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Microscopy and image processing

All experiments with microfluidic devices are conducted using a Zeiss
(Jena, Germany) Axiovert inverted microscope equipped with a 100x air
objective. Cells in flow are recorded with a PCO Sensicam and each movie
frame is processed using a combination of MATLAB (The MathWorks,
Natick, MA), and Image Pro Plus (Media Cybernetics, Rockville MD).

Polystyrene beads (Polysciences, Eppelhem Germany), 1 mm in diam-
eter, are mixed with the sample and then injected into the channel at a suffi-
ciently dilute concentration to avoid affecting cell motility. The motion of
the beads is used to monitor the average flow velocities either by measuring
the streak produced using long exposure times on the camera or by taking
an average of the distances traveled by several beads from frame to frame
within the channel. Sine wave trajectories (discussed below) are recorded
over long distances using a 10x objective, and tracking is performed manu-
ally. Sine wave fitting for oscillating trajectories is done by first smoothing
the y trajectory in time with five-point adjacent averaging in Origin (Origin-
Lab, Northampton, MA).

RESULTS AND DISCUSSION

Although several studies have shown that deformable vesi-
cles and red blood cells migrate away from boundaries in
pipe flow, few have examined the behavior of self-propelled
entities such as bacteria and other microorganisms subjected
to a flow field (5,23,24). The stroboscopic image shown in
Fig. 2, which was taken with fluorescently labeled trypano-

somes, illustrates that a swimming cell appears to move
laterally across the width of the channel, while an immotile
cell is carried in the same streamline of the flow throughout
the length of the channel. At a flow velocity of 1.6 mm/s,
which is much higher than the trypanosome’s swimming
speed in a static environment, the trypanosome’s ability to
propel itself clearly continues to play a role in its behavior
when it is subjected to flow.

To investigate the behavior of T. brucei in flow, we begin
with a symmetrical channel where cells are constrained to
a geometry of equal height and width of 23 mm ! 23 mm
(of the same length scale as the T. brucei body), which
provides a well-controlled setup for studying the physics
of microswimmers in parabolic flow. All observations are
recorded only for cells in the middle plane (z ¼ 0), ensuring
that they are subjected to the same flow profile in the z direc-
tion, as shown in Fig. 1. A suspension of T. brucei in fresh
culture medium is allowed to enter the channel. A very
dilute concentration of polystyrene beads, 1 mm in diameter,
is included in the cell suspension as tracers for flow.

Oscillatory trajectories in flow

Intriguingly, when we observe the cells at lower magnifica-
tions and flow velocities Uave < 0.4 mm/s, allowing for
longer observation times, we find that most cells swim
upstream with the flagellum end leading (though they do
not necessarily progress upstream due to the flow) from
one wall to another in a sine wave trajectory, as shown in
Fig. 2. The observed trajectories are well fitted by sine
waves. The trajectory in Fig. 2 appears jagged due to the
fast distortions of the T. brucei body during swimming, as
discussed in previous work (11,25–27).

T. brucei swimming with a downstream orientation do not
exhibit such oscillatory paths, but rather tend to tumble
along a streamline. Tumbling cells may still produce distor-
tion in the overall shape, and appear to rotate as a wheel.

Oscillatory trajectories at a range of flow velocities are
fitted to sine waves, and the frequency and amplitude of
oscillations are shown in Fig. 3 as a function of flow veloc-
ities. Increasing velocities result in increasing frequency and
decreasing amplitude of the trajectories.

It can be readily appreciated that this oscillatory behavior
is a direct consequence of the interplay between the Pois-
euille flow field and the active motion of the trypanosome
relative to the fluid, and may be a generic feature of self-
propelled microorganisms that can be deconstructed into
physical terms.

To that end, consider a swimmer of length L and width l in
a channel with radius rc R L/2, such that the swimmer is
able to turn within the channel, as applicable to the motion
of elongated flagellates such as T. brucei. The swimmer is
assumed to swim with a constant velocity, u0, along its
long-axis direction relative to the liquid medium, which
flows at an average velocity Uave along the channel with

a

b

FIGURE 2 (a) Single stroboscopic image taken at 300 Hz of a live cell
(top channel) and an immotile cell (lower channel), both fluorescently
labeled, in a microfluidic channel. Despite the channel flow velocity of
1.6 mm/s, which is much higher than their own velocity, live T. brucei
(top) are able to swim the width of the channel, whereas a dead cell stays
in the same lateral position and is carried by the flow. (b) Montage of
a cell moving in pressure-driven flow through a microfluidic channel.
The cell (indicated by the black arrow) moves in a sinusoidal trajectory
within an upstream orientation. Channel width is 23 mm. In the lowest
panel, the cell’s actual trajectory is superimposed to the overlay of all
frames in the montage, clearly showing the cell moving toward and away
the channel wall.
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ẋ = � sin ,

˙

 = x

1

speed	
   x	
  

z

¨

 + sin = 0.

˙

 

d

dt

ˆ

e =

1

2

{⌦f ^ ˆ

e+

1

�

(

ˆ

z� (

ˆ

z · ˆe)ˆe)}

�

sin ✓ = �⌦

2



Swimmer	
  model	
  

r

ˆ

e

v0

vf

⌦f = r^ vf

vf

 

d

dt

r = v0ˆe+ vf ,
d

dt

ˆ

e =

1

2

⌦f ^ ˆ

e.

vf = vf(1� x

2
)

ˆ

z

ˆ

e = � sin 

ˆ

x� cos 

ˆ

z,
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ẋ = � sin ,

˙

 =

vf

v0
x

ẋ = � sin ,

˙

 = x

¨

 +

vf

v0
sin = 0.

¨

 + sin = 0.

˙

 

d

dt

ˆ

e =

1

2

{⌦f ^ ˆ

e+

1

�

(

ˆ

z� (

ˆ

z · ˆe)ˆe)}

�

2

r

ˆ

e

v0

vf

⌦f = r^ vf

vf

 

d

dt

r = v0ˆe+ vf ,
d

dt

ˆ

e =

1

2

⌦f ^ ˆ

e.

vf = vf(1� x

2
)

ˆ

z

ˆ

e = � sin 

ˆ

x� cos 

ˆ

z,
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€"þ #vf sin" ¼ 0; (3)

which is the equation of motion of the mathematical pendu-
lum. Since in this analogy x plays the role of velocity, we can
immediately write down the 2D Hamiltonian

H2D ¼ 1
2 #vfx

2 þ 1# cos" (4)

as a conserved quantity. Figure 2 shows the x-" phase space
and typical trajectories zðxÞ for several flow strengths #vf. In
analogy to the pendulum two swimming states exist. The
flow vorticity rotates the upstream oriented microswimmer
always towards the center. Hence, the swimmer performs a
swinging motion around the centerline of the channel for
H2D < 2 which corresponds to the oscillating solution of the
pendulum [e.g., blue trajectory of Fig. 2(a)]. For small am-
plitudes (" & 1) the swinging frequency is !0 ¼

ffiffiffiffiffiffi
#vf

p
.

When the upstream oriented swimmer moves exactly in the
center of the channel (stable fixed point), the Hamiltonian is
zero. Downstream swimming along the centerline (" ¼ !)
is an unstable fixed point. After a slight disturbance of x ¼ 0,
vorticity rotates the swimmer away from the centerline. The
swimmer performs a tumbling motion (H2D > 2) which
corresponds to the circling solution of the pendulum [green
trajectory of Fig. 2(c)]. At H2D ¼ 2, the separatrix x2 ¼
2ðcos"þ 1Þ= #vf divides the swinging and tumbling region
in phase space [red curves in the phase portraits of Fig. 2].
Since the Poiseuille flow is bounded by the channel walls,
tumbling motion only occurs for #vf > 4 [Fig. 2(c)].
Sufficiently strong vorticity prevents the swimmer from
crossing the centerline.

If we only consider steric interactions of the swimmer
with the channel wall, the swimmer crashes into the wall at
jxj ¼ 1 for H2D > #vf=2, reorients due to the flow vorticity
towards the upstream orientation, and leaves the wall at

" ¼ 0 with Hmax
2D ¼ #vf=2. The swimmer then performs a

swinging motion between the walls with maximum ampli-
tude jxj ¼ 1 for #vf < 4 [green trajectory in Fig. 2(a)]. So
for #vf < 4 the swimmer always enters a swinging motion
oriented upstream, at the latest after contact with the wall,
whereas it tumbles close to the wall for #vf > 4.
To determine the full 2D trajectory in the microchannel,

we solve the dynamic equation for zðtÞ,
_z ¼ #vf½1# xðtÞ2( # cos"ðtÞ: (5)

A careful analysis reveals the following. The swimmer
always moves upstream ( _z < 0), when #vf < 1#H2D, as
shown in Fig. 2(a). When the flow is strong ( #vf > 1þ
2H2D), the swimmer always drifts downstream ( _z > 0),
while swinging or tumbling [Fig. 2(c)]. In between,
mixed up- and downstream segments within one trajectory
[Fig. 2(b)] exist but a net-upstream motion only occurs for
#vf & 1þH2D=2 [blue line in Fig. 2(b)].
For a nonzero azimuthal component, e’ ¼ sin$ ! 0,

the swimmer trajectory is three-dimensional. Using
Eqs. (1) and (2), we obtain three coupled equations for
", $, and ",

_" ¼ # cos$ sin";

_" ¼ #vf"# sin$ tan$ cos"=";

_$ ¼ sin$ sin"=":

(6)

Because of translational symmetry in the z direction and
rotational symmetry about the channel axis, Eqs. (6) do not
depend on z and’. We are able to identify two constants of
motion,

Lz ¼ " sin$; H ¼ 1
2 #vf"

2 þ 1# cos" cos$; (7)

where Lz is proportional to the angular momentum of the
swimmer in the z direction. Because of this constant the

FIG. 2 (color online). Phase spaces x-" (left) and typical
trajectories zðxÞ (right) for several flow strengths #vf. All trajec-
tories start at z ¼ 0. (a) upstream motion, (b) intermediate
motion and (c) downstream motion. Note the various scales
for the z axis. The arrows indicate the orientation vector ê of
the swimmer.

FIG. 3 (color online). "-"-$ phase space. The intersection
between Lz ¼ const (orange) and H ¼ const (green) gives the
phase space trajectory. (a) helical-like swinging motion (blue
intersection curve) for Lz ¼ 0:2, H ¼ 1. Black curve: fixed-
point line corresponds to helical trajectories. (b) helical-like
tumbling motion (blue intersection curve) for Lz ¼ 0:2, H¼3.
(c)–(e) sketch of trajectories in the channel for helical motion
(c), helical-like motion (d) and tumbling motion (e).
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Microscopy and image processing

All experiments with microfluidic devices are conducted using a Zeiss
(Jena, Germany) Axiovert inverted microscope equipped with a 100x air
objective. Cells in flow are recorded with a PCO Sensicam and each movie
frame is processed using a combination of MATLAB (The MathWorks,
Natick, MA), and Image Pro Plus (Media Cybernetics, Rockville MD).

Polystyrene beads (Polysciences, Eppelhem Germany), 1 mm in diam-
eter, are mixed with the sample and then injected into the channel at a suffi-
ciently dilute concentration to avoid affecting cell motility. The motion of
the beads is used to monitor the average flow velocities either by measuring
the streak produced using long exposure times on the camera or by taking
an average of the distances traveled by several beads from frame to frame
within the channel. Sine wave trajectories (discussed below) are recorded
over long distances using a 10x objective, and tracking is performed manu-
ally. Sine wave fitting for oscillating trajectories is done by first smoothing
the y trajectory in time with five-point adjacent averaging in Origin (Origin-
Lab, Northampton, MA).

RESULTS AND DISCUSSION

Although several studies have shown that deformable vesi-
cles and red blood cells migrate away from boundaries in
pipe flow, few have examined the behavior of self-propelled
entities such as bacteria and other microorganisms subjected
to a flow field (5,23,24). The stroboscopic image shown in
Fig. 2, which was taken with fluorescently labeled trypano-

somes, illustrates that a swimming cell appears to move
laterally across the width of the channel, while an immotile
cell is carried in the same streamline of the flow throughout
the length of the channel. At a flow velocity of 1.6 mm/s,
which is much higher than the trypanosome’s swimming
speed in a static environment, the trypanosome’s ability to
propel itself clearly continues to play a role in its behavior
when it is subjected to flow.

To investigate the behavior of T. brucei in flow, we begin
with a symmetrical channel where cells are constrained to
a geometry of equal height and width of 23 mm ! 23 mm
(of the same length scale as the T. brucei body), which
provides a well-controlled setup for studying the physics
of microswimmers in parabolic flow. All observations are
recorded only for cells in the middle plane (z ¼ 0), ensuring
that they are subjected to the same flow profile in the z direc-
tion, as shown in Fig. 1. A suspension of T. brucei in fresh
culture medium is allowed to enter the channel. A very
dilute concentration of polystyrene beads, 1 mm in diameter,
is included in the cell suspension as tracers for flow.

Oscillatory trajectories in flow

Intriguingly, when we observe the cells at lower magnifica-
tions and flow velocities Uave < 0.4 mm/s, allowing for
longer observation times, we find that most cells swim
upstream with the flagellum end leading (though they do
not necessarily progress upstream due to the flow) from
one wall to another in a sine wave trajectory, as shown in
Fig. 2. The observed trajectories are well fitted by sine
waves. The trajectory in Fig. 2 appears jagged due to the
fast distortions of the T. brucei body during swimming, as
discussed in previous work (11,25–27).

T. brucei swimming with a downstream orientation do not
exhibit such oscillatory paths, but rather tend to tumble
along a streamline. Tumbling cells may still produce distor-
tion in the overall shape, and appear to rotate as a wheel.

Oscillatory trajectories at a range of flow velocities are
fitted to sine waves, and the frequency and amplitude of
oscillations are shown in Fig. 3 as a function of flow veloc-
ities. Increasing velocities result in increasing frequency and
decreasing amplitude of the trajectories.

It can be readily appreciated that this oscillatory behavior
is a direct consequence of the interplay between the Pois-
euille flow field and the active motion of the trypanosome
relative to the fluid, and may be a generic feature of self-
propelled microorganisms that can be deconstructed into
physical terms.

To that end, consider a swimmer of length L and width l in
a channel with radius rc R L/2, such that the swimmer is
able to turn within the channel, as applicable to the motion
of elongated flagellates such as T. brucei. The swimmer is
assumed to swim with a constant velocity, u0, along its
long-axis direction relative to the liquid medium, which
flows at an average velocity Uave along the channel with

a

b

FIGURE 2 (a) Single stroboscopic image taken at 300 Hz of a live cell
(top channel) and an immotile cell (lower channel), both fluorescently
labeled, in a microfluidic channel. Despite the channel flow velocity of
1.6 mm/s, which is much higher than their own velocity, live T. brucei
(top) are able to swim the width of the channel, whereas a dead cell stays
in the same lateral position and is carried by the flow. (b) Montage of
a cell moving in pressure-driven flow through a microfluidic channel.
The cell (indicated by the black arrow) moves in a sinusoidal trajectory
within an upstream orientation. Channel width is 23 mm. In the lowest
panel, the cell’s actual trajectory is superimposed to the overlay of all
frames in the montage, clearly showing the cell moving toward and away
the channel wall.
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Disruption of Vertical Motility by
Shear Triggers Formation of Thin
Phytoplankton Layers
William M. Durham,1 John O. Kessler,2 Roman Stocker1*

Thin layers of phytoplankton are important hotspots of ecological activity that are found in the
coastal ocean, meters beneath the surface, and contain cell concentrations up to two orders of
magnitude above ambient concentrations. Current interpretations of their formation favor abiotic
processes, yet many phytoplankton species found in these layers are motile. We demonstrated
that layers formed when the vertical migration of phytoplankton was disrupted by hydrodynamic
shear. This mechanism, which we call gyrotactic trapping, can be responsible for the thin layers of
phytoplankton commonly observed in the ocean. These results reveal that the coupling between
active microorganism motility and ambient fluid motion can shape the macroscopic features of the
marine ecological landscape.

Advances in underwater sensing technol-
ogy over the past three decades have re-
vealed the occurrence throughout the

oceans of intense assemblages of unicellular
photosynthetic organisms known as thin layers.
Thin layers are centimeters to meters thick (1)
and extend horizontally for kilometers (2). They
often occur in coastal waters (1–4), in regions of
vertical gradients in density where they are par-
tially sheltered from turbulent mixing (1), and
can persist for hours to days (2, 5–7). Thin phy-
toplankton layers contain elevated amounts of

marine snow and bacteria (6, 8), enhance zoo-
plankton growth rates (7), and provide the prey
concentrations essential for the survival of some
fish larvae (9). On the other hand, because many
phytoplankton species found in these layers are
toxic (2, 3, 5, 10, 11), thin layers can disrupt
grazing, enhance zooplankton and fish mortality,
and seed harmful algal blooms at the ocean
surface (2, 5, 10). The large biomass found in thin
layers can influence optical and acoustic signa-
tures in the ocean (1, 6, 8). Understanding the
mechanisms driving thin layer formation is

critical for predicting their occurrence and eco-
logical ramifications.

Phytoplankton species found in thin layers
are often motile (2, 3, 5, 9, 11). The interplay
between motility and fluid flow can result in
complex and ecologically important phenomena,
including localized cell accumulations (12, 13)
and directed swimming against the flow in
zooplankton (13), bacteria (14), and sperm (15).
Phytoplankton motility, coupled with shear, can
lead to a striking focusing effect known as gyro-
taxis (12). Shear, in the form of vertical gradients
in horizontal fluid velocity, can be generated by
tidal currents (1), wind stress (1), and internal
waves (16) and is often enhanced within thin
layers (4, 17). Here, we propose a mechanism for
thin layer formation in which a population of
motile phytoplankton accumulates where shear
exceeds a critical threshold: We have called this
phenomenon gyrotactic trapping.

Many phytoplankton species exhibit gravi-
taxis, a tendency to swim upward against gravity.
Gravitaxis can result from a torque caused by
asymmetry in shape (18) or in distribution of
body density (12) or through active sensing (19).
Hydrodynamic shear imposes a viscous torque

1Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology (MIT), Cambridge,
MA 02139, USA. 2Department of Physics, University of
Arizona, Tucson, AZ 85721, USA.

*To whom correspondence should be addressed. E-mail:
romans@mit.edu

Fig. 1. Gyrotactic trap-
ping. (A) A gyrotactic
phytoplankton’s center
of mass (red) is dis-
placed from its center
of buoyancy (x = z = 0).
As a result, the swim-
ming direction q in a
shear flow, u(z), is set by
the balance of gravita-
tional (Tg) and viscous
(Tv) torques. V is swim-
ming speed and m is
mass. (B) Schematic of
gyrotactic trapping. Cells
can migrate vertically at
low shear but tumble
and become trapped
where |S| > SCR, accumu-
lating in a thin layer. (C)
Experimental apparatus
to test gyrotactic trap-
ping. The rotating belt
generated a depth-
varying shear S(z) in
the underlying flow
chamber.
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Phytoplankton Layers
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Thin layers of phytoplankton are important hotspots of ecological activity that are found in the
coastal ocean, meters beneath the surface, and contain cell concentrations up to two orders of
magnitude above ambient concentrations. Current interpretations of their formation favor abiotic
processes, yet many phytoplankton species found in these layers are motile. We demonstrated
that layers formed when the vertical migration of phytoplankton was disrupted by hydrodynamic
shear. This mechanism, which we call gyrotactic trapping, can be responsible for the thin layers of
phytoplankton commonly observed in the ocean. These results reveal that the coupling between
active microorganism motility and ambient fluid motion can shape the macroscopic features of the
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layers can influence optical and acoustic signa-
tures in the ocean (1, 6, 8). Understanding the
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critical for predicting their occurrence and eco-
logical ramifications.
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between motility and fluid flow can result in
complex and ecologically important phenomena,
including localized cell accumulations (12, 13)
and directed swimming against the flow in
zooplankton (13), bacteria (14), and sperm (15).
Phytoplankton motility, coupled with shear, can
lead to a striking focusing effect known as gyro-
taxis (12). Shear, in the form of vertical gradients
in horizontal fluid velocity, can be generated by
tidal currents (1), wind stress (1), and internal
waves (16) and is often enhanced within thin
layers (4, 17). Here, we propose a mechanism for
thin layer formation in which a population of
motile phytoplankton accumulates where shear
exceeds a critical threshold: We have called this
phenomenon gyrotactic trapping.
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Gravitaxis can result from a torque caused by
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Hydrodynamic shear imposes a viscous torque

1Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology (MIT), Cambridge,
MA 02139, USA. 2Department of Physics, University of
Arizona, Tucson, AZ 85721, USA.

*To whom correspondence should be addressed. E-mail:
romans@mit.edu

Fig. 1. Gyrotactic trap-
ping. (A) A gyrotactic
phytoplankton’s center
of mass (red) is dis-
placed from its center
of buoyancy (x = z = 0).
As a result, the swim-
ming direction q in a
shear flow, u(z), is set by
the balance of gravita-
tional (Tg) and viscous
(Tv) torques. V is swim-
ming speed and m is
mass. (B) Schematic of
gyrotactic trapping. Cells
can migrate vertically at
low shear but tumble
and become trapped
where |S| > SCR, accumu-
lating in a thin layer. (C)
Experimental apparatus
to test gyrotactic trap-
ping. The rotating belt
generated a depth-
varying shear S(z) in
the underlying flow
chamber.

www.sciencemag.org SCIENCE VOL 323 20 FEBRUARY 2009 1067

REPORTS

on cells. The swimming direction, q, is then set
by the balance of viscous and gravitactic torques
(Fig. 1A), and cells are said to be gyrotactic (12).
Consider a spherical cell of radius a and mean
density r (Fig. 1A), with an asymmetric density
distribution creating an offset, L, between its
center of mass and its center of buoyancy (an
equivalent L can be used to characterize gravi-
taxis resulting from shape or sensing). When
exposed to shear S, the cell swims upward in the
direction sinq = BS (12), where B = 3m/rLg is the
gyrotactic reorientation time scale, m the dynamic
fluid viscosity, and g the acceleration of gravity.
This results from the vorticity component of
shear, whereas elongated cells would further be
affected by the rate of strain component.

We show that vertical gradients (S = ∂u/∂z) in
horizontal velocity u can disrupt vertical migra-
tion of gyrotactic phytoplankton, causing them to
accumulate in layers. When |S| > SCR = B−1, the
stabilizing gravitational torque that acts to orient
cells upward is overwhelmed by the hydrody-
namic torque that induces them to spin: Upward
migration is disrupted, because no equilibrium
orientation exists (|sinq| must be ≤1), and cells
tumble end over end, accumulating where they
tumble (Fig. 1B). We demonstrated that gyrotac-
tic trapping triggers layer formation by exposing
the green alga Chlamydomonas nivalis and the
toxic raphidophyte Heterosigma akashiwo (Fig.

2, B and D, insets) to a linearly varying shear,
S(z) (Fig. 2, B and D), in a 1-cm-deep cham-
ber (Fig. 1C). C. nivalis is a classic model for
gyrotaxis (12), whereasH. akashiwo has been the

culprit of numerous large-scale fish kills and is
known to form thin layers (11).

In our experiments, C. nivalis consistently
formed intense thin layers (Fig. 2A). The dynamics

Fig. 2. Thin phytoplankton layers. (A) Multiple-
exposure image showing a thin layer of C. nivalis
(t = 12 min, x = 21.5 cm). Cells in high shear (z >
0.5 cm) were trapped, whereas those beneath
(|S| < SCR) swam upward, forming a thin layer. (B)
Corresponding profile of measured flow velocities
u (black dots), along with a quadratic fit (red) and
the associated shear S = ∂u/∂z (blue). Because u(z)
was parabolic, S increased linearly with z. (Inset)
C. nivalis, showing the two flagella used for
swimming. Scale bar indicates 10 mm. (C) Thin
layer of H. akashiwo. (D) Same as (B), for experi-
ments in Fig. 2C. (Inset) H. akashiwo, showing one
flagellum (a second resides in a ventral groove).
Scale bar, 10 mm.

Fig. 3. Formation of a thin layer. (A) Cell concentration profiles C(z) observed experimentally (solid lines) and
numerically (dashed line), normalized by Cmax observed at t = 12 min, x = 21.5 cm. (B) Upward swimming
speed,w, at t= 2min (red line) and standard deviation across four observations (blue strip and inset).W is the
depth-averaged value of w. The dashed line shows the numerical simulation. The peak in w(z) at S ≈ 0 (gray
line) and the deterioration in w(z) for |S| > 0 are consistent with gyrotaxis and were responsible for layer
formation. (Inset)W decreased with time, as the proportion of cells reaching their critical shear rate increased.
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on cells. The swimming direction, q, is then set
by the balance of viscous and gravitactic torques
(Fig. 1A), and cells are said to be gyrotactic (12).
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density r (Fig. 1A), with an asymmetric density
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center of mass and its center of buoyancy (an
equivalent L can be used to characterize gravi-
taxis resulting from shape or sensing). When
exposed to shear S, the cell swims upward in the
direction sinq = BS (12), where B = 3m/rLg is the
gyrotactic reorientation time scale, m the dynamic
fluid viscosity, and g the acceleration of gravity.
This results from the vorticity component of
shear, whereas elongated cells would further be
affected by the rate of strain component.

We show that vertical gradients (S = ∂u/∂z) in
horizontal velocity u can disrupt vertical migra-
tion of gyrotactic phytoplankton, causing them to
accumulate in layers. When |S| > SCR = B−1, the
stabilizing gravitational torque that acts to orient
cells upward is overwhelmed by the hydrody-
namic torque that induces them to spin: Upward
migration is disrupted, because no equilibrium
orientation exists (|sinq| must be ≤1), and cells
tumble end over end, accumulating where they
tumble (Fig. 1B). We demonstrated that gyrotac-
tic trapping triggers layer formation by exposing
the green alga Chlamydomonas nivalis and the
toxic raphidophyte Heterosigma akashiwo (Fig.

2, B and D, insets) to a linearly varying shear,
S(z) (Fig. 2, B and D), in a 1-cm-deep cham-
ber (Fig. 1C). C. nivalis is a classic model for
gyrotaxis (12), whereasH. akashiwo has been the

culprit of numerous large-scale fish kills and is
known to form thin layers (11).

In our experiments, C. nivalis consistently
formed intense thin layers (Fig. 2A). The dynamics

Fig. 2. Thin phytoplankton layers. (A) Multiple-
exposure image showing a thin layer of C. nivalis
(t = 12 min, x = 21.5 cm). Cells in high shear (z >
0.5 cm) were trapped, whereas those beneath
(|S| < SCR) swam upward, forming a thin layer. (B)
Corresponding profile of measured flow velocities
u (black dots), along with a quadratic fit (red) and
the associated shear S = ∂u/∂z (blue). Because u(z)
was parabolic, S increased linearly with z. (Inset)
C. nivalis, showing the two flagella used for
swimming. Scale bar indicates 10 mm. (C) Thin
layer of H. akashiwo. (D) Same as (B), for experi-
ments in Fig. 2C. (Inset) H. akashiwo, showing one
flagellum (a second resides in a ventral groove).
Scale bar, 10 mm.

Fig. 3. Formation of a thin layer. (A) Cell concentration profiles C(z) observed experimentally (solid lines) and
numerically (dashed line), normalized by Cmax observed at t = 12 min, x = 21.5 cm. (B) Upward swimming
speed,w, at t= 2min (red line) and standard deviation across four observations (blue strip and inset).W is the
depth-averaged value of w. The dashed line shows the numerical simulation. The peak in w(z) at S ≈ 0 (gray
line) and the deterioration in w(z) for |S| > 0 are consistent with gyrotaxis and were responsible for layer
formation. (Inset)W decreased with time, as the proportion of cells reaching their critical shear rate increased.
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