Statistical mechanics of genetic regulation

Universiteit Utrecht

THE BOLTZMANN GENOME

Varenna July 2015

Central Dogma of Molecular Biology

Genetic regulatory networks

Gene circuits

- Models of On / Off states of genes are used to describe genetic regulatory networks.
- Understanding of processes are dominated by qualitative "cartoons".

D. Schultz, P. G. Wolynes, E. B. Jacob and J. N. Onuchic, PNAS 106 (2009).

Electronic Circuits

- Quantitatively well understood
- Input-output depends on small, well known set of parameters

Is it possible to get a more quantitative description of cellular decision making?

Theory as prejudice

Prejudice in chemistry:

Antoine Lavoisier (1743–1794)

Prejudice in solid-state physics:

Dulong – Petit law (1819)

Prejudice: heat capacity of ALL solids = 3Nk, independent of temperature ('classical').

Figure 11-5 The measured specific heat at constant volume, as a function of temperature, for several materials. Horizontal line I represents the Dulong-Petit law, and curve II represents the predictions of the Debye theory.

Prejudice in solid-state physics:

Dulong – Petit law (1819)

Prejudice: heat capacity of ALL solids = 3Nk, independent of temperature ('classical').

Figure 11-5 The measured specific heat at constant volume, as a function of temperature, for several materials. Horizontal line I represents the Dulong-Petit law, and curve II represents the predictions of the Debye theory.

Debye model (1912): phonons in a box -

Solid-state equivalent of Planck's law of black body radiation -> fundamental NEW concept ('QM')

Prejudice: heat capacity of ALL solids obey universal behavior when properly scaled.

Quantitatively measuring gene expression in vivo

R. C. Brewster*, F. M. Weinert*, H. G. Garcia, D. Song, M. Rydenfelt and R. Phillips, Cell 156 (2014).

Biology & thermodynamics / statistical mechanics

 $R_{\rm r}$ repressors, P RNAP,

Theory:

(RNAP = RNA polymerase -> provides first step in gene expression if adsorbed onto promoter)

Experiments : Fold-change = $\frac{\text{gene expression rate in presence of Regulation Factor}}{\text{gene expression rate in absence of Regulation Factor}}$

average # adsorbed RNAP onto promoter sites in the **presence** of repressors

average # adsorbed RNAP onto promoter sites in the **absence** of repressors

Adsorption of repressor -> blocks promoter availability for RNAP Calculate Fold-change via $\langle P_s \rangle$, $\langle P_s (R=0) \rangle$ from statistical mechanics

Fold-change =
$$\frac{\langle P_{\rm s} \rangle}{\langle P_{\rm s}(R=0) \rangle}$$
,

- Regulatory proteins typically (roughly 75%) regulate more than one gene
- Genes often exist in high copy number on:
 - multiple identical chromosomal copies,
 - plasmids
 - viral vectors

Genetic regulation in the grand ensemble

Take genome in equilibrium with (virtual) repressor and RNAP bath of constant chemical potentials μ_r , μ_p (not constant NUMBERS)

- Consider SPECIFIC binding sites, weight binding of component i onto site j by $\lambda_i e^{-\beta \varepsilon_{ij}} = e^{-\beta(\varepsilon_{ij} - \mu_i)}$
- Solve for Lagrange multiplier $\lambda_i = e^{\beta \mu_i}$ afterwards by applying appropriate conservation relation distribution of P, R over any number and type of binding sites is taken care of by ultimate value of λ_i

STATE

WEIGHT

1

0

Fugacities $\lambda_p = e^{\beta\mu_p} \ \lambda_r = e^{\beta\mu_r}$

$$\Xi = \sum_{p=0}^{1} \sum_{r=0}^{1-p} \lambda_p^p \lambda_r^r Z(p,r) = 1 + \lambda_p x_p + \lambda_r x_s \qquad x_i = e^{-\beta \varepsilon_i}$$

Fold-change =
$$\frac{\langle P_{s} \rangle}{\langle P_{s}(R=0) \rangle}$$
 $< P_{s} >= \frac{\lambda_{p} e^{-\beta \varepsilon_{p}}}{1 + \lambda_{p} e^{-\beta \varepsilon_{p}} + \lambda_{r} e^{-\beta \varepsilon_{s}}}$
 $< P_{s}(R=0) >= \frac{\lambda_{p} e^{-\beta \varepsilon_{p}}}{1 + \lambda_{p} e^{-\beta \varepsilon_{p}}}$

Using
$$|\varepsilon_p| << |\varepsilon_s| \rightarrow$$
 weak promoter limit $\lambda_p e^{-\beta \epsilon_p} \ll 1$

Fold-change = $\frac{1}{1 + \lambda_{\rm r} e^{-\beta \epsilon_{\rm s}}}$

Generalization to any # of genes, competing sites etc --- implicit in fugacity λ_r !

RNAP does not appear in the equation

F. Weinert, R. Brewster, M. Rydenfelt, R. Phillips, WKK, Phys Rev Lett 113 (2014)

Add 'competing' reservoirs, each with N sites and repressor adsorption energy ε: non-specific, competitor, ...

$$\begin{aligned} & \text{Specific: } \epsilon = \epsilon_{\text{s}} & \text{Non-specific: set } \epsilon = 0 \\ & \text{N=N}_{\text{s}} & \text{Non-specific: set } \epsilon = 0 \\ & \text{N=N}_{\text{ns}} & \text{Compatitor (decoy) sites} \\ & \langle R_{\text{ns}} \rangle = N_{\text{ns}} \frac{\lambda_{\text{r}}}{1 + \lambda_{\text{r}}} & \epsilon = \epsilon_{\text{c}}; \text{N=N}_{\text{c}} \\ & R_{\text{s}} \rangle = N_{\text{s}} \frac{\lambda_{\text{r}} e^{-\beta\epsilon_{\text{s}}}}{1 + \lambda_{\text{r}} e^{-\beta\epsilon_{\text{s}}}} & \langle R_{\text{c}} \rangle = N_{\text{c}} \frac{\lambda_{\text{r}} e^{-\beta\epsilon_{\text{c}}}}{1 + \lambda_{\text{r}} e^{-\beta\epsilon_{\text{c}}}} \end{aligned}$$

One λ that rules them all: value follows from repressor conservation

$$R = \langle R_{\rm s} \rangle + \langle R_{\rm c} \rangle + \langle R_{\rm ns} \rangle$$

Leads to $a\lambda_{\rm r}^3 + b\lambda_{\rm r}^2 + c\lambda_{\rm r} - R = 0$

3 reservoirs -> cubic equation

$$a = e^{\beta\epsilon_{\rm c}} e^{\beta\epsilon_{\rm s}} N_{\rm ns}$$

$$b = (e^{\beta\epsilon_{\rm c}} + e^{\beta\epsilon_{\rm s}}) N_{\rm ns} + e^{\beta\epsilon_{\rm c}} e^{\beta\epsilon_{\rm s}} (N_{\rm s} + N_{\rm c} - R)$$

$$c = N_{\rm ns} + e^{\beta\epsilon_{\rm c}} (N_{\rm c} - R) + e^{\beta\epsilon_{\rm s}} (N_{\rm s} - R)$$

With (real, +) solution

$$\lambda_{r} = \Delta_{+} + \Delta_{-} - \frac{b}{3a} \qquad \qquad \Delta_{\pm} = \left(C_{2} \pm \sqrt{C_{1}^{3} + C_{2}^{2}}\right)^{1/3}, C_{1} = (c/3a) - (b/3a)^{2}$$
$$C_{2} = (bc/6a^{2}) + (R/2a) - (b/3a)^{3}$$

binding sites, binding energies, # repressors reflected in value of Lagrange multiplier $\lambda_{\rm r}$

Fold-change =
$$\frac{1}{1 + \lambda_{\rm r} e^{-\beta \epsilon_{\rm s}}}$$

Weinert, F. M., Brewster, R. C., Rydenfelt, M., Phillips, R., & Kegel, W. K. (2014) *Physical review letters*, 113(25), 258101.

Weinert, F. M., Brewster, R. C., Rydenfelt, M., Phillips, R., & Kegel, W. K. (2014) *Physical review letters*, 113(25), 258101.

Weinert, F. M., Brewster, R. C., Rydenfelt, M., Phillips, R., & Kegel, W. K. (2014) *Physical review letters*, 113(25), 258101.

Weinert, F. M., Brewster, R. C., Rydenfelt, M., Phillips, R., & Kegel, W. K. (2014) *Physical review letters*, 113(25), 258101.

green line is the canonical result for $N_s = 1$

Ensemble equivalence

Take single gene ($N_s = 1$) + non-specific reservoirs (N_{ns}). Enumerate configurations taking R = constant (and weak polymerase limit) -> canonical result:

Fold-change = $\frac{1}{1 + (R / N_{ns})e^{-\beta \varepsilon_s}}$ Compare with grand canonical expression, using that $\lambda_r \approx \frac{\langle R_{ns} \rangle}{N_{ns}}$

Fold-change =
$$\frac{1}{1 + (\langle R_{ns} \rangle / N_{ns})e^{-\beta \varepsilon_s}}$$

Asymptotically equal for large R - so, NOT if R=O(1).

In GC, at small R, there is a finite probability that $R \neq \langle R_s \rangle + \langle R_{ns} \rangle$

Add competitor sites (decoys)

Looks like 'collective' or 'allosteric' mechanism – yet 'simple' adsorption

More complex regulatory scenario's: DNA looping

 $\Xi = \sum_{p=0} \sum_{r=0} \lambda_p^p \lambda_r^r Z(p,r) = 1 + \lambda_p x_p + \lambda_r \left(x_a + x_m + x_a x_m x_L \right) + \lambda_p \lambda_r x_a x_p + \lambda_r^2 x_a x_m$

Complex regulatory scenario's can be expressed into universal scaling form:

$$fold-change = \begin{cases} \frac{1}{1+z_L} \text{ (looping)} & z_L = \frac{\lambda_r (x_m + x_a x_m x_L) + \lambda_r^2 x_a x_m}{1+\lambda_r x_a} \\ \frac{1}{1+z_{EL}}, & exclusive looping \\ \frac{1}{1+z_{EL}}, & exclusive looping \\ \frac{1}{2} + z_{EL}, & ex$$

Complex regulatory scenario's can be expressed into universal scaling form:

Prediction: A bacterial transistor

Strong non-linear Fold-change response **in the presence of decoys** -> Effective value of R is often regulated in cells. R can be active or inactive.

IN PROGRESS:

The full Lac-operon: 1 main operator, 2 auxiliary operators, 1 activator, activator-induced looping

Outlook: Does this work in cells of a eukaryote?

Outlook - Nucleosomes

Conclusions & further work

- Scaling of all the relevant available data implies: linear combination of effective concentration (λ) times Boltzmann factor fully determines the genetic activity. Mechanism == binding / unbinding of regulatory proteins.
- More reservoirs / lattices can be added leads to higher order polynomials in $\boldsymbol{\lambda}$
- Fake-genes & stat mech make quantitative predictions and falsification possible in biology theory provides PREJUDICE
- 'Coarse grain' multiple regulatory mechanisms into equivalent circuits with well-defined I/O's -> extendable to dynamics?
- Could this work in principle in eukariotic cells? How to treat 'compartments', chromatin 'action'?

Thank You

Rob Phillips

and

Franz Weinert

Mattias Rydenfelt

Jasper Landman

Rob Brewster

Quantitatively measuring gene expression

