

Electrical Standards based on quantum effects

Beat Jeckelmann

Outline

Introduction

Electrical units in the SI today and in the future

Part I: Josephson voltage standards and applications

Part II: Quantum Hall resistance standards and applications

The SI today

The ampere definition

"The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2 ×10⁻⁷ Newton per metre of length."

Ampère's law for the idealized case:

$$\frac{F}{l} = \mu_0 \frac{I^2}{2\pi r}$$

With the ampere definition and equating mechanical and electrical power, one obtains for the vacuum permeability:

$$\mu_0 = 2\pi \frac{F}{I^2} \frac{r}{l} = 4\pi \cdot 10^{-7} \frac{N}{A^2}$$

Electrical units in the SI

Ohm's law: $V = R \cdot I$

Link to mechanical units

Ampere definition introduces dimension "A" and fixes the value for μ_0 :

$$\mu_0 = 4\pi \cdot 10^{-7} \, \frac{N}{A^2}$$

Electrical units:

Two realisations in terms of mechanical units necessary

Today:

Ohm: calculable capacitor (10⁻⁸)

Watt: watt balance (10⁻⁸)

The SI realisation of the ohm: the calculable capacitor

Thompson-Lampard Theorem (1956):

$$\exp(-\frac{\pi C_1}{\varepsilon_0}) + \exp(-\frac{\pi C_2'}{\varepsilon_0}) = 1$$

Cross-capacitance identical:

$$C' = \frac{\varepsilon_0 \ln(2)}{\pi} \cong 1.95 \,\mathrm{pFm}^{-1}$$

Calculable capacitor: Practical Realisations

Measurements:

 $\Delta L = 5 - 50 \text{ cm}$ $\Delta C = 0.1 - 1 \text{ pF}$

u: several parts in 10⁸

Running projects NMIA, BIPM, NRC, LNE

 $u < 10^{-8}$

Link from the calculable capacitor to the ohm

CODATA 2014:

- NPL-88: $u = 5.4 \times 10^{-8}$

- NIST-97: $u = 2.4 \times 10^{-8}$

- NMI-97: $u = 4.4 \times 10^{-8}$

- NIM-95: $u = 1.3 \times 10^{-7}$

- LNE-01: $u = 5.3 \times 10^{-8}$

New Projects:

- BIPM: $u \le 10^{-8}$

expected 2016

Realization of the ohm before 1990

Complicated electro-mechanical experiments needed to realize the ohm

Artifacts were used to maintain the unit:

- → drift in time
- → differences of up to several ppm from country to country

Electrical quantum standards

Quantum mechanical effects allow the realization of highly reproducible electrical standards:

B. Josephson predicts quantized voltage steps in superconductors (1962)

→ voltage standard

Electrical standards based on fundamental constants

Josephson effect

Weakly coupled superconductors

$$U = \frac{h}{2e}i \cdot f_{J} = \frac{i}{K_{J}}f_{J}$$

 K_{J} : Josephson constant

Quantum Hall effect

2D electron gas in high magnetic field

$$R_{\rm H} = \frac{h}{i \cdot e^2} = \frac{R_K}{i}$$

 $R_{\rm K}$: von Klitzing constant

Practical electrical units

To make best use of the good reproducibility and worldwide availability of the quantum standards, the CIPM introduced conventional values for the Josephson- and von Klitzing constants as of January 1, 1990.

```
• K_{\text{J-90}} = 483\ 597.9\ \text{GHz/V} \rightarrow \text{rel. uncertainty in the SI}: 0.4 ppm R_{\text{K-90}} = 25\ 812.807\ \Omega 0.2 ppm (now: 0.1 ppm)
```

- Worldwide uniformity and improvement of electrical calibrations as a consequence of the conventional units.
- The uncertainty of the constants does only apply if electrical units are linked with mechanical units.

Quantum effects and "Practical" electrical units

Electrical units in th «new» SI

h and e have fixed values (defining constants)

- $ightharpoonup R_K (h/e^2)$ and $K_J (2e/h)$ are fixed
- Quantum Hall and Josephson standards realize the ohm and the volt in the new SI directly (assuming that the QHE and JV relations are correct!)
- \triangleright μ_0 has to be measured

Validity of R_K and K_J relations

Determination of the Planck constant

Watt balance results rely on QHE and JV relations

 Δ Watt balance - Avogadro < ~ 10^{-8}

Realization of electrical units

Outline

Introduction

Electrical units in the SI today

Part I: Josephson effect

- DC and AC Josephson effects
- Different types of Josephson junctions
- Hysteretic Josephson Arrays and their applications
- Programmable arrays
- Pulsed driven arrays

Electrons in a superconductor

Cooper pairing mechanism

- Conduction electrons pair up through exchange of "virtual" phonons
- Interaction is isotropic
- Macroscopic wave function describes entire electronic system

$$|\psi| = |\psi|e^{i\phi}$$
 $|\psi| = n = \text{cooper pair density}$

DC Josephson effect

Quantum states in superconductor described by Schrödinger equation:

$$\frac{d\psi}{dt} = \frac{-i}{\hbar}E\psi$$

Two weakly coupled superconductors:

Phase coherent transfer of Cooper pairs

$$\frac{d\psi_1}{dt} = \frac{-i}{\hbar} E_1 \psi_1 + K \psi_2$$

$$\frac{d\psi_2}{dt} = \frac{-i}{\hbar} E_2 \psi_2 + K \psi_1$$

DC Josephson effect (2)

A small *supercurrent* flows through the weak link with a corresponding phase shift:

$$I = I_c \cdot \sin(\phi_2 - \phi_1) = I_c \cdot \sin(\phi)$$

 I_c : critical current of the weak link

AC Josephson effect

With
$$E_1 - E_2 = 2eV(t)$$
 Schrödinger eq. also gives:

$$V(t) = \frac{\hbar}{2e} \frac{d\phi}{dt}$$

DC external current $I > I_c$

- Direct voltage across junction
- Oscillating supercurrent flows with frequency f

$$f_J = \frac{2e}{h}V$$

Mean voltage:
$$V = \frac{h}{2e} f_J = \phi_0 \cdot f_J$$

→Voltage driven oscillator

Josephson Voltage Standard

Microwave irradiation, frequency f, applied to junction:

- Cooper pair current synchronizes with f and its harmonics
- Direct voltage appears at the terminals

$$V = n \frac{h}{2e} f$$

 $V_1 \sim 145 \,\mu\text{V} @ 70 \,\text{GHz}$ $V < 2.5 \,\text{mV} \text{ (gap energy in Nb)}$

- Relationship independent of
 - ➤ Temperature, material, polarization current...
- Tested at a level of 3 × 10⁻¹⁹

Universality Tests

→ Extremely sensitive method

J-S. Tsai et al., PRL, **51**, 316 (1983)

- Test of the material independence of the Josephson relationship
- Two different superconductors (Nb, In) and different weak links

$$I_{s} = \frac{1}{L} \int (V_{1} - V_{2}) dt$$

$$L = L_{s} + L_{1} + L_{2}$$

No difference of the Josephson voltages (when biased with the same microwave frequency on the same step) at the level of 1×10^{-16}

Most precise test (A. K. Jain et al, PRL 58 (1987)): 3×10^{-19}

Real Josephson junction

Cooper pair current

$$I_0 + I_1 \sin \omega t = I_c \sin \phi + \frac{V(t)}{R} + C \frac{dV(t)}{dt}$$

With Josephson relation

$$V(t) = (\hbar/2e)d\phi/dt$$

differential equation of a driven damped oscillator →

$$\beta_c \frac{d^2 \phi}{dt^2} + \frac{d \phi}{dt} + \sin \phi = i_0 + i_1 \sin(\Omega t')$$

$$\beta_c = \frac{2e}{h} I_c R^2 C$$

- β_c (McCumber parameter) describes damping of the Josephson oscillator $(\beta_c)^{1/2}$ quality factor LCR resonator (Josephson junction: role of L)
- Chaotic properties; stable operation only in limited parameter space

I-V Characteristics

Weakly damped Nb-Al₂O₃-Nb Josephson junction without microwave power

I-V Characteristics with microwave power (f = 70 GHz)

Weakly damped junction

$$\beta_{\rm c} > 100$$

- Voltage steps at zero current ("zero crossing" steps)
- Hysteretic

Highly damped junction

$$\beta_{\rm c}$$
 < 1

 Different current for every voltage step

Junction Arrays

Idea: Increase the voltage by cascading an array of junctions in series

• **Early days**: not possible to produce overdamped arrays with sufficient uniformity for polarization of the entire array on the same voltage step

Solution: Levinsen (1977) proposes zero-crossing steps ($\beta_c > 100$) (SIS junctions: superconductor-insulator-superconductor)

- 1985, first 1 V array: Niemeyer, Hamilton, Kautz, NIST
- 1987, 10 V array, NIST, 14'484 junctions, ~ 150'000 voltage steps

Limited parameter space available

- External frequency has to be well above resonant frequency of the junctions, to prevent chaotic behaviour (70 GHz)
- Current step width > induced current noise
- Dependence of non-chaotic regime on microwave power

Junction Arrays (2)

Problems to be solved:

- Homogeneous distribution of microwave power to all junctions
- Fabrication of large junction arrays with little variation in parameters

Impedance 2 to 5 Ω \rightarrow very low attenuation

SIS Arrays

Disadvantage of SIS arrays: steps unstable and difficult to select

Measurement system

Josephson Array Standard

10 V systems commercially available

- Hypres (USA): NIST array technology
- SupraCon (Germany): PTB array technology

Comparison of JAVS

10 V Josephson standards Degrees of equivalence expressed in nV

BIPM key comparison

Direct comparison of 10 V JAVS against BIPM transportable standard

Agreement to a few parts in 10¹⁰

JAVS Application

Linearity check of a highend DVM

Agilent 3458 A 10 V range

Josephson Standard for AC voltages

Programmable JVS:

How to deal with transients?

Pulse driven JVS:

- Best AC source available
- Suitable for impedance measurements

Josephson Standard for AC voltages

Programmable Josephson Arrays (PJVS)

Advances in nanotechnologies:

 Several thousand non-hysteretic junctions with same characteristics can be made

Overdamped junctions →

- SNS junctions
 (superconductor/ normal metal/ superconductor)
- SINIS junctions
 (supercond./insulator/normal/insulator/supercond.)
- Externally shunted SIS junctions

Advantage: voltage steps can be selected precisely (by choice of bias current) and very rapidly.

$$V(t) = n(t) \frac{h}{2e} f$$

Programmable Arrays (2)

- Array is divided into segments (binary sequence)
- Each segment controlled by its own bias source
- Steps $-V_1$, 0 and $+V_1$ in each segment selected

→ D/A converter with fundamental accuracy (Hamilton 1995)

SNS array (NIST, 1997)

Nb /PdAu / Nb technology

- **1 V array**; *f* = 16 GHz
- 32'768 junctions
- 33 µV/junction
- LSB (128 junctions): 4.23 mV

10 V SINIS Array PTB

- Series array consisting of 69 120 SINIS Josephson junctions
- Step at 10 V (step width: 200 μA)

J. Kohlmann et al., IEEE Trans. Instrum. Meas. 50 (2001) 192-194.

Waveform Synthesis

Synthesized sine wave with a 13 bit PTB Josephson array: V = 1.2 Vpp, f = 400 Hz

R. Behr et al, *IEEE IM* 54, 2005

Uncertainty

$$\Delta_{rms} \propto \frac{16t_r}{6Nt_s}$$

Suppression of transients: Sampling and signal reconstruction

- Accurate synchronization
- Digitizer digital filter

- → possible to remove data points during the transients
- → remove 50 points for each transition
- → limits the frequency

Applications

The Quantum Voltmeter

Josephson Potentiometer

Comparison of resistance standards

PTB, R. Behr et al., IEEE IM 52, 521 (2003)

10 k Ω in terms of the QHR (12.9 k Ω) to 3 parts in 10 9

Josephson Locked Synthesizer (JoLoS)

$$V_{out} = V_{f_0}^{PJVS}$$

JoLoS: Data acquisiton and signal reconstruction

 V_{PJVS} : A_{SYN} :

A_{PJVS}:

Fundamental of the DFT of the theoretical (K_{J-90}) waveform (calculated) Fundamental of the DFT of the synthesizer waveform (measured)

Fundamental of the DFT of the reconstructed waveform (measured)

JoLoS Application: Thermal transfer measurements

→ A. Rüfenacht et al., IEEE Trans. Instrum. Meas. **60-8**, 2372-2377 (2011).

Pulse driven Josephson arrays

Due to undefined transitions between steps:

→ applications of binary programmable arrays are limited to < 1 kHz</p>

Different approach:

→ Change frequency in time instead of number of junctions

$$V(t) = N \frac{h}{2e} f(t)$$

- → Problem: Sine-wave excitation: step amplitude decreases with frequency
- → Solution (Benz and Hamilton, 1995): Replace sine wave with pulse excitation; in this case, step amplitude is independent of pulse repetition frequencies (simulations) for $f < f_c$

Pulse driven Josephson arrays (2)

- → Single large array with N junctions distributed along a wide bandwidth transmission line
- → A pulse train at frequency f generates an average voltage:

$$\overline{V} = N \frac{h}{2e} f$$

$$\int_{pulse} V(t)dt = \pm n\phi_0 = \frac{\pm n}{K_J}$$

Flux quantum :
$$\frac{h}{2e} = \phi_0 = \frac{1}{K_J}$$

Pulse driven Josephson arrays (3)

→ Generation of complex wave forms by modulating the pulse train

Digital Code Bit Pattern

0010001000100010010010010101010101

Commercial Semiconductor Pulse Pattern Generator

Array Output Voltage

Time-integrated Average Voltage

Bipolar operation

(Benz et al., 1998) Combination of pulse train and sine wave bias

Resistively shunted JJ, driven by microwave, frequency *f*

$$\int_{0}^{T} V_{JJ}(t) \cdot dt = \phi_0 = \frac{1}{K_J}$$

Bipolar pulse control

Fast switching

- Sampling frequency f_s
- Code levels $\pm I_1$

$$\left\langle V\right\rangle =\frac{p-q}{p+q}\frac{f}{K_{J}}$$

p: number of "1"

q: number of "0"

Specific frequency and phase relationships between sampling and drive frequencies required

$$f = mf_s/2; m \ge 2$$

Digital waveform synthesis

- Timing and polarity of the modulation signal precisely determine the voltage waveform
- Peak to peak voltage:

$$V_{pp-\text{max}} = m \cdot N \frac{f_s}{K_J}$$

Number of junctions

Josephson Array Pulse Quantizer

RMS value of output determined by:

• Digital code, sampling frequency and number of junctions

Exact quantization if:

- Correct synchronisation of code and hf-drive, switching time << 1/f
- Transmission path to every junction independent of frequency from dc to about 18 GHz

AC-JVS: Results

Semiconductor Code Generator Output -50 -45 dBc -150 0 10 20 30 40 50 60 Frequency (kHz)

N. Flowers-Jacobs et al. IEEE Trans. Appl. Supercond., 2016.

Comparison PJVS – AC-JVS

VSL, Delft

$$V_{\text{ACJVS}}(\text{METAS}) = \left| \frac{A_{\text{ACJVS}}}{A_{\text{PJVS}}} \right| \cdot V_{\text{PJVS}} \equiv r \cdot V_{\text{PJVS}}$$

$$\Delta V \equiv V_{\text{ACJVS}}(\text{VSL}) - V_{\text{ACJVS}}(\text{METAS})$$

Comparison PJVS – AC-JVS (2)

$$V_{\text{ACJVS}}(\text{VSL}) - V_{\text{ACJVS}}(\text{METAS}) = (-18 \pm 26) \ nV$$

→ B.Jeanneret et al., Metrologia 48, pp.311-316 (2011).

Application AC-JVS: Josephson Impedance Bridge

ds I

Josephson Impedance Bridge

- $\Gamma = \frac{sst}{Z_{top}} = -\frac{sst}{V_{top}}$
- Fully manualBandwidth 50 Hz 5 kHz
- Accuracy: 10⁻⁸ @ 1 kHz

- Fully automated
- Bandwidth 50 Hz 50 kHz (10X)
- Accuracy: 10⁻⁸ @ 1 kHz

The Josephson Bridge: Comparison R-R

$$\Gamma = \frac{Z_{12k9}^A}{Z_{12k9}^B}$$

$$\Delta_{ac/dc} = \Gamma(f) - \Gamma(0)$$

- Use Z_{12k9}^A as reference
- 12.9 kΩ thermostated resistors
- Range: 1 kHz to 20 kHz
- Agreement < 0.1 ppm

Range JVS applications

Range JVS applications

Summary Part I

- Josephson Array voltage standards well established as primary standards for DC voltage in the range -10 V to 10 V
 - Reproducibility: parts in 109
 - II. Two orders of magnitude better than realisation of the volt in the SI

- Programmable standards well established
 - Low frequency arbitrary waveforms up to 10 V → better power standards
 - II. Arbitrary waveforms DC to 1 MHz, with pulsed driven arrays; voltage up to 2 V → improved low voltage AC/DC transfer → impedance comparisons in the whole complex plane

Thank you very much for your attention