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Defects move with fluid velocity

we can use the scaling argument given above to write

v ∼ ζℓvelQ/µ.

At steady state, the rate of creation and rate of destruction of a pair of defects are equal.

Hence

If defect velocity ∼ fluid velocity, α ζ
K = β σζℓQn2

µ ⇒

ℓvel ∼ ζ/n2K, effectively ℓvel ∼ K−1

ℓn ∼
√
K/ζ1/4

v ∼ ζK

ω ∼ ζ

giving ℓ ∼ 1/n2K. Therefore the relevant length scale characterising the velocity field

is indeed independent of the activity. Moreover the dependence of ℓ on n and K gives the

data collapse demonstrated in Fig. 4.

At steady state, two characteristic length scales

(1) for the director field and vorticity ℓn ∼
√
K/ζ1/4 - controlled by defect density (2) for

the velocity field ℓvel ∼ ζ/n2K, effectively ℓvel ∼ K−1

ω = ∇× u
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we employ a continuum approach based on the hydrodynamic
equations of active nematics

(∂t +uk∂k)Qi j �Si j = GHi j, (1)

∂tr +∂i(rui) = 0, (2)

r(∂t +uk∂k)ui = ∂ jPi j, (3)

where Qi j = 2q(nin j �di j/2) is the two-dimensional nematic order
tensor with director n and magnitude q.

The nematic theory is a proper model to predict the flow fields pro-
duced by the cells even if their shape is spherical and the emergence
of nematic order has been shown in cultures of amoeboid cells? ? .
Here, the nematic order characterises the orientation of cytoskeletal
filaments of the cells which are driven by motor proteins. In ac-
cordance with continuum hypothesis, we assume that the smallest
length scale in our model is much larger than the cell dimensions.

I DON’T THINK THIS PART IS RIGHT YET – IT’S MAKING
LOTS OF DIFFERENT POINTS WHICH DON’T FIT TOGETHER:
1. YOU ONLY NEED DIPOLAR HYDRODYNAMICS FOR THESE
TO BE THE RIGHT EQUATIONS OF MOTION
2. BUT CAN GET NEMATIC ORDER OF CELLS
3. BY NEMATIC WE ARE TALKING ABOUT THE CYTOSKELETON
ORDERING, NOT THE CELL ORDERING, (BUT THEN WHY IS 2
RELEVANT)
WHY DOES THE LENGTH SCALE HAVE TO BE MUCH LARGER
THAN THE CELLS IF WE ARE MODELLING THE CYTOSKELE-
TON AS THE NEMATIC?

The total density r obeys the continuity equation (2) and the
velocity u is evolved according to the Navier�Stokes equations
(3). The co-rotational derivative

Si j =(lEik +wik)(Qk j +dk j/3)+(Qik +dik/3)(lEk j �wk j)

�2l (Qi j +di j/3)(Qkl∂kul), (4)

in eqn. (1) accounts for the rotation of the nematic due to veloc-
ity gradients characterised by the strain rate, Ei j = (∂iu j +∂ jui)/2,
and vorticity, wi j = (∂ jui �∂iu j)/2 of the flow. The alignment pa-
rameter, l , controls whether the director tumbles or aligns under
a shear flow. The rotational diffusivity of the director field is de-
noted by G. We assume an underlying equilibrium free energy
and the relaxation of the nematic order to the equilibrium is then
driven by the molecular potential

Hi j =�AQi j

⇣
q2c�

�
Qi jQ ji

�
/2
⌘
+K(∂ 2

k Qi j), (5)

where A and K are material constants. The former characterises
the coupling between the nematic order, Q, and the concentration
of cells, c, while the latter is Frank’s elastic coefficient assumed to
be the same for bend and splay deformations. OMIT? SEEMS A
BIT OUT OF PLACE AND I THINK IT WAS ONLY ME THAT LIKED IT
It is noteworthy that the fluid described by eqn (1)–(3) is viscoelas-
tic.

The stress term, Pi j, in eqn (3) includes contributions from the

viscous stress

Pviscous
i j = 2hEi j, (6)

with h the viscosity, elastic stresses

Pelastic
i j =�Pdi j +QikHk j �HikQk j �K∂iQkl∂ jQkl

+l
⇥
2(Qi j +

di j

3
)(QklHlk)�Hik(Qk j +

dk j

3
)

� (Qik +
dik

3
)Hk j

⇤
, (7)

with P the pressure, and the active stress due to cell motility

Pactive
i j =�z Qi j, (8)

with z the activity coefficient. The active forces are generated by
gradients of the nematic order and it can be shown that the flow
field is of dipolar form? . For contractile (extensile) cells the force
dipole compresses (extends) the cell along the orientation of its
director and the activity coefficient is positive (negative).

The concentration of cells evolves as

∂t c+∂i(uic) = k—2c+ac, (9)

where k is the thermal diffusivity of the cells and a represents the
proliferation rate due to the growth of cells. We will show that
any increase in concentration results in the generation of active
stresses, which drive the flow of cells.

Eqns. (1)–(3),(9) have proved successful in modeling the be-
haviour of active nematics such as dense suspensions of mi-
croswimmers and active suspensions of microtubules driven by
molecular motors. The new feature here is the source term, ac,
in eqn (9), modeling cell division. The equations are solved using
a hybrid lattice Boltzmann method? ? . Unless otherwise stated,
the parameters used in the simulations are GQ = 0.1, k = 0.1,
KQ = 0.05, a = 0.0001, l = 0.3, and µ = 2/3, in lattice units.
Simulations were performed in a two-dimensional domain of size
200⇥200 and discrete space and time steps were chosen as unity.

2.2 Experiments

OMIT OR MOVE TO SI – NEEDS A BIT OF MINOR RE-WORDING
WHICH I WILL DO IF IT’S STAYING IN

Madin-Darby canine kidney (MDCK WT) strain II cells were cul-
tured in low glucose DMEM medium (Invitrogen), with 100 µg/ml
penicillin, 100 µg/ml streptomycin (Invitrogen) and 10% FBS (In-
vitrogen). Experiments for cell division flow field measurement
(DFF) were done with cells incubated in Leibovitz’s L�15 (Invit-
rogen), with 100 µg/ml penicillin, 100 µg/ml streptomycin (In-
vitrogen) and 10% FBS (Invitrogen). 10 µM blebbistatin (Cay-
man Chemical Company) drug was added and left in the medium
throughout the experiment. Fingering experiment (FE) used cul-
ture medium without drug.

For DFF, MDCK cells were confined on a 500 µm diameter
square pattern by microcontact printing technique? . Fibronectin
(FN - 25 µg/ml Atto dye conjugated FN and 100 µg/ml pure FN,
Sigma and Roche) was incubated on polydimethylsiloxane PDMS
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TION = ’LESS FLOW’, I STILL THINK THAT WE MIGHT NEED VE-
LOCITY PLOTS HERE In an extensile system, cell division acts to
enhance the effective activity of cells while in a contractile one,
leads to activity reduction and thus division of cells cause more
flows in an extensile systems than a contractile one.

Another important consequence of cell division is in changing
the number density of topological defects, which may be impor-
tant in controlling the structure of cell layers. Recent experiments
on amoeboid cells have shown that the nematic order of the cells
is accompanied by formation of topological defects, which pre-
vent the development of infinite size nematic domains? . In the
simulations, the number density of topological defects increases
with increase in cell division in a non-motile system. However, the
cell division has a different effect when it is associated with motil-
ity. While the generation of topological defects is enhanced by cell
division in extensile systems (Fig. 3(g),(h)), it is significantly re-
duced in contractile assemblies (Fig. 3(e),(f)). This again can be
explained by the division reducing (increasing) the effective activ-
ity of contractile (extensile) active nematics in accord with recent
studies showing that the number of defects is directly proportional
to the activity of the system? .

5 Cell division and the free surface

Up to now, we have considered division effects on the dynam-
ics of cell assemblies in periodic domains. In many physiolog-
ical applications such as morphogenesis, tissue expansion, and
wound healing, the mechanical response of a free surface to the
cell invasion is of considerable importance? ? ? ? . Here, using the
equations of lyotropic active nematics, we extend our results to
the case where a cell assembly is separated from an otherwise
isotropic liquid by a free interface. To distinguish the cell cul-
ture from the isotropic fluid, we define a scalar order parameter
f , which measures the relative density of each component with
f = 1 for the cells and f = 0 for the isotropic fluid and evolves
according to the Cahn-Hilliard equation?

∂tf +∂i(uif) = Gf —2µ +af , (10)

where Gf is the mobility, µ = dF/df is the chemical potential
and the free energy of the system is

F =
Af
2

f 2(1�f)2 +
1
2

A(S2f � 1
2

Qi jQ ji)
2

+
1
2

kf (∂kf)2 +
1
2

K(∂kQi j)
2, (11)

where Af and kf are material constants. An additional term
Pi j = (F �µf)di j �∂if(∂F/∂ (∂ jf)) must be added to the stress
components in eqn. (3), when the variable f is introduced. More
details of the form of the free energy and the governing equations
of lyotropic active nematics can be found in? .

In Fig. 4(a), numerical results for the time evolution of the
surface of a cellular layer is compared with the results of ex-
periments on the growth of the surface in a colony of dividing
MDCK cells. Unlike the experiments, we consider non-motile cells
(z = 0) in the simulation to show that a similar behaviour follows
from considering the division-induced activity alone. As evident

from Fig. 4(a), the expansion of the band is accompanied by in-
stabilities that lead to the formation of fingers at the surface in both
experiment and simulation. Although, previous studies have as-
sociated the fingering instabilities to the formation of leader cells
at the border? , our results suggest that the same phenomena can
be induced due to the instability of the nematic field to division-
induced activity. It is well known that the presence of activity
can result in the formation of bend instabilities in extensile active
nematics? ? . Since the cell division introduces extensile stresses
to the cell culture, it can lead to the instability of the nematic
field of the cells and induce instabilities at the surface . WASN’T
SURE WHETHER TO USE SURFACE OR INTERFACE OR BORDER
In addition to the emergence of fingering instabilities at the sur-
face, long-range velocity fields are generated within the growing
band even far away from the surface (Fig. 4(b),(c)). The appear-
ance of long-range velocity fields with no preferred orientation
towards the free surface has been reported in previous studies of
tissue growth in response to a model wound? . However, in the ex-
perimental observations, the emergence of long-range velocity fields
are often correlated with the cell movements by using the “cryptic”
lamelliopodia, which spread underneath other cells during the tis-
sue growth? ? , while here the collective motion is induced by cell
division.
THIS SENTENCE NOT RIGHT YET - DO YOU MEAN
However, in explaining the experimental observations, the emer-
gence of long-range velocity fields and their correlations with the cell
movements were attributed to ‘cryptic’ lamelliopodia, which spread
underneath other cells during the tissue growth? ? , while here the
collective motion is induced by cell division. Taken together, the
comparison of our simulations with experimental observations on
the dynamic evolution of the free surface of a cell culture shows
that similar qualitative behaviour such as fingering instabilities at
the border and long-range velocity fields can be induced by the
cell division-induced activity.

OMIT AS CAN"T SEE IN EXPS It is worth noting that in the tum-
bling regime (l < 0.7), our simulations predict that nematic direc-
tors tend to align parallel to the free interface. This is consistent
with a recent study of lyotropic active nematics which predicts ac-
tive planar anchoring at the interface for extensile active nematics? ,
but is yet to be confirmed in the experiments of dividing cells.

6 Conclusions

To conclude, we propose a modeling framework that describes the
effect of cell division on the dynamics of cell cultures and demon-
strate that the model reproduces the experimentally measured
flow field around a dividing cell in a MDCK cell culture. We show
that an extensile active stress can naturally arise from the nema-
tohydrodynamic representation of cells due to a local increase in
cell concentration. We demonstrate that even in the absence of
active forcing due to motility, the cell division alone can lead to
a coordinated motion of cells. The results suggest that cell divi-
sion can be considered as one regulator of activity in cultures of
extensile and contractile cells. Moreover, we show that the dy-
namic evolution of a free interface due to the division-induced
activity alone (without motility forces) resembles the experimen-
tal observations of the expansion of the cells resulting in fingering
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induced activity. It is well known that the presence of activity
can result in the formation of bend instabilities in extensile active
nematics? ? . Since the cell division introduces extensile stresses
to the cell culture, it can lead to the instability of the nematic
field of the cells and induce instabilities at the surface . WASN’T
SURE WHETHER TO USE SURFACE OR INTERFACE OR BORDER
In addition to the emergence of fingering instabilities at the sur-
face, long-range velocity fields are generated within the growing
band even far away from the surface (Fig. 4(b),(c)). The appear-
ance of long-range velocity fields with no preferred orientation
towards the free surface has been reported in previous studies of
tissue growth in response to a model wound? . However, in the ex-
perimental observations, the emergence of long-range velocity fields
are often correlated with the cell movements by using the “cryptic”
lamelliopodia, which spread underneath other cells during the tis-
sue growth? ? , while here the collective motion is induced by cell
division.
THIS SENTENCE NOT RIGHT YET - DO YOU MEAN
However, in explaining the experimental observations, the emer-
gence of long-range velocity fields and their correlations with the cell
movements were attributed to ‘cryptic’ lamelliopodia, which spread
underneath other cells during the tissue growth? ? , while here the
collective motion is induced by cell division. Taken together, the
comparison of our simulations with experimental observations on
the dynamic evolution of the free surface of a cell culture shows
that similar qualitative behaviour such as fingering instabilities at
the border and long-range velocity fields can be induced by the
cell division-induced activity.

OMIT AS CAN"T SEE IN EXPS It is worth noting that in the tum-
bling regime (l < 0.7), our simulations predict that nematic direc-
tors tend to align parallel to the free interface. This is consistent
with a recent study of lyotropic active nematics which predicts ac-
tive planar anchoring at the interface for extensile active nematics? ,
but is yet to be confirmed in the experiments of dividing cells.

6 Conclusions

To conclude, we propose a modeling framework that describes the
effect of cell division on the dynamics of cell cultures and demon-
strate that the model reproduces the experimentally measured
flow field around a dividing cell in a MDCK cell culture. We show
that an extensile active stress can naturally arise from the nema-
tohydrodynamic representation of cells due to a local increase in
cell concentration. We demonstrate that even in the absence of
active forcing due to motility, the cell division alone can lead to
a coordinated motion of cells. The results suggest that cell divi-
sion can be considered as one regulator of activity in cultures of
extensile and contractile cells. Moreover, we show that the dy-
namic evolution of a free interface due to the division-induced
activity alone (without motility forces) resembles the experimen-
tal observations of the expansion of the cells resulting in fingering
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we employ a continuum approach based on the hydrodynamic
equations of active nematics

(∂t +uk∂k)Qi j �Si j = GHi j, (1)

∂tr +∂i(rui) = 0, (2)

r(∂t +uk∂k)ui = ∂ jPi j, (3)

where Qi j = 2q(nin j �di j/2) is the two-dimensional nematic order
tensor with director n and magnitude q.

The nematic theory is a proper model to predict the flow fields pro-
duced by the cells even if their shape is spherical and the emergence
of nematic order has been shown in cultures of amoeboid cells? ? .
Here, the nematic order characterises the orientation of cytoskeletal
filaments of the cells which are driven by motor proteins. In ac-
cordance with continuum hypothesis, we assume that the smallest
length scale in our model is much larger than the cell dimensions.

I DON’T THINK THIS PART IS RIGHT YET – IT’S MAKING
LOTS OF DIFFERENT POINTS WHICH DON’T FIT TOGETHER:
1. YOU ONLY NEED DIPOLAR HYDRODYNAMICS FOR THESE
TO BE THE RIGHT EQUATIONS OF MOTION
2. BUT CAN GET NEMATIC ORDER OF CELLS
3. BY NEMATIC WE ARE TALKING ABOUT THE CYTOSKELETON
ORDERING, NOT THE CELL ORDERING, (BUT THEN WHY IS 2
RELEVANT)
WHY DOES THE LENGTH SCALE HAVE TO BE MUCH LARGER
THAN THE CELLS IF WE ARE MODELLING THE CYTOSKELE-
TON AS THE NEMATIC?

The total density r obeys the continuity equation (2) and the
velocity u is evolved according to the Navier�Stokes equations
(3). The co-rotational derivative

Si j =(lEik +wik)(Qk j +dk j/3)+(Qik +dik/3)(lEk j �wk j)

�2l (Qi j +di j/3)(Qkl∂kul), (4)

in eqn. (1) accounts for the rotation of the nematic due to veloc-
ity gradients characterised by the strain rate, Ei j = (∂iu j +∂ jui)/2,
and vorticity, wi j = (∂ jui �∂iu j)/2 of the flow. The alignment pa-
rameter, l , controls whether the director tumbles or aligns under
a shear flow. The rotational diffusivity of the director field is de-
noted by G. We assume an underlying equilibrium free energy
and the relaxation of the nematic order to the equilibrium is then
driven by the molecular potential

Hi j =�AQi j

⇣
q2c�

�
Qi jQ ji

�
/2
⌘
+K(∂ 2

k Qi j), (5)

where A and K are material constants. The former characterises
the coupling between the nematic order, Q, and the concentration
of cells, c, while the latter is Frank’s elastic coefficient assumed to
be the same for bend and splay deformations. OMIT? SEEMS A
BIT OUT OF PLACE AND I THINK IT WAS ONLY ME THAT LIKED IT
It is noteworthy that the fluid described by eqn (1)–(3) is viscoelas-
tic.

The stress term, Pi j, in eqn (3) includes contributions from the

viscous stress

Pviscous
i j = 2hEi j, (6)

with h the viscosity, elastic stresses

Pelastic
i j =�Pdi j +QikHk j �HikQk j �K∂iQkl∂ jQkl

+l
⇥
2(Qi j +

di j

3
)(QklHlk)�Hik(Qk j +

dk j

3
)

� (Qik +
dik

3
)Hk j

⇤
, (7)

with P the pressure, and the active stress due to cell motility

Pactive
i j =�z Qi j, (8)

with z the activity coefficient. The active forces are generated by
gradients of the nematic order and it can be shown that the flow
field is of dipolar form? . For contractile (extensile) cells the force
dipole compresses (extends) the cell along the orientation of its
director and the activity coefficient is positive (negative).

The concentration of cells evolves as

∂t c+∂i(uic) = k—2c+ac, (9)

where k is the thermal diffusivity of the cells and a represents the
proliferation rate due to the growth of cells. We will show that
any increase in concentration results in the generation of active
stresses, which drive the flow of cells.

Eqns. (1)–(3),(9) have proved successful in modeling the be-
haviour of active nematics such as dense suspensions of mi-
croswimmers and active suspensions of microtubules driven by
molecular motors. The new feature here is the source term, ac,
in eqn (9), modeling cell division. The equations are solved using
a hybrid lattice Boltzmann method? ? . Unless otherwise stated,
the parameters used in the simulations are GQ = 0.1, k = 0.1,
KQ = 0.05, a = 0.0001, l = 0.3, and µ = 2/3, in lattice units.
Simulations were performed in a two-dimensional domain of size
200⇥200 and discrete space and time steps were chosen as unity.

2.2 Experiments

OMIT OR MOVE TO SI – NEEDS A BIT OF MINOR RE-WORDING
WHICH I WILL DO IF IT’S STAYING IN

Madin-Darby canine kidney (MDCK WT) strain II cells were cul-
tured in low glucose DMEM medium (Invitrogen), with 100 µg/ml
penicillin, 100 µg/ml streptomycin (Invitrogen) and 10% FBS (In-
vitrogen). Experiments for cell division flow field measurement
(DFF) were done with cells incubated in Leibovitz’s L�15 (Invit-
rogen), with 100 µg/ml penicillin, 100 µg/ml streptomycin (In-
vitrogen) and 10% FBS (Invitrogen). 10 µM blebbistatin (Cay-
man Chemical Company) drug was added and left in the medium
throughout the experiment. Fingering experiment (FE) used cul-
ture medium without drug.

For DFF, MDCK cells were confined on a 500 µm diameter
square pattern by microcontact printing technique? . Fibronectin
(FN - 25 µg/ml Atto dye conjugated FN and 100 µg/ml pure FN,
Sigma and Roche) was incubated on polydimethylsiloxane PDMS

2 | 1–7

Consequence	
  of	
  the	
  ac2ve	
  stress	
  



Ac2ve	
  anchoring	
  

extensile	
  ó	
  planar	
  
contrac2le	
  ó	
  homeotropic	
  
	
  
NB	
  interface	
  shape,	
  
topological	
  defects	
  



2me	
  

preferred	
  anchoring	
  at	
  the	
  interface	
  =>	
  elonga2on	
  of	
  domains	
  	
  



arrested	
  ordering:	
  compe22on	
  between	
  the	
  ordering	
  effect	
  of	
  the	
  free	
  energy	
  
and	
  the	
  disordering	
  effect	
  of	
  the	
  ac2vity	
  



arrested	
  ordering:	
  compe22on	
  between	
  the	
  ordering	
  effect	
  of	
  the	
  
free	
  energy	
  and	
  the	
  disordering	
  effect	
  of	
  the	
  ac2vity:	
  flow	
  tumbling	
  



Summary 

1.	
  Lyotropics:	
  adding	
  an	
  interface	
  	
  

ac2ve	
  anchoring	
  
cusp-­‐like	
  interface	
  shapes	
  
+1/2	
  defects	
  migrate	
  from	
  surface	
  to	
  bulk	
  
	
  
2.	
  Adding	
  cell	
  division	
  
	
  
3.	
  Adding	
  fric2on	
  
	
  
	
  

	
  
	
  
	
  
	
  



“Ponder	
  had	
  invented	
  a	
  li5le	
  system	
  he'd	
  
called,	
  in	
  the	
  privacy	
  of	
  his	
  head,	
  Lies-­‐to-­‐
Wizards.	
  It	
  was	
  for	
  their	
  own	
  good,	
  he	
  told	
  
himself.	
  There	
  was	
  no	
  point	
  in	
  telling	
  your	
  
bosses	
  everything;	
  they	
  were	
  busy	
  women,	
  
they	
  didn't	
  want	
  explana2ons.	
  There	
  was	
  no	
  
point	
  in	
  burdening	
  them.	
  What	
  they	
  wanted	
  
was	
  li5le	
  stories	
  that	
  they	
  felt	
  they	
  could	
  
understand,	
  and	
  then	
  they'd	
  go	
  away	
  and	
  stop	
  
worrying.”	
  	
  
―	
  Terry	
  Pratche5,	
  The	
  Science	
  of	
  Discworld	
  

(tr:	
  wizard	
  =	
  supervisor;	
  	
  Ponder	
  =	
  grad	
  student)	
  



we employ a continuum approach based on the hydrodynamic
equations of active nematics

(∂t +uk∂k)Qi j �Si j = GHi j, (1)

∂tr +∂i(rui) = 0, (2)

r(∂t +uk∂k)ui = ∂ jPi j, (3)

where Qi j = 2q(nin j �di j/2) is the two-dimensional nematic order
tensor with director n and magnitude q.

The nematic theory is a proper model to predict the flow fields pro-
duced by the cells even if their shape is spherical and the emergence
of nematic order has been shown in cultures of amoeboid cells? ? .
Here, the nematic order characterises the orientation of cytoskeletal
filaments of the cells which are driven by motor proteins. In ac-
cordance with continuum hypothesis, we assume that the smallest
length scale in our model is much larger than the cell dimensions.

I DON’T THINK THIS PART IS RIGHT YET – IT’S MAKING
LOTS OF DIFFERENT POINTS WHICH DON’T FIT TOGETHER:
1. YOU ONLY NEED DIPOLAR HYDRODYNAMICS FOR THESE
TO BE THE RIGHT EQUATIONS OF MOTION
2. BUT CAN GET NEMATIC ORDER OF CELLS
3. BY NEMATIC WE ARE TALKING ABOUT THE CYTOSKELETON
ORDERING, NOT THE CELL ORDERING, (BUT THEN WHY IS 2
RELEVANT)
WHY DOES THE LENGTH SCALE HAVE TO BE MUCH LARGER
THAN THE CELLS IF WE ARE MODELLING THE CYTOSKELE-
TON AS THE NEMATIC?

The total density r obeys the continuity equation (2) and the
velocity u is evolved according to the Navier�Stokes equations
(3). The co-rotational derivative

Si j =(lEik +wik)(Qk j +dk j/3)+(Qik +dik/3)(lEk j �wk j)

�2l (Qi j +di j/3)(Qkl∂kul), (4)

in eqn. (1) accounts for the rotation of the nematic due to veloc-
ity gradients characterised by the strain rate, Ei j = (∂iu j +∂ jui)/2,
and vorticity, wi j = (∂ jui �∂iu j)/2 of the flow. The alignment pa-
rameter, l , controls whether the director tumbles or aligns under
a shear flow. The rotational diffusivity of the director field is de-
noted by G. We assume an underlying equilibrium free energy
and the relaxation of the nematic order to the equilibrium is then
driven by the molecular potential

Hi j =�AQi j
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where A and K are material constants. The former characterises
the coupling between the nematic order, Q, and the concentration
of cells, c, while the latter is Frank’s elastic coefficient assumed to
be the same for bend and splay deformations. OMIT? SEEMS A
BIT OUT OF PLACE AND I THINK IT WAS ONLY ME THAT LIKED IT
It is noteworthy that the fluid described by eqn (1)–(3) is viscoelas-
tic.

The stress term, Pi j, in eqn (3) includes contributions from the

viscous stress

Pviscous
i j = 2hEi j, (6)

with h the viscosity, elastic stresses

Pelastic
i j =�Pdi j +QikHk j �HikQk j �K∂iQkl∂ jQkl

+l
⇥
2(Qi j +

di j

3
)(QklHlk)�Hik(Qk j +

dk j

3
)

� (Qik +
dik

3
)Hk j

⇤
, (7)

with P the pressure, and the active stress due to cell motility

Pactive
i j =�z Qi j, (8)

with z the activity coefficient. The active forces are generated by
gradients of the nematic order and it can be shown that the flow
field is of dipolar form? . For contractile (extensile) cells the force
dipole compresses (extends) the cell along the orientation of its
director and the activity coefficient is positive (negative).

The concentration of cells evolves as

∂t c+∂i(uic) = k—2c+ac, (9)

where k is the thermal diffusivity of the cells and a represents the
proliferation rate due to the growth of cells. We will show that
any increase in concentration results in the generation of active
stresses, which drive the flow of cells.

Eqns. (1)–(3),(9) have proved successful in modeling the be-
haviour of active nematics such as dense suspensions of mi-
croswimmers and active suspensions of microtubules driven by
molecular motors. The new feature here is the source term, ac,
in eqn (9), modeling cell division. The equations are solved using
a hybrid lattice Boltzmann method? ? . Unless otherwise stated,
the parameters used in the simulations are GQ = 0.1, k = 0.1,
KQ = 0.05, a = 0.0001, l = 0.3, and µ = 2/3, in lattice units.
Simulations were performed in a two-dimensional domain of size
200⇥200 and discrete space and time steps were chosen as unity.

2.2 Experiments

OMIT OR MOVE TO SI – NEEDS A BIT OF MINOR RE-WORDING
WHICH I WILL DO IF IT’S STAYING IN

Madin-Darby canine kidney (MDCK WT) strain II cells were cul-
tured in low glucose DMEM medium (Invitrogen), with 100 µg/ml
penicillin, 100 µg/ml streptomycin (Invitrogen) and 10% FBS (In-
vitrogen). Experiments for cell division flow field measurement
(DFF) were done with cells incubated in Leibovitz’s L�15 (Invit-
rogen), with 100 µg/ml penicillin, 100 µg/ml streptomycin (In-
vitrogen) and 10% FBS (Invitrogen). 10 µM blebbistatin (Cay-
man Chemical Company) drug was added and left in the medium
throughout the experiment. Fingering experiment (FE) used cul-
ture medium without drug.

For DFF, MDCK cells were confined on a 500 µm diameter
square pattern by microcontact printing technique? . Fibronectin
(FN - 25 µg/ml Atto dye conjugated FN and 100 µg/ml pure FN,
Sigma and Roche) was incubated on polydimethylsiloxane PDMS
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with z the activity coefficient. The active forces are generated by
gradients of the nematic order and it can be shown that the flow
field is of dipolar form? . For contractile (extensile) cells the force
dipole compresses (extends) the cell along the orientation of its
director and the activity coefficient is positive (negative).

The concentration of cells evolves as

∂t c+∂i(uic) = k—2c+ac, (9)

where k is the thermal diffusivity of the cells and a represents the
proliferation rate due to the growth of cells. We will show that
any increase in concentration results in the generation of active
stresses, which drive the flow of cells.

Eqns. (1)–(3),(9) have proved successful in modeling the be-
haviour of active nematics such as dense suspensions of mi-
croswimmers and active suspensions of microtubules driven by
molecular motors. The new feature here is the source term, ac,
in eqn (9), modeling cell division. The equations are solved using
a hybrid lattice Boltzmann method? ? . Unless otherwise stated,
the parameters used in the simulations are GQ = 0.1, k = 0.1,
KQ = 0.05, a = 0.0001, l = 0.3, and µ = 2/3, in lattice units.
Simulations were performed in a two-dimensional domain of size
200⇥200 and discrete space and time steps were chosen as unity.

2.2 Experiments
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Madin-Darby canine kidney (MDCK WT) strain II cells were cul-
tured in low glucose DMEM medium (Invitrogen), with 100 µg/ml
penicillin, 100 µg/ml streptomycin (Invitrogen) and 10% FBS (In-
vitrogen). Experiments for cell division flow field measurement
(DFF) were done with cells incubated in Leibovitz’s L�15 (Invit-
rogen), with 100 µg/ml penicillin, 100 µg/ml streptomycin (In-
vitrogen) and 10% FBS (Invitrogen). 10 µM blebbistatin (Cay-
man Chemical Company) drug was added and left in the medium
throughout the experiment. Fingering experiment (FE) used cul-
ture medium without drug.

For DFF, MDCK cells were confined on a 500 µm diameter
square pattern by microcontact printing technique? . Fibronectin
(FN - 25 µg/ml Atto dye conjugated FN and 100 µg/ml pure FN,
Sigma and Roche) was incubated on polydimethylsiloxane PDMS
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TION = ’LESS FLOW’, I STILL THINK THAT WE MIGHT NEED VE-
LOCITY PLOTS HERE In an extensile system, cell division acts to
enhance the effective activity of cells while in a contractile one,
leads to activity reduction and thus division of cells cause more
flows in an extensile systems than a contractile one.

Another important consequence of cell division is in changing
the number density of topological defects, which may be impor-
tant in controlling the structure of cell layers. Recent experiments
on amoeboid cells have shown that the nematic order of the cells
is accompanied by formation of topological defects, which pre-
vent the development of infinite size nematic domains? . In the
simulations, the number density of topological defects increases
with increase in cell division in a non-motile system. However, the
cell division has a different effect when it is associated with motil-
ity. While the generation of topological defects is enhanced by cell
division in extensile systems (Fig. 3(g),(h)), it is significantly re-
duced in contractile assemblies (Fig. 3(e),(f)). This again can be
explained by the division reducing (increasing) the effective activ-
ity of contractile (extensile) active nematics in accord with recent
studies showing that the number of defects is directly proportional
to the activity of the system? .

5 Cell division and the free surface

Up to now, we have considered division effects on the dynam-
ics of cell assemblies in periodic domains. In many physiolog-
ical applications such as morphogenesis, tissue expansion, and
wound healing, the mechanical response of a free surface to the
cell invasion is of considerable importance? ? ? ? . Here, using the
equations of lyotropic active nematics, we extend our results to
the case where a cell assembly is separated from an otherwise
isotropic liquid by a free interface. To distinguish the cell cul-
ture from the isotropic fluid, we define a scalar order parameter
f , which measures the relative density of each component with
f = 1 for the cells and f = 0 for the isotropic fluid and evolves
according to the Cahn-Hilliard equation?

∂tf +∂i(uif) = Gf —2µ +af , (10)

where Gf is the mobility, µ = dF/df is the chemical potential
and the free energy of the system is

F =
Af
2

f 2(1�f)2 +
1
2

A(S2f � 1
2

Qi jQ ji)
2

+
1
2

kf (∂kf)2 +
1
2

K(∂kQi j)
2, (11)

where Af and kf are material constants. An additional term
Pi j = (F �µf)di j �∂if(∂F/∂ (∂ jf)) must be added to the stress
components in eqn. (3), when the variable f is introduced. More
details of the form of the free energy and the governing equations
of lyotropic active nematics can be found in? .

In Fig. 4(a), numerical results for the time evolution of the
surface of a cellular layer is compared with the results of ex-
periments on the growth of the surface in a colony of dividing
MDCK cells. Unlike the experiments, we consider non-motile cells
(z = 0) in the simulation to show that a similar behaviour follows
from considering the division-induced activity alone. As evident

from Fig. 4(a), the expansion of the band is accompanied by in-
stabilities that lead to the formation of fingers at the surface in both
experiment and simulation. Although, previous studies have as-
sociated the fingering instabilities to the formation of leader cells
at the border? , our results suggest that the same phenomena can
be induced due to the instability of the nematic field to division-
induced activity. It is well known that the presence of activity
can result in the formation of bend instabilities in extensile active
nematics? ? . Since the cell division introduces extensile stresses
to the cell culture, it can lead to the instability of the nematic
field of the cells and induce instabilities at the surface . WASN’T
SURE WHETHER TO USE SURFACE OR INTERFACE OR BORDER
In addition to the emergence of fingering instabilities at the sur-
face, long-range velocity fields are generated within the growing
band even far away from the surface (Fig. 4(b),(c)). The appear-
ance of long-range velocity fields with no preferred orientation
towards the free surface has been reported in previous studies of
tissue growth in response to a model wound? . However, in the ex-
perimental observations, the emergence of long-range velocity fields
are often correlated with the cell movements by using the “cryptic”
lamelliopodia, which spread underneath other cells during the tis-
sue growth? ? , while here the collective motion is induced by cell
division.
THIS SENTENCE NOT RIGHT YET - DO YOU MEAN
However, in explaining the experimental observations, the emer-
gence of long-range velocity fields and their correlations with the cell
movements were attributed to ‘cryptic’ lamelliopodia, which spread
underneath other cells during the tissue growth? ? , while here the
collective motion is induced by cell division. Taken together, the
comparison of our simulations with experimental observations on
the dynamic evolution of the free surface of a cell culture shows
that similar qualitative behaviour such as fingering instabilities at
the border and long-range velocity fields can be induced by the
cell division-induced activity.

OMIT AS CAN"T SEE IN EXPS It is worth noting that in the tum-
bling regime (l < 0.7), our simulations predict that nematic direc-
tors tend to align parallel to the free interface. This is consistent
with a recent study of lyotropic active nematics which predicts ac-
tive planar anchoring at the interface for extensile active nematics? ,
but is yet to be confirmed in the experiments of dividing cells.

6 Conclusions

To conclude, we propose a modeling framework that describes the
effect of cell division on the dynamics of cell cultures and demon-
strate that the model reproduces the experimentally measured
flow field around a dividing cell in a MDCK cell culture. We show
that an extensile active stress can naturally arise from the nema-
tohydrodynamic representation of cells due to a local increase in
cell concentration. We demonstrate that even in the absence of
active forcing due to motility, the cell division alone can lead to
a coordinated motion of cells. The results suggest that cell divi-
sion can be considered as one regulator of activity in cultures of
extensile and contractile cells. Moreover, we show that the dy-
namic evolution of a free interface due to the division-induced
activity alone (without motility forces) resembles the experimen-
tal observations of the expansion of the cells resulting in fingering
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TION = ’LESS FLOW’, I STILL THINK THAT WE MIGHT NEED VE-
LOCITY PLOTS HERE In an extensile system, cell division acts to
enhance the effective activity of cells while in a contractile one,
leads to activity reduction and thus division of cells cause more
flows in an extensile systems than a contractile one.

Another important consequence of cell division is in changing
the number density of topological defects, which may be impor-
tant in controlling the structure of cell layers. Recent experiments
on amoeboid cells have shown that the nematic order of the cells
is accompanied by formation of topological defects, which pre-
vent the development of infinite size nematic domains? . In the
simulations, the number density of topological defects increases
with increase in cell division in a non-motile system. However, the
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explained by the division reducing (increasing) the effective activ-
ity of contractile (extensile) active nematics in accord with recent
studies showing that the number of defects is directly proportional
to the activity of the system? .

5 Cell division and the free surface

Up to now, we have considered division effects on the dynam-
ics of cell assemblies in periodic domains. In many physiolog-
ical applications such as morphogenesis, tissue expansion, and
wound healing, the mechanical response of a free surface to the
cell invasion is of considerable importance? ? ? ? . Here, using the
equations of lyotropic active nematics, we extend our results to
the case where a cell assembly is separated from an otherwise
isotropic liquid by a free interface. To distinguish the cell cul-
ture from the isotropic fluid, we define a scalar order parameter
f , which measures the relative density of each component with
f = 1 for the cells and f = 0 for the isotropic fluid and evolves
according to the Cahn-Hilliard equation?

∂tf +∂i(uif) = Gf —2µ +af , (10)

where Gf is the mobility, µ = dF/df is the chemical potential
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where Af and kf are material constants. An additional term
Pi j = (F �µf)di j �∂if(∂F/∂ (∂ jf)) must be added to the stress
components in eqn. (3), when the variable f is introduced. More
details of the form of the free energy and the governing equations
of lyotropic active nematics can be found in? .

In Fig. 4(a), numerical results for the time evolution of the
surface of a cellular layer is compared with the results of ex-
periments on the growth of the surface in a colony of dividing
MDCK cells. Unlike the experiments, we consider non-motile cells
(z = 0) in the simulation to show that a similar behaviour follows
from considering the division-induced activity alone. As evident

from Fig. 4(a), the expansion of the band is accompanied by in-
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SURE WHETHER TO USE SURFACE OR INTERFACE OR BORDER
In addition to the emergence of fingering instabilities at the sur-
face, long-range velocity fields are generated within the growing
band even far away from the surface (Fig. 4(b),(c)). The appear-
ance of long-range velocity fields with no preferred orientation
towards the free surface has been reported in previous studies of
tissue growth in response to a model wound? . However, in the ex-
perimental observations, the emergence of long-range velocity fields
are often correlated with the cell movements by using the “cryptic”
lamelliopodia, which spread underneath other cells during the tis-
sue growth? ? , while here the collective motion is induced by cell
division.
THIS SENTENCE NOT RIGHT YET - DO YOU MEAN
However, in explaining the experimental observations, the emer-
gence of long-range velocity fields and their correlations with the cell
movements were attributed to ‘cryptic’ lamelliopodia, which spread
underneath other cells during the tissue growth? ? , while here the
collective motion is induced by cell division. Taken together, the
comparison of our simulations with experimental observations on
the dynamic evolution of the free surface of a cell culture shows
that similar qualitative behaviour such as fingering instabilities at
the border and long-range velocity fields can be induced by the
cell division-induced activity.

OMIT AS CAN"T SEE IN EXPS It is worth noting that in the tum-
bling regime (l < 0.7), our simulations predict that nematic direc-
tors tend to align parallel to the free interface. This is consistent
with a recent study of lyotropic active nematics which predicts ac-
tive planar anchoring at the interface for extensile active nematics? ,
but is yet to be confirmed in the experiments of dividing cells.

6 Conclusions

To conclude, we propose a modeling framework that describes the
effect of cell division on the dynamics of cell cultures and demon-
strate that the model reproduces the experimentally measured
flow field around a dividing cell in a MDCK cell culture. We show
that an extensile active stress can naturally arise from the nema-
tohydrodynamic representation of cells due to a local increase in
cell concentration. We demonstrate that even in the absence of
active forcing due to motility, the cell division alone can lead to
a coordinated motion of cells. The results suggest that cell divi-
sion can be considered as one regulator of activity in cultures of
extensile and contractile cells. Moreover, we show that the dy-
namic evolution of a free interface due to the division-induced
activity alone (without motility forces) resembles the experimen-
tal observations of the expansion of the cells resulting in fingering
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we employ a continuum approach based on the hydrodynamic
equations of active nematics

(∂t +uk∂k)Qi j �Si j = GHi j, (1)

∂tr +∂i(rui) = 0, (2)

r(∂t +uk∂k)ui = ∂ jPi j, (3)

where Qi j = 2q(nin j �di j/2) is the two-dimensional nematic order
tensor with director n and magnitude q.

The nematic theory is a proper model to predict the flow fields pro-
duced by the cells even if their shape is spherical and the emergence
of nematic order has been shown in cultures of amoeboid cells? ? .
Here, the nematic order characterises the orientation of cytoskeletal
filaments of the cells which are driven by motor proteins. In ac-
cordance with continuum hypothesis, we assume that the smallest
length scale in our model is much larger than the cell dimensions.

I DON’T THINK THIS PART IS RIGHT YET – IT’S MAKING
LOTS OF DIFFERENT POINTS WHICH DON’T FIT TOGETHER:
1. YOU ONLY NEED DIPOLAR HYDRODYNAMICS FOR THESE
TO BE THE RIGHT EQUATIONS OF MOTION
2. BUT CAN GET NEMATIC ORDER OF CELLS
3. BY NEMATIC WE ARE TALKING ABOUT THE CYTOSKELETON
ORDERING, NOT THE CELL ORDERING, (BUT THEN WHY IS 2
RELEVANT)
WHY DOES THE LENGTH SCALE HAVE TO BE MUCH LARGER
THAN THE CELLS IF WE ARE MODELLING THE CYTOSKELE-
TON AS THE NEMATIC?

The total density r obeys the continuity equation (2) and the
velocity u is evolved according to the Navier�Stokes equations
(3). The co-rotational derivative

Si j =(lEik +wik)(Qk j +dk j/3)+(Qik +dik/3)(lEk j �wk j)

�2l (Qi j +di j/3)(Qkl∂kul), (4)

in eqn. (1) accounts for the rotation of the nematic due to veloc-
ity gradients characterised by the strain rate, Ei j = (∂iu j +∂ jui)/2,
and vorticity, wi j = (∂ jui �∂iu j)/2 of the flow. The alignment pa-
rameter, l , controls whether the director tumbles or aligns under
a shear flow. The rotational diffusivity of the director field is de-
noted by G. We assume an underlying equilibrium free energy
and the relaxation of the nematic order to the equilibrium is then
driven by the molecular potential

Hi j =�AQi j

⇣
q2c�

�
Qi jQ ji

�
/2
⌘
+K(∂ 2

k Qi j), (5)

where A and K are material constants. The former characterises
the coupling between the nematic order, Q, and the concentration
of cells, c, while the latter is Frank’s elastic coefficient assumed to
be the same for bend and splay deformations. OMIT? SEEMS A
BIT OUT OF PLACE AND I THINK IT WAS ONLY ME THAT LIKED IT
It is noteworthy that the fluid described by eqn (1)–(3) is viscoelas-
tic.

The stress term, Pi j, in eqn (3) includes contributions from the

viscous stress

Pviscous
i j = 2hEi j, (6)

with h the viscosity, elastic stresses

Pelastic
i j =�Pdi j +QikHk j �HikQk j �K∂iQkl∂ jQkl

+l
⇥
2(Qi j +

di j

3
)(QklHlk)�Hik(Qk j +

dk j

3
)

� (Qik +
dik

3
)Hk j

⇤
, (7)

with P the pressure, and the active stress due to cell motility

Pactive
i j =�z Qi j, (8)

with z the activity coefficient. The active forces are generated by
gradients of the nematic order and it can be shown that the flow
field is of dipolar form? . For contractile (extensile) cells the force
dipole compresses (extends) the cell along the orientation of its
director and the activity coefficient is positive (negative).

The concentration of cells evolves as

∂t c+∂i(uic) = k—2c+ac, (9)

where k is the thermal diffusivity of the cells and a represents the
proliferation rate due to the growth of cells. We will show that
any increase in concentration results in the generation of active
stresses, which drive the flow of cells.

Eqns. (1)–(3),(9) have proved successful in modeling the be-
haviour of active nematics such as dense suspensions of mi-
croswimmers and active suspensions of microtubules driven by
molecular motors. The new feature here is the source term, ac,
in eqn (9), modeling cell division. The equations are solved using
a hybrid lattice Boltzmann method? ? . Unless otherwise stated,
the parameters used in the simulations are GQ = 0.1, k = 0.1,
KQ = 0.05, a = 0.0001, l = 0.3, and µ = 2/3, in lattice units.
Simulations were performed in a two-dimensional domain of size
200⇥200 and discrete space and time steps were chosen as unity.

2.2 Experiments

OMIT OR MOVE TO SI – NEEDS A BIT OF MINOR RE-WORDING
WHICH I WILL DO IF IT’S STAYING IN

Madin-Darby canine kidney (MDCK WT) strain II cells were cul-
tured in low glucose DMEM medium (Invitrogen), with 100 µg/ml
penicillin, 100 µg/ml streptomycin (Invitrogen) and 10% FBS (In-
vitrogen). Experiments for cell division flow field measurement
(DFF) were done with cells incubated in Leibovitz’s L�15 (Invit-
rogen), with 100 µg/ml penicillin, 100 µg/ml streptomycin (In-
vitrogen) and 10% FBS (Invitrogen). 10 µM blebbistatin (Cay-
man Chemical Company) drug was added and left in the medium
throughout the experiment. Fingering experiment (FE) used cul-
ture medium without drug.

For DFF, MDCK cells were confined on a 500 µm diameter
square pattern by microcontact printing technique? . Fibronectin
(FN - 25 µg/ml Atto dye conjugated FN and 100 µg/ml pure FN,
Sigma and Roche) was incubated on polydimethylsiloxane PDMS
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length scale in our model is much larger than the cell dimensions.

I DON’T THINK THIS PART IS RIGHT YET – IT’S MAKING
LOTS OF DIFFERENT POINTS WHICH DON’T FIT TOGETHER:
1. YOU ONLY NEED DIPOLAR HYDRODYNAMICS FOR THESE
TO BE THE RIGHT EQUATIONS OF MOTION
2. BUT CAN GET NEMATIC ORDER OF CELLS
3. BY NEMATIC WE ARE TALKING ABOUT THE CYTOSKELETON
ORDERING, NOT THE CELL ORDERING, (BUT THEN WHY IS 2
RELEVANT)
WHY DOES THE LENGTH SCALE HAVE TO BE MUCH LARGER
THAN THE CELLS IF WE ARE MODELLING THE CYTOSKELE-
TON AS THE NEMATIC?

The total density r obeys the continuity equation (2) and the
velocity u is evolved according to the Navier�Stokes equations
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the coupling between the nematic order, Q, and the concentration
of cells, c, while the latter is Frank’s elastic coefficient assumed to
be the same for bend and splay deformations. OMIT? SEEMS A
BIT OUT OF PLACE AND I THINK IT WAS ONLY ME THAT LIKED IT
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dipole compresses (extends) the cell along the orientation of its
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croswimmers and active suspensions of microtubules driven by
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a hybrid lattice Boltzmann method? ? . Unless otherwise stated,
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(DFF) were done with cells incubated in Leibovitz’s L�15 (Invit-
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man Chemical Company) drug was added and left in the medium
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ture medium without drug.
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(FN - 25 µg/ml Atto dye conjugated FN and 100 µg/ml pure FN,
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TION = ’LESS FLOW’, I STILL THINK THAT WE MIGHT NEED VE-
LOCITY PLOTS HERE In an extensile system, cell division acts to
enhance the effective activity of cells while in a contractile one,
leads to activity reduction and thus division of cells cause more
flows in an extensile systems than a contractile one.

Another important consequence of cell division is in changing
the number density of topological defects, which may be impor-
tant in controlling the structure of cell layers. Recent experiments
on amoeboid cells have shown that the nematic order of the cells
is accompanied by formation of topological defects, which pre-
vent the development of infinite size nematic domains? . In the
simulations, the number density of topological defects increases
with increase in cell division in a non-motile system. However, the
cell division has a different effect when it is associated with motil-
ity. While the generation of topological defects is enhanced by cell
division in extensile systems (Fig. 3(g),(h)), it is significantly re-
duced in contractile assemblies (Fig. 3(e),(f)). This again can be
explained by the division reducing (increasing) the effective activ-
ity of contractile (extensile) active nematics in accord with recent
studies showing that the number of defects is directly proportional
to the activity of the system? .

5 Cell division and the free surface

Up to now, we have considered division effects on the dynam-
ics of cell assemblies in periodic domains. In many physiolog-
ical applications such as morphogenesis, tissue expansion, and
wound healing, the mechanical response of a free surface to the
cell invasion is of considerable importance? ? ? ? . Here, using the
equations of lyotropic active nematics, we extend our results to
the case where a cell assembly is separated from an otherwise
isotropic liquid by a free interface. To distinguish the cell cul-
ture from the isotropic fluid, we define a scalar order parameter
f , which measures the relative density of each component with
f = 1 for the cells and f = 0 for the isotropic fluid and evolves
according to the Cahn-Hilliard equation?

∂tf +∂i(uif) = Gf —2µ +af , (10)

where Gf is the mobility, µ = dF/df is the chemical potential
and the free energy of the system is
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where Af and kf are material constants. An additional term
Pi j = (F �µf)di j �∂if(∂F/∂ (∂ jf)) must be added to the stress
components in eqn. (3), when the variable f is introduced. More
details of the form of the free energy and the governing equations
of lyotropic active nematics can be found in? .

In Fig. 4(a), numerical results for the time evolution of the
surface of a cellular layer is compared with the results of ex-
periments on the growth of the surface in a colony of dividing
MDCK cells. Unlike the experiments, we consider non-motile cells
(z = 0) in the simulation to show that a similar behaviour follows
from considering the division-induced activity alone. As evident

from Fig. 4(a), the expansion of the band is accompanied by in-
stabilities that lead to the formation of fingers at the surface in both
experiment and simulation. Although, previous studies have as-
sociated the fingering instabilities to the formation of leader cells
at the border? , our results suggest that the same phenomena can
be induced due to the instability of the nematic field to division-
induced activity. It is well known that the presence of activity
can result in the formation of bend instabilities in extensile active
nematics? ? . Since the cell division introduces extensile stresses
to the cell culture, it can lead to the instability of the nematic
field of the cells and induce instabilities at the surface . WASN’T
SURE WHETHER TO USE SURFACE OR INTERFACE OR BORDER
In addition to the emergence of fingering instabilities at the sur-
face, long-range velocity fields are generated within the growing
band even far away from the surface (Fig. 4(b),(c)). The appear-
ance of long-range velocity fields with no preferred orientation
towards the free surface has been reported in previous studies of
tissue growth in response to a model wound? . However, in the ex-
perimental observations, the emergence of long-range velocity fields
are often correlated with the cell movements by using the “cryptic”
lamelliopodia, which spread underneath other cells during the tis-
sue growth? ? , while here the collective motion is induced by cell
division.
THIS SENTENCE NOT RIGHT YET - DO YOU MEAN
However, in explaining the experimental observations, the emer-
gence of long-range velocity fields and their correlations with the cell
movements were attributed to ‘cryptic’ lamelliopodia, which spread
underneath other cells during the tissue growth? ? , while here the
collective motion is induced by cell division. Taken together, the
comparison of our simulations with experimental observations on
the dynamic evolution of the free surface of a cell culture shows
that similar qualitative behaviour such as fingering instabilities at
the border and long-range velocity fields can be induced by the
cell division-induced activity.

OMIT AS CAN"T SEE IN EXPS It is worth noting that in the tum-
bling regime (l < 0.7), our simulations predict that nematic direc-
tors tend to align parallel to the free interface. This is consistent
with a recent study of lyotropic active nematics which predicts ac-
tive planar anchoring at the interface for extensile active nematics? ,
but is yet to be confirmed in the experiments of dividing cells.

6 Conclusions

To conclude, we propose a modeling framework that describes the
effect of cell division on the dynamics of cell cultures and demon-
strate that the model reproduces the experimentally measured
flow field around a dividing cell in a MDCK cell culture. We show
that an extensile active stress can naturally arise from the nema-
tohydrodynamic representation of cells due to a local increase in
cell concentration. We demonstrate that even in the absence of
active forcing due to motility, the cell division alone can lead to
a coordinated motion of cells. The results suggest that cell divi-
sion can be considered as one regulator of activity in cultures of
extensile and contractile cells. Moreover, we show that the dy-
namic evolution of a free interface due to the division-induced
activity alone (without motility forces) resembles the experimen-
tal observations of the expansion of the cells resulting in fingering
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f , which measures the relative density of each component with
f = 1 for the cells and f = 0 for the isotropic fluid and evolves
according to the Cahn-Hilliard equation?

∂tf +∂i(uif) = Gf —2µ +af , (10)

where Gf is the mobility, µ = dF/df is the chemical potential
and the free energy of the system is

F =
Af
2

f 2(1�f)2 +
1
2

A(S2f � 1
2

Qi jQ ji)
2

+
1
2

kf (∂kf)2 +
1
2

K(∂kQi j)
2, (11)

where Af and kf are material constants. An additional term
Pi j = (F �µf)di j �∂if(∂F/∂ (∂ jf)) must be added to the stress
components in eqn. (3), when the variable f is introduced. More
details of the form of the free energy and the governing equations
of lyotropic active nematics can be found in? .

In Fig. 4(a), numerical results for the time evolution of the
surface of a cellular layer is compared with the results of ex-
periments on the growth of the surface in a colony of dividing
MDCK cells. Unlike the experiments, we consider non-motile cells
(z = 0) in the simulation to show that a similar behaviour follows
from considering the division-induced activity alone. As evident

from Fig. 4(a), the expansion of the band is accompanied by in-
stabilities that lead to the formation of fingers at the surface in both
experiment and simulation. Although, previous studies have as-
sociated the fingering instabilities to the formation of leader cells
at the border? , our results suggest that the same phenomena can
be induced due to the instability of the nematic field to division-
induced activity. It is well known that the presence of activity
can result in the formation of bend instabilities in extensile active
nematics? ? . Since the cell division introduces extensile stresses
to the cell culture, it can lead to the instability of the nematic
field of the cells and induce instabilities at the surface . WASN’T
SURE WHETHER TO USE SURFACE OR INTERFACE OR BORDER
In addition to the emergence of fingering instabilities at the sur-
face, long-range velocity fields are generated within the growing
band even far away from the surface (Fig. 4(b),(c)). The appear-
ance of long-range velocity fields with no preferred orientation
towards the free surface has been reported in previous studies of
tissue growth in response to a model wound? . However, in the ex-
perimental observations, the emergence of long-range velocity fields
are often correlated with the cell movements by using the “cryptic”
lamelliopodia, which spread underneath other cells during the tis-
sue growth? ? , while here the collective motion is induced by cell
division.
THIS SENTENCE NOT RIGHT YET - DO YOU MEAN
However, in explaining the experimental observations, the emer-
gence of long-range velocity fields and their correlations with the cell
movements were attributed to ‘cryptic’ lamelliopodia, which spread
underneath other cells during the tissue growth? ? , while here the
collective motion is induced by cell division. Taken together, the
comparison of our simulations with experimental observations on
the dynamic evolution of the free surface of a cell culture shows
that similar qualitative behaviour such as fingering instabilities at
the border and long-range velocity fields can be induced by the
cell division-induced activity.

OMIT AS CAN"T SEE IN EXPS It is worth noting that in the tum-
bling regime (l < 0.7), our simulations predict that nematic direc-
tors tend to align parallel to the free interface. This is consistent
with a recent study of lyotropic active nematics which predicts ac-
tive planar anchoring at the interface for extensile active nematics? ,
but is yet to be confirmed in the experiments of dividing cells.

6 Conclusions

To conclude, we propose a modeling framework that describes the
effect of cell division on the dynamics of cell cultures and demon-
strate that the model reproduces the experimentally measured
flow field around a dividing cell in a MDCK cell culture. We show
that an extensile active stress can naturally arise from the nema-
tohydrodynamic representation of cells due to a local increase in
cell concentration. We demonstrate that even in the absence of
active forcing due to motility, the cell division alone can lead to
a coordinated motion of cells. The results suggest that cell divi-
sion can be considered as one regulator of activity in cultures of
extensile and contractile cells. Moreover, we show that the dy-
namic evolution of a free interface due to the division-induced
activity alone (without motility forces) resembles the experimen-
tal observations of the expansion of the cells resulting in fingering
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are manifested in the models of wet active nematics. In particular, there is a hydrodynamic

instability of nematic regions which leads to the formation of walls, lines of high distortions in

the director field, where elastic energy is stored. The walls are broken up by the creation and

annihilation of topological defects, a process which gives rise once again to unstable nematic

regions. The formation and removal of the walls is continuously maintained by the active

forcing, and an active turbulence is established with a chaotic velocity field characterised by

regions of high vorticity[7].

The behaviour of dry and wet active nematics is summarised pictorially at the right and

left extremities of Fig. 1. In this article we explore the central area of Fig. 1 by using the

dimensionless friction as a control parameter to drive the system between the two limits.

We show that, at su�ciently high friction, the curvature-induced currents introduced phe-

nomenologically in the theories of dry active systems arise naturally from the active stress

that appears in the continuum equations of motion of wet active materials. Numerical

solutions of these equations allow us to probe the dynamics in the regime of intermediate

friction. We predict the existence of a vortex lattice and demonstrate the ordering of topo-

logical defects due to friction e↵ects.

Theory of crossover from wet to dry active nematics

We build upon nematohydrodynamic equations of liquid crystals to describe the route from

wet to dry active nematics. The variables needed to describe the hydrodynamics of a wet

active nematic system are �, the concentration of active particles, ⇢, the total density, u, the

velocity vector, and Q = q
2(nn� I/3) which is the nematic tensor, with q the magnitude of

the orientational order, n the director, and I the identity tensor. The four coupled continuum

equations describing the time evolution of these quantities are

@t�+ @i(ui�) = ��r2µ, (1)

(@t + uk@k)Qij � Sij = �Hij, (2)

@t⇢+ @i(⇢ui) = 0, (3)

⇢(@t + uk@k)ui = @j⇧ij � f0ui, (4)

where the mobility and the rotational di↵usivity are denoted by �� and �, respectively.

The co-rotation term Sij accounts for the response of the orientational order to the flow

gradients and the chemical potential µ and molecular field H represent the relaxation of the
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FIG. 3. The emergence of vortex-lattice and defect ordering by successive increase in

friction. Top: colormaps show concentration field, �� = � � �⇤. Middle: the associated director

fields visualized by Line Integral convolution (LIC) method and are superimposed by topological

defects (with +1/2 and -1/2 defects denoted by red and blue markers). Bottom: the velocity

field colored by the magnitude of the vorticity. The orientation of a director is determined by its

position relative to vorticity arrays. A director responds di↵erently to either extensional (I) or

compressional (III) flow at the edges of vortices while it experiences a shear (II) inside a vortex.
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FIG. 3. Emergence of a vortex-lattice and defect ordering with increasing friction. (a)

Director fields visualized by Line Integral Convolution and superimposed by topological defects

(with +1/2 and -1/2 defects denoted by red and blue markers). Velocity field coloured by the

magnitude of the vorticity. (c) Orientation of a defect is determined by its position relative to

neighbouring vortices. A director responds di↵erently to either extensional (I) or compressional

(III) flow at the edges of vortices while it experiences a shear (II) inside a vortex. The dimen-

sionless friction ⌘�/⇣=0.3,0.6,0.9 for left, middle, and right columns.c needs to be bigger, possibly

label columns?
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FIG. 2. Increasing friction drives the crossover from wet to dry active nematics. a,b,

Temporal evolution of the concentration field and nematic director field for (a) intermediate friction

⌘�/⇣ = 1.88, (b) strong friction ⌘�/⇣ = 5.36. For each value of the friction the top row is a colour

map indicating variations in concentration, �� = �� �⇤ and the bottom row is the corresponding

director field coloured by the orientation of nematic directors. +1/2 and -1/2 defects are denoted

by red and blue markers. (c) The RMS velocity is steadily reduced by increasing friction. (d) The

total number of topological defects initially increases, but drops sharply at ⌘�/⇣ ⇠ 1 and tends to

zero discuss at the dry limit. what is c⇤
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Summary 

1.	
  Lyotropics:	
  adding	
  an	
  interface	
  	
  

ac2ve	
  anchoring	
  
cusp-­‐like	
  interface	
  shapes	
  
+1/2	
  defects	
  migrate	
  from	
  surface	
  to	
  bulk	
  
	
  
2.	
  Adding	
  cell	
  division	
  

	
  behaves	
  like	
  extensile	
  ac2vity	
  	
  
	
  
3.	
  Adding	
  fric2on	
  
	
  
fric2on	
  increases	
  the	
  number	
  of	
  defects	
  
defects	
  can	
  migrate	
  from	
  bulk	
  to	
  surface	
  
	
  
in	
  the	
  bulk	
  system	
  fric2on	
  can	
  stabilise	
  a	
  
vortex	
  lacce	
  
	
  



Flocking	
  
Dry	
  ac2ve	
  systems	
  
Ac2ve	
  self	
  assembly	
  
Ac2ve	
  colloids	
  
Viscoelas2city	
  
Synchronisa2on	
  
Intra-­‐cellular	
  mechanics	
  
….	
  
	
  



Swimming	
  at	
  low	
  Reynolds	
  number	
  

1.  The	
  Scallop	
  theorem	
  

When	
  can	
  a	
  creature	
  swim	
  at	
  low	
  Re?	
  
	
  
Swimming	
  stroke	
  must	
  be	
  different	
  forwards	
  and	
  backwards	
  in	
  2me	
  
	
  
	
  
2.	
  Dipolar	
  flow	
  fields	
  

What	
  do	
  the	
  flow	
  fields	
  look	
  like?	
  
	
  
The	
  far	
  flow	
  fields	
  are	
  generically	
  dipolar	
  
	
  
	
  
3.	
  Collec2ve	
  behaviour	
  of	
  ac2ve	
  nema2cs	
  
	
  
	
  
Flow	
  instabili2es	
  =>	
  ac2ve	
  turbulence	
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