
 
 

44 Re e
 

+ + 



Self-energy ε > 0       binding energies |εR| > |εT|   



oxygen pressure 



MWC Langmuir 



Genomic DNA can be in a compact state with (effectively) low affinity for  
transcription factors (TF) and and ‘open’ state with high(er) affinity : 

Binding sites  
for TF’s A, B 



+ + 
x x 



Probability of open / closed state 

Probability of occupied A,  B sites:  



Ligand - gated ion channels 



Outlook : allostery in soft matter – e.g., 

ε0 

ε1 > ε0 

εb
(0) 

εb
(1) < εb
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+ 

dream line 

+ depletion interaction 





Legendre transforms & thermodynamic potentials 
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In terms of fugacity 

Thermodynamics – internal energy 

Combine with definition of the grand potential 

μ, V, T 

Can (and will) generalize 
to multiple components /  
reservoirs  


