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Self-Assembly of Diblock Copolymers 
in Selective Solvents
Non-selective solvent (good or theta for both blocks): 
solution of diblock coils

Reduce solvent quality for one block (T, p, pH, etc.)

Above critical micelle concentration CMC 
(temperature CMT) tadpoles self-assemble into 
micelles in order to lower interfacial energy.

Stabilization mechanism – steric repulsion 
between hydrophilic corona blocks

Hydrophobic block collapses into a globule 
converting diblock coils into tadpoles.



Interface – Corona Balance
Self-assembly is driven by the “desire” or core blocks 
to reduce interfacial energy (and thus area s per chain).

s
corona

core

This results in increasing overlap, steric 
repulsion, and elongation of corona 
blocks that limits the decrease of s.

core s

corona

Equilibrium properties of micelles are 
determined by the balance of corona 
and interfacial free energies.

Fcorona ~ Finterface >> kT



Shapes of Micelles
spherical cylindrical 

(worm-like)
planar 

(bilayer)

Crew-cut micelle: corona 
thickness H < core radius R

RH

Terminology of micellar hair-styles

Hairy (star-like ) micelle:
corona thickness
H > core radius R



FTotal= Fcorona+ Finterface+ Fcore

Balancing Free Energies Within Micelle

Free energy of the corona
depends on the solvent quality 
determined by measuring second 
virial coefficient (A2) of 
hydrophilic chain.

Surface free energy at the 
interface arises from the 
interaction of hydrophobic core 
blocks with water in corona.

Finterface= 4πRcore
2γ

Corona

Core
Rcore



Area per chain s in coronas of micelles of morphology j

s(r) = s(R)(r/R)j-1

planar j = 1  s(r) = const

cylindrical j = 2

spherical j = 3

R

r
s(R)

s(r)
core

Steric repulsion between corona chains is weakest 
in spherical and strongest in planar geometries.

Star-like spherical micelles are favorable 
for very long hydrophilic blocks.

Coronas Desire More Space
varies with distance r from core center

r

core

co
ro

na

s(R)



Elastic stretching of core blocks Fcore
depends on micelle morphology j

Core Free Energy Fcore

Rj

ϕ’’
NB

s

Hydrophobic interaction between core blocks B 
determines core volume fraction ϕ’’ and does not 
depend on micelle morphology j.

Fcore < Fcorona ~ Finterface

Equilibrium - lowest total free energy F = Fcore + Fcorona + Finterface

𝑭𝑭𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄
𝒌𝒌𝒌𝒌

= 𝒌𝒌𝒋𝒋
𝑹𝑹𝒋𝒋𝟐𝟐

𝒃𝒃𝟐𝟐𝑵𝑵𝑩𝑩
= 𝒌𝒌𝒋𝒋𝒋𝒋𝟐𝟐

𝒃𝒃𝟒𝟒𝑵𝑵𝑩𝑩

𝒔𝒔𝟐𝟐𝝓𝝓``𝟐𝟐

Core volume fraction ϕ`` = 𝑗𝑗
𝑏𝑏3𝑁𝑁𝑏𝑏
𝑠𝑠𝑅𝑅𝑗𝑗

𝑘𝑘1 =
π2

8
𝑘𝑘2 =

π2

16 𝑘𝑘3 =
3π2

80
Elastic free energy of core Fcore is the smallest 
term of total F.

s – interface area per chain

𝑅𝑅𝑗𝑗 = 𝑗𝑗
𝑏𝑏3𝑁𝑁𝑏𝑏
𝑠𝑠ϕ``

sRj/j – core volume per chain



Interfacial Free Energy Finterface
Interfacial free energy per chain

s - interface area per chain

γ – interfacial (surface) energy per monomer b2

Equilibrium - lowest total free energy F = Fcore + Fcorona + Finterface

𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
𝒌𝒌𝒌𝒌

= 𝜸𝜸
𝒔𝒔
𝒃𝒃𝟐𝟐

= 𝜸𝜸𝒋𝒋
𝑵𝑵𝑩𝑩𝒃𝒃
𝝓𝝓``𝑹𝑹𝒋𝒋

𝑠𝑠 = 𝑗𝑗
𝑏𝑏3𝑁𝑁𝑏𝑏
ϕ``𝑅𝑅𝑗𝑗

Radius of the globule 
– single collapsed block B 𝑅𝑅𝐵𝐵𝐵 = 𝑏𝑏

3𝑁𝑁𝐵𝐵
4πϕ``

1/3

Surface free energy 
of a unimer

𝑭𝑭𝒔𝒔𝒔𝒔
𝒌𝒌𝒌𝒌

= 𝟒𝟒π𝜸𝜸
𝑹𝑹𝑩𝑩𝑩𝑩
𝒃𝒃

𝟐𝟐
= 𝟑𝟑𝟑𝟑π 𝟏𝟏/𝟑𝟑𝜸𝜸

𝑵𝑵𝑩𝑩

ϕ``

𝟐𝟐/𝟑𝟑

Isolated Spherical Globule 



Spherical Micelle

𝑭𝑭𝟑𝟑
𝒌𝒌𝒌𝒌

=
𝟑𝟑π𝟐𝟐𝑹𝑹𝟑𝟑𝟐𝟐

𝟖𝟖𝟖𝟖𝑵𝑵𝑩𝑩𝒃𝒃𝟐𝟐
+ 𝜸𝜸

𝟑𝟑𝑵𝑵𝑩𝑩𝒃𝒃
𝝓𝝓``𝑹𝑹𝟑𝟑

+ 𝑪𝑪𝑭𝑭
ϕ``𝟏𝟏/𝟐𝟐𝑹𝑹𝟑𝟑

𝟑𝟑/𝟐𝟐

𝑵𝑵𝑩𝑩
𝟏𝟏/𝟐𝟐𝒃𝒃𝟑𝟑/𝟐𝟐

𝒍𝒍𝒍𝒍 𝟏𝟏 + 𝑪𝑪𝑯𝑯𝑵𝑵𝑨𝑨
ϕ``𝒃𝒃
𝑹𝑹𝟑𝟑𝑵𝑵𝑩𝑩

𝟏𝟏/𝟐𝟐

F3 = Fcore + Finterface + Fcorona

Minimize total free energy ⁄𝜕𝜕𝐹𝐹3 𝜕𝜕𝑅𝑅3 to calculate core radius R3

𝑯𝑯𝟑𝟑 = 𝑹𝑹𝟑𝟑 𝟏𝟏 + 𝑪𝑪𝑯𝑯𝑵𝑵𝑨𝑨
ϕ``𝒃𝒃
𝑹𝑹𝟑𝟑𝑵𝑵𝑩𝑩

𝟏𝟏/𝟐𝟐 𝟏𝟏/𝟐𝟐

− 𝟏𝟏

Total size of a spherical micelle R3
tot = R3 + H3

Aggregation number – total number of chains per micelle

𝑸𝑸 =
𝟒𝟒𝝅𝝅𝑹𝑹𝟑𝟑𝟑𝟑𝝓𝝓``
𝟑𝟑𝑵𝑵𝒃𝒃𝒃𝒃𝟑𝟑

Zhulina, E.B.; Adam, M.; LaRue, I.; 
Sheiko, S.S. Rubinstein, M. 
Macromolecules 2005, 38, 5330.

Corona thickness
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Strong Micellization: Spherical Micelles

PS-PI in n-heptane

Equilibrium properties of spherical micelles are determined 
by the balance of corona and interfacial free energies

Fcorona ~ Finterface >> kT
Aggregation number Q 
decreases with increasing DP 
NA of solvophilic block (PI in 
n-heptane) and increases with 
DP NB of core block (PS).

Q ~ NB
2 NA

-0.47

Solid lines – scaling theory
Points – data from light 
scattering
Zhulina, E.B.; Adam, M.; LaRue, I.; 
Sheiko, S.S. Rubinstein, M. 
Macromolecules 2005, 38, 5330.

Q

NA



Morphological Transitions of Strong Micelles

R3

Sphere S (j=3)

2R1

Cylinder C (j=2) Lamella L (j=1)

R2

Morphological transitions occur for crew-cut micelles.
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Diagram of States for Strong Block-Copolymer Micelles

Spherical micelle

Lamellar
mesophase

125nm

1μm

vesicles

250nm

Cylindrical micelle

Zhulina, E.B.; Adam, M.; LaRue, I.; Sheiko, S.S. 
Rubinstein, M. Macromolecules 2005, 38, 5330.
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Diagram of States for Block-Copolymer Micelles

Reversible Morphological Transitions of Polystyrene-b-Polyisoprene Micelles in Heptane
Zhulina, E.B.; Adam, M.; LaRue, I.; Sheiko, S.S. Rubinstein, M. Macromolecules 2005, 38, 5330.
Isaac LaRue, Mireille Adam, Marinos Pitsikalis, Nikos Hadjichristidis, Michael Rubinstein, and 
Sergei S. Sheiko Macromolecules, 2006, 39, 309–314
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Star-like micelles with 
elongated corona block



Star-like micelles with 
elongated corona blocks

Micelles Undergo Morphological Transformations 
in the Crew-Cut Regime (Hcorona < Rcore)
NA

NB
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What are chain properties that 
make this regime wider? Reduce repulsion in corona

Reduce surface tension γ



[Valine-Proline-Glycine-X-Glycine]n
n = 10-330 pentapeptides

Valine Proline Glycine

for example: Serine

X is any guest amino 
acid except proline

Elastin-Like Polypeptides (ELPs)

ELPs phase separate upon heating (LCST)

ELPs are synthesized recombinantly by expression of a synthetic gene 
in E. coli and have complete sequence & molecular weight control.

ELPs are perfectly monodispersed
structurally disordered polypeptides.



Phase Diagram of Elastin-Like Polypeptides
(Val-Pro-Gly-X-Gly)n

phase diagram of an ELP homopolymer
was obtained by DLS and SLS CarrollSimon



ELP Block Copolymer Self-Assembly
[Valine-Proline-Glycine-X-Glycine]n

CMT Taggregation

Temperature

Unimer

X =ValineX =Serine

Each ELP block is 

Both blocks share four out of five repeat amino acids. 



number of 
pentapeptides
per block

Critical Micelle Temperature (CMT)

nAnB

CMT decreases with length nB of hydrophobic block and 
is almost independent of the length of hydrophilic block.

Surface –
theoretical 
prediction 
of CMT

μunimer = μmicelle

W. Hassouneh, E. B. 
Zhulina, A. Chilkoti, 
and M. Rubinstein 
Macromolecules 48, 
4183–4195, 2015



NA

NB
~ 20 pp ~ 200 pp

~ 70 pp

~ 20 pp

Star-like micelles with 
elongated corona blocks

ELPs

Other morphologies 
& sediment

Novel crew-cut 
micelles with dense 
core & almost un-
deformed corona

Novel star-like 
micelles with 
dense core & 
Gaussian corona
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Scaling Diagram for Weak Micelles 
that form at low surface tension (ELPs)



Complexation of Oppositely Charged 
Polyelectrolytes and Block Polyampholytes
The Story of Love and Hate in Charged Systems

General Rule

Stay close 
to the ones you Love

and stay away 
from the ones you Hate.

Both for Electrostatics and for Life



ionic solution
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Two Types of Attraction
“Weak” fluctuation-induced attraction
• less than kT per charge 
• high T, high ε,
• low valence, low charge density

“Strong” binding
• more than kT per charge 
• low T, low ε,
• high valence, high charge density 
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Flirting regime

Marriage and beyond



Happy 
Childhood

Swollen 
coil

Flirting

Fluctuation-
induced 
globule

Marriage,
etc.
Ion

binding

N = 256, f = 1/4

Coil-Globule Transition of a 
Symmetric Block Polyampholyte

- diblock
- individual blocks εkT

elB

2
=

Like

Adolescence

Don’t like

Folding

Rchain

Rblock

Bjerrum length

Zuowei
Wang 

University 
of Reading, 

UK



Distance to the Nearest Opposite Charge
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For ν = 0.588, the “flirting” exponent -ν/(2-ν) = -0.42.
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“Flirting” globule – dense packing of electrostatic attraction blobs.
Weak Association – “Flirting” Regime

Electrostatic blob with size ξe is a section of the chain with 
electrostatic energy kT.

de Gennes et al 1976

f – fraction of 
charged monomers



Cascade of Multiplet Transitions
in Diblock Polyampholyte

octupole

dipole
binding

charge binding
(wedding)

1st nearest opposite

2nd nearest opposite

1st nearest same sign

3rd nearest opposite

2nd nearest same sign

4th nearest opposite

3rd nearest same sign

N = 256, f = 1/16, good solvent

Boundary of the “Flirting” Regime
Upper boundary of the “flirting” 
regime is one charge per blob

Be lbf ≈≈ −υξξ+− ≈ ξ++



Probability of Finding a Charged 
Monomer in a Multiplet

N = 256, f = 1/16, good solvent

single

married

“middle-age
crisis”

polyelectrolyte –
ionomer transition



Diagram of Conformational States

N=256, Good solvent

I
II

N=2000, Good solvent
fraction of charged monomers

B
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flirting

Z. Wang and M. Rubinstein, 
Macromolecules 39, 5897-5912 (2006)



Asymmetric Block Polyampholytes

II. Asymmetry in Charge Density

I. Asymmetry in Block Charge

On the issue of equality

Q- = Q+

Q- < Q+

f- > f+

f- = f+



Asymmetry in Block Charge
For small charge difference ∆N =N+-N-
both blocks are confined in a globule.
For large charge difference extra charge 
cannot be confined in a globule. What will it do?
A. Hate: Extra section of the long block will form a tail of a tadpole.

B. Love: A smaller section of the shorter block will accompany 
longer section of the larger block in a double-tail.

C. Compromise: Globule will elongate
D. All of the above.
E. None of the above.



Asymmetry in Block Charge

N= 256
f = 1/2
lB = 2σ

B. Love: A smaller section of the shorter block accompanies 
longer section of the larger block in a double-tail.

Why?



Appearance of a 
Single-Stranded Tail

Ltail ~ NtailLhead ~ N-

Charge of the head Qhead ~ f(N+-N--Ntail)

Coulomb energy of the head Fhead/kT ~ lBQhead
2/Lhead

Coulomb energy of the tail Ftail/kT ~ lB (fNtail)2/Ltail

Minimization of the free energy Ntail = N+-3N-/2

No single-stranded tail (love holds the two strands together) 
for N+<1.5N- (∆N =N+-N-< N/5)

Single-stranded tail grows linearly with ∆N for larger charge asymmetry.

Shklovski & Hu



Number of Monomers in a 
Single-Stranded Tail

Ntail = (5∆N-N)/4

N
ta

il

N= 256

Love

Hate u= lB/σ
Ntail = N+-3N-/2



Disproportionation in Micelles 
of Asymmetric Block Polyampholytes

Instead of all blocks being in the same
conformation with charge-compensated 
sections in the core and parts of all blocks 
with extra charge in corona
block polyampholytes in micelles 
split into two populations. 

Some chains are completely 
inside the core, while others 
put higher charged block 
completely into the corona. 
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32
Stretching of short block

Adsorption of long 
block on short one

Block Polyampholytes with 
an Asymmetric Charge Density

1/8
1/2 2 8

Ion binding

Consider block polyampholyte with the fraction of positive charges f+
much lower than the fraction of negative charges f-, but with equal 
number of charges per block f+N+= f-N-.

R-

R+



Love Soothes Tension of Short Block

)2/()1(2 )/( ννσ −−≈ flNR Be

N+=512

N+=256

End-to-end distance of polyelectrolytes

Shorter block with higher charge density 
becomes strongly elongated, 
while the other block is unperturbed.

( ) ( )
νν
−

−−

+

++ <<
bN

Nfl
bN

Nfl BB

22

1

0.29

(1-ν)/(2-ν)=0.29

Screening of self-hate by loving oppositely charged block



Block Polyampholytes with 
an Asymmetric Charge Density

4 16

f+N+= f-N- f+≠ f-

Adsorption of long 
block on short one

Ion binding
1/64 1/16 1/4 1

Stretching of short block



Fatal Attraction: Collapse of Weaker 
Charged Block on Stronger Charged Block

N+=512 N+=256

Adsorption starts if electrostatic attraction ~ kT:  lBQ2/Rg0+ ≈ 1

“Atomic” Globule: Electrostatic attraction is stabilized 
by steric repulsion (osmotic pressure Π ~ c9/4 )

kTlBQ2/Rg+ ≈ ΠRg+
3

(3ν-1)/(4-3ν)≈0.35

Rg+

-0.35
-0.35



1/16
1/4

1 4 16

Block Polyampholytes
Asymmetric Charge Density

Stretching of short block

Adsorption of long 
block on short one

Ion binding1/64

f+N+= f-N- f+≠ f-



Ion Binding – Formation of Bottlebrush

Flirting globule – bottlebrush “wedding” transition 
at one charge per inner blob

Hairy bottlebrush with loop sizes 
longer than the size of short block bN-

Correlation length increases with distance from the center of 
the globule with decreasing electrostatic potential due to 
screening of short block charge by inner parts of long block.

Crew-cut bottlebrush – cylindrical micelle with 
loop sizes of strands between charges
smaller than the length of shorter block bN-

bf+
-2ν/(1+ν)f-

(1-ν)/(1+ν)

bf+
(1-3ν)/2N+

(1-ν)/2



Ion Binding From Distance Between Charges

N+=512, f+=1/32, N-=32, f-=1/2

Marriage –
ion binding
lB ~ 20σ

Distance Between Same Sign Charges Short block 
stretching
lB ~ σ

Flirting –
long block 
adsorption
lB ~ 10σ

Bottlebrush 
of loops
lB ~ 60σ

short block

long block

opposite 
sign charges

Distance between 

same sign 
charges on 
short bock



Conclusions
I. There are two classes of association for all charged systems 

including block and random polyampholytes, polyelectrolytes, 
and their transition to ionomers:

1. Weak fluctuation-induced association
(less than kT per charge) leading to 
the “flirting” globule.  
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2. Strong ion-binding association (marriage)
stabilized by neutral strands with a cascade 
of multiplet transitions

II. Two regimes for charge asymmetry: 
love holding the overcharged pair together up to Q+=1.5Q-
and hate (expulsion) for Q+>1.5Q-

III. Charge density asymmetry leads through 
flirtation (“atomic” globule) and marriage (ion binding) 
to crew-cut or hairy loopy bottle brushes.



Self-Assembled Wrath 
of Flower Micelles

A. N. Semenov and M. Rubinstein
Macromolecules, 35, 4821 (2002)



Flower Micelle

Associating Polymers
Solvable backbone with f stickers

n monomers between stickers

f >> 1

n >> 1

Polymers aggregate into micelles with m stickers in 
the core and soluble n-spacers in the corona. m >> 1

Association energy per sticker is  εkT ε >> 1

Multi-block copolymer 
in selective solvent

…-A-A-B-B-…-B-B-A-A -…-A-A-B-B -…

…-(A)n-(B)k-(A)n-(B)k-(A)n-(B)k-(A)n-(B)k-…

Correlation length increases linearly 
with distance r to the center

ξ ≈ r/m1/2

ξ
r Volume fraction ϕ decreases

with distance r to the center
ϕ ≈

𝑏𝑏 𝑚𝑚
𝑟𝑟

3υ−1 ∕υ



Size & Structure of a Flower Micelle

Balance of elastic and osmotic parts of free energy 

Average volume fraction in an isolated micelle
( )

13

3*

3
*

−









==

ν

φ
n
m

R
mnb

Size of an uncompressed micelle   R* = bnνm(1-ν)/2

Flory theory

𝐹𝐹 ≈ 𝑘𝑘𝑘𝑘 𝑚𝑚
𝑅𝑅2

𝑛𝑛𝑏𝑏2
+ 𝑏𝑏3

𝑚𝑚𝑚𝑚 2

𝑅𝑅3
R* ≈ bm1/5n3/5

𝐹𝐹 ≈ 𝑚𝑚𝑚𝑚𝑚𝑚�
𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑅𝑅∗ 𝑑𝑑𝑑𝑑
ξ
≈ 𝑚𝑚𝑘𝑘𝑘𝑘�

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑅𝑅∗

𝑚𝑚1/2 𝑑𝑑𝑑𝑑
𝑟𝑟
≈ 𝑘𝑘𝑘𝑘𝑚𝑚3/2𝑙𝑙𝑙𝑙

𝑅𝑅∗

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Free energy of an isolated flower micelle

For micelle to be stable, the energy of sticker εkT has to be larger than 
ε𝑘𝑘𝑘𝑘 > 𝜕𝜕𝐹𝐹/𝜕𝜕𝜕𝜕 ≈ 𝑘𝑘𝑘𝑘 𝑚𝑚

Flower micelles attracts each other by forming m5/6 bridges each and 
phase separate in dilute solution into a gel with concentration ϕ*.

m loops n monomers each



Network of Interconnected Micelles at φ > φ*

Micelles are compressed
3/1*

*








≈

φ
φRR

Inner parts of coronas still have non-
uniform density – same as at ϕ*.

Density of outer parts (most of the solution) 
is uniform & controlled by osmotic pressure.

Elastic free energy of the outer part 
~ interaction between micelles 
~ deformation energy upon 
displacement of a micelle.

)]13(3/[12 ~ −









≈








≈∆

ν

φ
φmkT

R
RmkTF

n

∆F decreases with increasing concentration (strands are less extended)

Number of bridges per micelle
)]13(9/[1)~/( −νφφm φφφ ~* <<

φφ ~>
≈bN { m

Above the concentration ( ) 132 /~ −
≈

ν
φ nm n-spacers are no longer stretched

𝑅𝑅𝑛𝑛 ≈ 𝑏𝑏𝑛𝑛1/2ϕ− ⁄υ−1/2 3υ−1 - size of free n-mer at concentration ϕ

𝑹𝑹



Summary of the Structure of the 
Network of Interconnected Micelles

Free energy at ϕ > ϕ* is dominated by the 
osmotic pressure of the outer region

Π ≈ 𝑘𝑘𝑇𝑇ϕ ⁄3υ 3υ−1

Size of high concentration inner corona zones
𝑟𝑟𝑖𝑖𝑖𝑖 ≈ 𝑅𝑅∗ ⁄ϕ∗ ϕ ⁄3υ 3υ−1

decreases faster than spacing between micelles

For ϕ* < ϕ < spacers are in extended loops and bridges (mostly loops)φ~

Elongation of n-mers decreases with concentration Fel ~ ϕ-0.43

For ϕ >      flowers loose their petals; n-strands are undeformed
(outside very near-core zone rin) and most of them are bridges 
connecting distant aggregates (Rn > R). 

φ~

Most of the gel volume has uniform concentration.

Fraction of bridges increases as ϕ0.14, they connect neighboring micelles

𝑹𝑹
𝒓𝒓𝒊𝒊𝒊𝒊



Elastic Modulus of a Reversible Gel
Elastic free energy of the outer part 
~ interaction between micelles 
~ deformation energy upon displacement of a micelle.

∆𝐹𝐹 ≈ 𝑚𝑚𝑚𝑚𝑚𝑚
�ϕ
ϕ

⁄1 3 3υ−1

Shear elastic modulus 𝐺𝐺 ≈
∆𝐹𝐹
𝑅𝑅3

≈
𝑘𝑘𝑘𝑘
𝑏𝑏3

𝑚𝑚2/3

𝑛𝑛4/3 ϕ
1− ⁄1 3 3υ−1 ~ϕ0.57

of unentangled gel and at intermediate time scales 
(longer than disentanglement time) of entangled gel

Chain Dynamics
Stickers hop between micellar cores

No renormalization of bond lifetime 
as aggregation number m can 
fluctuate around its average value if

𝑚𝑚 < ε < 𝑚𝑚4/3



Introduction to Polymer Dynamics



Particle Dynamics
Diffusive Motion

( ) ( )[ ] Dtrtr 60 2 =− 
D – diffusion coefficient

v – velocity of particle due to applied force

ζvf 
=

Einstein relation

ζ
kTD =

Stokes Law Rπηζ 6=

R
kTD
πη6

=Stokes-Einstein relation

mean-square displacement

f


v

f


−

viscous drag -f

ζ – friction coefficient

kT
R

D
R ζτ

22
≈≈Time required for a particle

to move a distance of order of its size

O

R – radius of the particle
η – viscosity of the fluid



Rouse Model
N beads connected by springs 
with root-mean square size b.
ζ – friction coefficient of a bead

ζR = Nζ – total friction coefficient of the Rouse chain

ζN
kTDR = − diffusion coefficient of the Rouse chain

2
2

NR
kTD

R
R

R
ζτ ≈≈ − Rouse time

for t < τR – viscoelastic modes
for t > τR – diffusive motion

νbNR ≈ νν τζτ 21
0

21
2

++ ≈≈ NN
kT

b
R

kT
b ζτ

2

0 ≈ – Kuhn monomer relaxation time

For ideal linear chain ν = 1/2

Stokes Law
bsηζ ≈

kT
b sητ

3

0 ≈

2
0NR ττ ≈ Rouse model –

draining limit

No hydrodynamic coupling 
between beads

bR



Zimm Model
Hydrodynamic interactions 
couple the motion of monomers 
with the motion of solvent.

Chain drags with it the solvent in its pervaded 
volume.
Friction coefficient of chain of size R in a 
solvent with viscosity ηs RsZ ηζ ≈

Zimm diffusion coefficient
R

kTkTD
sZ

Z ηζ
≈=

Zimm time νν τηητ 3
0

3
3

3
2

NN
kT
bR

kTD
R ss

Z
Z ≈≈≈=

3ν < 1+2ν  for ν<1 Zimm time is shorter than 
Rouse time in dilute solutions.

Hydrodynamic interactions are important in dilute solutions.

2/3~Nzτ

5/9~Nzτ

in θ-solvent ν=1/2

in good solvent ν=3/5

R



Self-Similar Dynamics

Rouse Model

Chains are fractal – they look the same on different length 
scales and move in the same way on different time scales.

Zimm Model
Longest relaxation time

2
0NR ττ ≈Rouse time Zimm time

νττ 3
0NZ ≈

Sections of the chain with g=N/p monomers relax like a g-mer.
p-th mode involves relaxation of N/p monomers.

2

0 






≈
p
N

p ττ
ν

ττ
3

0 






≈
p
N

p

At time τp modes with index higher than p have relaxed, 
while modes with index lower than p have not relaxed.

At time τp there are p un-relaxed modes per chain each contributing 
energy of order kT to the stress relaxation modulus. ( ) p

Nb
kTG p

φτ 3≈



Self-Similar Dynamics
Rouse Model Zimm Model

( ) p
Nb

kTG p
φτ 3≈

Index p of the mode that relaxes at

Ntp
2/1

0

−









≈

τ

Stress relaxation modulus at t < τrelax

( )
2/1

0
3

−









≈

τ
φ t

b
kTtG

Ntp
ν

τ

3/1

0

−









≈

α

ττ 






≈=
p
Nt p 0

( )
ν

τ
φ

3/1

0
3

−









≈

t
b
kTtG

( ) 







−








≈

−

R

tt
b
kTtG

ττ
φ exp

2/1

0
3 ( ) 








−








≈

−

Z

tt
b
kTtG

ττ
φ

ν

exp
3/1

0
3

Stress relaxation modulus approximation for all t > τ0



t/τ0

100 101 102 103 104 105 106 107

b3 G
(t)

/k
T

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-1/2

Stress Relaxation Modulus
Rouse Model

( ) 







−








≈

−

R

tt
b
kTtG

ττ
φ exp

2/1

0
3

Scaling approximation

relaxation time 
of p-th mode

∑
=











−=

N

p p

t
Nb

kTtG
1

3 exp)(
τ

φ

2

2

2

6







=
p
N

kT
b

p π
ζτ

Exact solution

(points)

(solid line)

N = 103



ωτ
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Rouse Relaxation Modes
( ) 








−








≈

−

R

tt
b
kTtG

ττ
φ exp

2/1

0
3

Stress relaxation modulus

in the frequency range 1/τR << ω << 1/τ0( ) ( ) 2/1~''' ωωω GG ≈

Rouse Viscosity

( ) 2
2

3 N
kT

b
Nb

kTG RR
ζφττη ≈≈

φζη N
b

≈

Rouse model applies to 
melts of short 
unentangled chains

N
b
ζη ≈

1/2

1

2

G``

G`



ωτZ
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Zimm Relaxation Modes
Stress relaxation modulus

in the frequency range 1/τZ << ω << 1/τ0( ) ( ) νωωω 3/1~''' GG ≈

( ) 







−








≈

−

Z

tt
b
kTtG

ττ
φ

ν

exp
3/1

0
3

dilute solutions 
of polystyrene 
in θ-solvents

in θ-solvents ν=1/2

( ) ( ) 3/2~''' ωωω GG ≈

Zimm model is valid in 
dilute solution and is 
used for polymer 
characterization using 
intrinsic viscosity

2/3

1

2

G``

G`

2/3



Rouse Model
Mean Square Displacement of Monomers

Section of N/p monomers moves by its size during its relaxation time τp

( ) ( )[ ]
ν

τ
2

220 






≈−
p
Nbrr jpj



( ) ( )[ ] ( ) 2/1
0

22 /0 τtbrtr jj ≈− 
Mean square monomer displacement for   τ0 < t < τrelax

Zimm Model

for ideal chain ν = 1/2

( ) ( )[ ] ( ) 3/2
0

22 /0 τtbrtr jj ≈− 

p/N = (t/τ0)-1/2 p/N = (t/τ0)-1/3ν

Sub-diffusive motion

t

Sections of N/p monomers move 
coherently on time scale τp

( ) ( )[ ]20jj rtr  −

τ0

b2 1/2

1

τR

R2

1

2/3

τZ

Monomer motion in Zimm model 
is faster than in Rouse model

ok for melts
ok for dilute solutions

log – log plot



Which model is better 
in dilute solutions? 

A. Rouse model with chain friction ζ = ζ0N

B. Zimm model with chain friction ζ ~ ηR

C. Reptation model

D. None of the above

E. All of the above

Quiz # 5



Summary of Single Chain Dynamics
Rouse model – local monomer friction ζ and no hydrodynamic
interactions. It is applicable to unentangled polymer melts.

Rouse friction coefficient of an N-mer is Nζ and diffusion coefficient
)/( ζNkTDR =

Zimm model – motion of monomers is hydrodynamically coupled.
Polymer drags solvent in its pervaded volume. It is applicable 
to dilute solutions. Diffusion coefficient )/( RkTD sZ η=

Polymer diffuses distance of order of its size during its relaxation time.
2NR

kTR
ζτ ≈

3R
kT

s
Z

ητ ≈

Self-similar structure of stress relaxation function

( ) 
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
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Rheology – Dilute Solutions

R

Chains are far apart and move independently 
of each other, dragging solvent with them. 

modulus G(τ) ~ kTφ/N

Unentangled Semidilute Solutions

non-draining (Zimm) dynamics
relaxation time τ ~ R3

viscosity η ~ G(τ)τ ~ φ R3/N

φ > φ*

ξ

R

For r < ξ dynamics are the same as in dilute 
solutions – non-draining (Zimm). τξ ~ ξ3

For r > ξ overlapping chains screen 
hydrodynamics.

draining (Rouse) dynamics

relaxation time   τ ~ τξ (N/g)2

ηsp = (η − ηs)/ηs ~ φ/φ*

hydrodynamic screening length ~ correlation 
length

g monomers

33* / RNb≈< φφ



Unentangled Semidilute Solutions
ξ

Dilute-like Zimm dynamics on length scales up to
correlation length ξ (~hydrodynamic screening length)

νξ bg≈ 3

3

ξ
φ gb

≈ )13/( −−≈ ννφξ b

Relaxation time of a correlation blob 3ξητξ kT
s≈

Relaxation time of the chain – Rouse time of N/g blobs
)13/()32(2

32
3

2
−−≈







≈






≈ νν
ξ φηξηττ N

kT
b

g
N

kTg
N ss

chain

)13/(1 −−≈ νφg

In θ-solvents  τchain ~ φ In good solvents  τchain ~ φ0.31

Polymer size in semidilute solutions )26/()12(2/1
2/1

−−−≈






≈ ννφξ bN
g
NR

Diffusion coefficient decreases with φ in semidilute solutions
)13/()1(

*

)13/()1(2 −−−−−−









≈≈≈

νννν

φ
φφ

ητ Z
schain

D
Nb

kTRD In good solvents 
D ~ φ−0.54

Draining (Rouse-like) on scales > correlation length ξ
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Diffusion Coefficient in Semidilute Solutions
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How does relaxation time τchain vary with polymer 
concentration φ  in semidilute unentangled regime 
for different values of exponent ν?

Quiz # 1

A. Increases

B. Decreases

C. All of the above

D. None of the above

)13/()32(~ −− ννφτ chain

A. for 1/3 < ν < 2/3

B.   for ν > 2/3

Correct answer – C 



Concentration Dependence of Viscosity
Viscosity at φ* is approximately twice the solvent viscosity ηs

x

ss 







≈− *φ

φηηηViscosity in semidilute solutions

In semidilute solutions: modes shorter than correlation blobs are 
Zimm-like, while long-time modes are Rouse like  η – ηs ~ N

xx
ss N φηηη ν )13( −≈−νφ 3133* / −≈≈ NRNb

x = 1/(3ν-1)

Specific viscosity
)13/(1

*

−
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

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
≈

−
=

ν

φ
φ

η
ηηη
s

s
sp

In θ-solvents ν = 1/2 and ( )2*2 /φφφη ≈≈ Nsp

In good solvents ν = 0.588 and ( ) 3.1*3.1 /φφφη ≈≈ Nsp

η/ηs

φ∗
g φ∗

θ

1

log – log plot

1.3
2

φ∗∗
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Polyethylene oxide 
in water at 25oC

Concentration Dependence of Specific Viscosity 
ηsp=(η−ηs)/ηs



Summary of  Semidilute 
Unentangled Dynamics

Hydrodynamic interactions in semidilute solutions are 
important up to the scales of hydrodynamic screening 
length (Zimm non-draining modes).

On larger length scales both excluded volume and 
hydrodynamic interactions are screened by surrounding 
chains (Rouse draining modes).



Dynamics of Entangled Polymers



Entanglements!

Multi-chain effects due to 
topological interactions 
(e.g. knots).

Entanglements dramatically 
effect polymer properties
e.g. viscosity, elasticity
- viscoelasticity.

“Silicone bouncing putty appeals to people of superior intellect” (Peter Hodgson)

Visco - elastic



Tube Model of Polymer Entanglements

a

fr
ee

 e
ne

rg
y

transverse
distance

kT a

0

confining tube

a – tube diameter
Ne – number of Kuhn 
monomers in an 
entanglement strand

eNba ≈
Confining tube consists of  N/Ne
entanglement strands of size a

Nb
N
NaR

e
≈≈

The center of confining tube is called 
primitive path of length L ee N

bN
a
Nb

N
NaL ≈≈≈

2

Overlap criterion for entanglements:
number of chains in volume a3 is Pe=const 20

0

3

0

3
≅≈≈ e

e
e N

v
b

Nv
aP

Edwards 1967



Reptation in Polymer Melts

Motion of chain along the contour of the tube
is unhindered by topological constraints.
Curvilinear diffusion coefficient along the primitive
path is Rouse diffusion )/( ζNkTDc =
Time it takes chain to diffuse out of its original tube is reptation time

32
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e
e

c
rep N

N
D
L

ττ

Rouse relaxation time of an entanglement strand 2
2

ee N
kT
b ζτ ≈

Experimentally  τrep~ M3.4

de Gennes 1971



Diffusion Coefficient in Entangled Melts

M (g/mole)
103 104 105 106

10-16

10-15

10-14

10-13

10-12

10-11

10-10

-2.3

D
 (m

2 /s
)

332









≈≈

e
e

e
rep N

N
N
N

kT
b τζτReptation time 

Diffusion coefficient
2

2

N
NkTRD e

rep ζτ
≈≈

Experimentally  D ~ M-2.3

hydrogenated 
polybutadiene at 175 oC



Stress Relaxation of Entangled Melts
On length scales between Kuhn b and tube 
diameter a sections of chain do not “feel” 
entanglements and relax by Rouse modes. 

( ) 2/1
00 /)( −≈ τtGtG

τ0 τe τrept

G(t)

-1/2
G0

Ge

for τ0 < t < τe

Relaxation time of a Kuhn segment kTb /2
0 ζτ ≈

Relaxation time of an entanglement strand
2

0 ee Nττ ≈

Stress relaxation modulus at τe is kT per entanglement strand 

ee
ee Nv

kT
N
GGG

0

0)( ≈≈≈ τ There is a delay in 
relaxation between τe
and reptation time τrep.
Melt acts as a rubber.
Ge – rubbery plateau 
modulus.
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Oscillatory Shear Data for Polybutadiene Melt 

M = 130 kg/mol 250 C



Viscosity of Entangled Melts
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Viscosity of polymer melts

η ~
M for M < Me

M3 for M > Me
{

Experimentally
4.3~ MG repeτη ≈

open circles – polyisobutylene
open squares – polybutadiene
open triangles – hydrogenated

polybutadiene
filled circles – repton model



Semidilute Entangled Solutions

a

ξ

Tube Diameter
Fixed number of 
binary contacts 
per a3

In good solvent tube 
diameter is proportional 

to correlation length a ~ ξ

76.0)13/( )1()1()( −−− ≈≈ φφφ νν aaa
In θ-solvents the distance between 2-body contacts ~ φ-2/3, while
correlation length is proportional the distance between 3-body contacts.

3/2)1()( −≈ φφ aa in θ-solvents



Plateau Modulus in Entangled Solutions
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per entanglement strand
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{φ2.3 for good solvent

φ7/3 for θ−solvent
)1(eG≈

predictions are essentially the same



ξ

τrep = τξ(Ne/g)2(N/Ne)3

relaxation
of correlation
blob

relaxation 
of a strand
between 
entanglements

ξ

Relaxation Time of Entangled Solutions
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Diffusion Coefficient in Semidilute Solutions
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Viscosity of Entangled Solutions

( )[ ]2
3

1e
srepes

N
NG ητηη ≈≈− {φ3.9 for good solvent

φ4.7 for θ−solvent

( ) ≈−= sssp ηηηη / {(φ/φ∗)14/3N2/3/[Ne(1)]2 for θ-solvent
(φ/φ∗)3.9/[Ne(1)]2 for good solvent

good solvent θ-solvent



Dynamics of Networks
of Flower Micelles

A. N. Semenov and M. Rubinstein
Macromolecules, 35, 4821 (2002)



k` k`

Chain Dynamics

k kτb

Sticker lifetime
( ) totab ετεεττ expexp 00 ≈+≈

kTεa – energy barrier

Sticky Rouse time of a chain with f stickers 2fbR ττ ≈

I. Weakly entangled regime (unentangled n-spacers)  n < Ne(φ) < N

)(/ φττ eRrept NN≈Sticky reptation time

II. Strongly Entangled Regime
Transport by unentangled n-loops (n-hernias)

exp(-Fe/kT) - probability of an n-loop 
to be unentangled

( )13/1)/()(/ −≈≈ νφφφ eee kTNkTnF

( ) ( )[ ])13/(133 /exp/exp −≈≈ νφφτττ ebebrept fkTFf

entanglements do not 
affect spacer hops

~ ϕ1.3

Reptation by n-hernias



Strongly Entangled Regime
Collective Tube Leakage

s+1

s+y

1
s

s+y+1

f

At concentrations higher than
( ) 4/)13(32

0 /~ −
≈

ν
φφ mNekink

the free energy of a collective kink

is lower than that of an unentangled n-loop
( ) ( ) [ ])13(3/2)13/(1* // −−≈ νν φφφφ kinkekinkkTF

Chain relaxation time 
in the collective tube 
leakage mode

( )kTFfbrept /exp *3ττ ≈

φ
φ∗ φeφe

∗

τchain

τchain
τ0

ln

φe
φ

0.87

1.3 φkink

φkink

1.3

unentangled weakly
entangled

strongly
entangled

Entanglement concentration of n-loop ϕe ≈ (Ne0/n)3υ-1

~ ϕ0.87
y R-hernias

R



Dynamics of Micelles
Micelle hopping involves 
deformation free energy ∆F
To hop micelle has to remove its 
bridges with old neighbors and to 
create new bridges. 

All the entanglements with old neighbors must be relaxed.
Kinetic pathway 1 – all involved chains are relaxed 
at all stages of the micellar core displacement. 






 ∆≈

kT
F

chainh exp1 ττ

Kinetic pathway 2
Debridging stage – all bridges are transformed into loops. bb kTNF ≈
Hopping stage – micellar core hops into a new cell without dissociation 
of stickers paying additional deformation cost.
Deformation costs consists of phantom ∆F and entanglement ∆Fe part. 

Entanglement cost per micelle 
(kT per entanglement) ( ) )13/(1/ −≈≈∆ νφφ eee kTmmFF



Activation Energy of the Kinetic Pathway 2
( )[ ] ( )[ ] ( )
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1/4

kTm3/2 1.3-0.43

0.14

∆Fe Debridging time







≈

kT
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chaindb expττ

( )bchain Nexpτ≈

Hopping time







+≈

kT
Fa

mdbh exp2 τττ

Both kinetic pathways contribute to hopping frequency 
1/τh =1/τh1 + 1/τh2

τm – Rouse-Zimm micellar 
diffusion time

(ignoring entanglements)



Non-Monotonic Relaxation Time
Case A:   εtot > max(m3/2,m3/Ne0)

( )[ ]
φφφ

ν
ν ~134/3
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Non-Monotonic Relaxation Time
Case B``:   m3/Ne0 < εtot < m3/2

)13(3
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
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ln
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-0.43

-0.43
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Non-Monotonic Relaxation Time
Case D:   m(Ne0/m2)1/8 < εtot < m3/2/Ne0

1/4

φ∗

φ
φmin

Ne0>l4/3/m2

Ne0<l4/3/m2
m3/2

lnτh
τ0

0.87
-0.43



Summary
1. Conformational relaxation time of chains in strongly entangled 

regime increases exponentially with concentration.

2 Stress relaxation time of the reversible network is much longer than 
conformational relaxation time of individual chains.

3. Stress relaxation is determined by positional rearrangement of 
micelles which is very slow because of high barriers.

4. Non-monotonic dependence of relaxation time and viscosity on 
concentration with anomalous exponential decrease due to decrease
in deformation energy controlling the activation barrier for micellar
hops.

Macromolecules, 35, 4821 (2002)
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