

Driven self-assembly Part 2

Peter Schurtenberger

Physical Chemistry
Department of Chemistry
Lund University

Summary soft dipolar spheres

- · softness is important
- ac field allows us to cycle through crystal-crystal transition
- desperately need information about particle size and shape of particles in field at different densities
- first particle-level insight on pathdependent diffusive and martensitic crystal transition in 3D in single particle system

Shape matters - polarised ellipsoids

aspect ratio ρ = 3.3, concentration = 1 wt%, volume fraction $\phi \approx 0.04$

J.J. Crassous et al., Nature Communications (2014)

Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 /

Shape matters - polarised ellipsoids Field on Conductive tape ITO-coated coverslip Space Objective Soft Matter 108.1 f(s) 102.9 Field off aspect ratio ρ = 3.3, concentration = 1 wt%, J.J. Crassous et al., Nature Communications (2014)

Forming highly ordered tubular structures

f = 160 kHz

Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 /

.

Insight from computer simulations

Sheet formation at high coupling parameter Tube formation at low number density

J.J. Crassous et al., Nature Communications (2014)

Insight from computer simulations

Insight from computer simulations

Ellipsoids with small axial ratios

phase diagram of ellipsoids - limited model system work available

summary of simulation work

FCC simple monoclinic 2

glass transition?

glass transition?

Frenkel, D.; Mulder, B. M., Mol. Phys. 1985, 55, 117111192 Radu, M.; Pfleiderer, P.; Schilling, T., J. Chem. Phys. 2009, 131, 164513.

Odriozola, G.,. J. Chem. Phys. 2012, 136, 134505. de Michele, C.; Schilling, R.; Sciortino, F., Phys. Rev. Lett. 2007, 07, 98, 265702.

magnetic particles - controlling orientation and interactions

- effect of tuneable rotational degree of freedom?
- local order vs. bulk magnetic properties?

Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 /

9

Synthesising magnetic particles with tuneable anisotropy

hematite (α-Fe₂O₃) through forced hydrolysis of iron salts, coated with SiO₂ shell

H. Dietsch et al., Chimia 62, 805 (2008)

Ellipsoids with tuneable anisotropy and improved stability

Structural information from SAXS

SAXS modeling: size, anisotropy, structure, porosity

=> size, coating thickness, polydispersity, porosity

M. Reufer et al, J. Phys. Chem. B (2010)

Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 /

SAXS with an applied magnetic field

13

The combined influence of field and density

Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 /

15

Low density: particle alignment

field-dependent alignment of the particles, no positional correlations visible

antiferromagnet)

W.C. W.C.

SAXS with an applied magnetic field

in-situ information on positional order and single particle magnetic properties!

$$I(q,\phi) = \frac{1}{Z} \int_0^{2\pi} \int_0^{\pi} \left(p(E_{\text{pot}}) \left[F_{core-shell-ellipse}^2(\phi_1,\phi_3) + N_{pores} F_{pore}^2 \right] sin(\phi_3) d\phi_1 d\phi_3 \right) d\phi_1 d\phi_3$$

$$p(E_{pot}) = \exp\left(-\frac{E_{pot}(\beta)}{k_B T}\right) = \exp\left(\frac{\mu B}{k_B T}\cos(\beta)\right)$$

M. Reufer et al, J. Phys. Chem. B (2010)

Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 /

17

orientational order, magnetic properties and diffusion

anisotropic diffusion from DDM

$$S_2^{\vec{a}} = \left\langle P_2 \left(\frac{\vec{a}}{a} \cdot \frac{\vec{B}}{B} \right) \right\rangle = \frac{1}{Z} \int_0^{2\pi} \int_0^{\pi} p(E_{\text{pot}}) P_2(\cos(\xi)) \sin(\phi_3) d\phi_1 d\phi_3$$

M. Reufer, V. A. Martinez, P. Schurtenberger, and W. C.K. Poon, Langmuir 28, 4618 (2012)

random: $S_2 = 0$

fully aligned $\mathbf{a} \perp \mathbf{B}$: $S_2 = -0.5$

M. Reufer et al, J. Phys. Chem. B (2010)

M. Reufer et al, J. Phys. Cond. Mat. (2011)

Technical interlude 3: "structure factor" is not always what you think

experimentally determined effective structure factor:

$$S_{M}(q) = \frac{I(q)/C}{I_{dil}/C_{dil}}$$

monodisperse spheres:

$$S_M(q) \equiv S(q)$$

otherwise:

$$S_M(q) \neq S(q)$$

RVMOLVA RVMOLVA

Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 /

19

Summary

Colloids - atom analogy extended to spin systems

no ordered (SM2) phase found

- polydispersity?
- · glass?

Acknowledgements

J. J. Crassous, J. N. Immink, P. Linse, L. K. Mansson, I. Martchenko, A. M.

Mihut, P.S. Mohanty, S. Nöjd, M. Obiols-Rabasa, E. Wernersson *University of Fribourg:* H. Dietsch B. Grobety, M. Reufer, C. Rufier

St. John's: P. Bagheri, A. Yethiraj

Rome: E. Zaccarelli

Vienna: C. Likos, J. Riest PSI: A. Diaz, A. Menzel

ILL: R. Schweins

ETHZ: A. Hirt, J. Vermant

FUNDING:

COMPASS

Lund University / Physical Chemistry / Enrico Fermi Summer School 2015 /