

Driven self-assembly, part 1

Peter Schurtenberger

Physical Chemistry Department of Chemistry Lund University

Self-assembly

Equilibrium self-assembly - where is the problem

System evolves to state with lowest thermodynamic potential (G, H,...)

- resulting assembled structures often irregular, polydisperse
- spherical colloids assemble only into dense ordered structures (fcc, bcc, hcp,...)

→ Directed Self-Assembly

J. Aizenberg et al., Phys Rev Lett (2000) Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 / 6

Template-directed or driven SA

Template-directed crystal growth

Using magnetic moulds to assemble colloids

Confining particles at interfaces

two main contributions:

Interface-driven monolayer self-assembly

Interface-driven colloidal assemblies

V. Manoharan, Solid State Comm. (2006)

Building colloidal molecules through interface-driven SA

Building colloidal molecules through interface-driven SA

Controlled assembly via microfluidics devices

L. Månsson et al., Faraday Discussions (2015)

Nanoparticle assemblies for plasmonic applications

Templates for SA of large-scale plasmonic structures

Schweikart & Fery, Microchim. Acta (2009) C. Lu et al., Soft Matter (2007) Hanske et al., Nano Letters (2014)

Drying front driven - fast track to phase diagrams

Figure 11. Sketch of the drying dynamics of a thin colloidal film. As a liquid, the film thickness h and solid volume fraction \$\$, evolve with time, reaching final values he and \$\$ respectively, after aggregation. Evaporation over the dispersion, at a rate E, and the wet solid region, at a rate Ep drives flow in the film. This can generate a far-field velocity w, a dispersant velocity u, and a front velocity v, of the aggregation and pore opening fronts.

J. Li et al., Langmuir (2011)

Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 /

Temporarily evolving templates

BIJEL: bicontinuous interfacially jammed emulsion gel

K. Stratford et al., Science (2005)

Surfactant or blockcopolymer mesophases as templates

17

Polymer (2015)

- to create better defined or specifically oriented (epitaxial growth) structures
- to create well-defined 1D, 2D and 3D assemblies
- combination of top down and bottom up
- approaches

Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 /

AC electric field driven SA

19

Self-assembly of dipolar particles

Self-assembly of dipolar spheres

possible contributions to the isotropic potential

Field-driven self-assembly - key ingredients

Thermoresponsive microgels as building blocks for DSA

Thermoresponsive microgels as building blocks for DSA

Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 /

28

In-situ variation of the effective volume fraction

Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 /

Thermal annealing

Thermoresponsive microgels as building blocks for DSA

Engineering particle shape for new DSA building blocks

Anisotropic particles maintain thermoresponsive nature

33

Shape and jamming

Jammed Dispersions (20°C; Samples prepared by centrifugation by removing the excess supernatant)

Thermoresponsive microgels as building blocks for DSA

Tuning interparticle potentials

building reconfigurable molecules

Crassous et al, Langmuir, 2006

Thermoresponsive microgels as building blocks for DSA

Characterising interparticle interactions in real space

confocal laser scanning microscopy (CLSM)

Characterising interparticle interactions in real space

confocal laser scanning microscopy (CLSM)

Technical interlude: comparing CLSM and simulations

P. S. Mohanty et al., J. Chem. Phys. (2014)

Technical interlude: comparing CLSM and simulations

Technical interlude: comparing CLSM and simulations

Technical interlude: comparing CLSM and simulations

Also finite scan speed, important for highly diffusive systems

Ionic microgels as soft dipolar particles

Adding an external homogeneous ac electric field

Adding an external homogeneous ac electric field

Polarisability of ionic microgels

Watching dipolar chains assemble

S. Nöjd et al., Soft Matter (2013)

Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 /

48

Analysing string cluster formation

SA at higher effective volume fractions

SA at higher effective volume fractions

Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 /

temperature as an additional control parameter

S. Nöjd et al., Soft Matter (2013) P. S. Mohanty et al., Soft Matter (2012)

52

temperature as an additional control parameter

Technical interlude 2: How to investigate small changes in particles at ultra-high densities?

Problems of an experimentalist:

- lack of resolution in CLSM
- x-ray scattering: contribution from individual particle (form factor) and interparticle correlations (structure factor) convoluted

Solutions:

become a simulator

use neutrons

Contrast variation - or why neutrons

55

Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 /

Combining SANS and SAXS: Shape and interactions

Can we do the same for particles in external fields?

Investigating phase transition kinetics and mechanisms

particle trajectories (mean square displacement) indicates local melting into diffusive fluid-like structure followed by re-crystallisation

can we quantify this?

S. Nöjd et al., Soft Matter (2013)

Insight into solid-solid transitions

P. S. Mohanty et al., PRX (2015)

Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 /

bond order analysis

$$\Psi_s = \left| \frac{1}{N} \sum_{j=1}^N e^{si\theta_j} \right|$$

summation over N nearest neighbours, s = 4 or 6

 \rightarrow population fractions

$$f_6: \Psi_6 > 0.7$$

$$f_4: \Psi_4 > 0.55$$

 f_{dis} : $\Psi_6 < 0.7$ and $\Psi_4 < 0.55$

59

Avrami¹ eqn:)) $f_4 \sim (1 - \exp(-Kt^{\alpha}))$ $\alpha = 4.0$

Transition through intermediate melting, nucleation and growth

P. S. Mohanty et al., PRX (2015)

Insight into solid-solid transitions

60

Insight into solid-solid transitions - reverse transition

Insight into solid-solid transitions - reverse transition

E=0

(C)

P. S. Mohanty et al., PRX (2015)

Path-dependent solid-solid transitions

