The Legacy of Planck

Carlo Burigana INAF-IASF Bologna burigana@iasfbo.inaf.it

On behalf of the *Planck* Collaboration & with contributions from the CORE Collaboration for related aspects

International School of Physics "Enrico Fermi" Varenna, Lake Como, Italy - Course 200 Gravitational Waves and Cosmology 3 - 12 July 2017

Outline

- Brief introduction to CMB
- Planck mission main aspects and products
- Extragalactic astrophysics ... and using them for cosmology
- Methods an example: sky pixelization
- Methods: separating CMB from foregrounds
- CMB maps and power spectrum from Planck
- Cosmological parameters & DM, DE, neutrinos …
- Polarization with Planck & B-modes
- Microwave sky complexity
- Future of CMB anisotropy missions
- Future of CMB spectrum

Cosmic Microwave Background Radiation

CMB space mission experiments overview

Evolution of CMB space missions since discovery

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

LFI PIN. Mandolesi, HFI PI J.L. Puget

The ESA mission to map the Cosmic Microwave Background

To image the temperature and polarisation anisotropies of the Cosmic Microwave Background (CMB), over the whole sky, with an uncertainty on the temperature limited by "natural causes" (foreground fluctuations, cosmic variance) rather than intrinsic or systematic

detector noises, and an angular r arcmin.

 Planck is composed by two instruments:
The Low Frequency Instrument (LFI) based on EMT receivers and
The High Frequency Instrument (HFI) based on bolometers

@ focal plane of a1.5 m Gregorian telescope

PLANCK HAS BEEN SUCCESSFULLY LAUNCHED ON THE 14 OF MAY 2009, TOGETHER WITH HERSCHEL, ON ARIANE 5 VECTOR

Is acquired data since the 15 August 2009,

In January 2012 HFI was switched off and since then *Planck* was in LFI only mode

Planck switch-off: 23 October 2013

Survey	Instrument	Beginning	End	Coverage
1	LFI & HFI	12 August 2009 (14:16:51 UT)	2 February 2010 (20:51:04 UT)	93.1%
2	LFI & HFI	2 February 2010 (20:54:43)	12 August 2010 (19:27:20 UT)	93.1 %
3^b	LFI & HFI	12 August 2010 (19:30:44)	8 February 2011 (20:55:55 UT)	93.1 %
4	LFI & HFI	8 February 2011 (20:59:10)	29 July 2011 (17:13:32)	86.6%
5^c	LFI & HFI	29 July 2011 (18:04:49)	1 February 2012 (05:26:29 UT)	80.1 %
6	LFI	14 January 2012	July 2012	
7	LFI	July 2012	Jan 2013	
8	LFI	Jan 2013	August 2013	

^{*a*} Fraction of the sky covered by all frequencies

^{*b*} End of Nominal period = 28 November 2010 (12:00:53 UT)

^{*c*} End of data acquisition with HFI = 13 January 2012 (14:54:07 UT)

Planck is a survey mission

Planck Scanning Strategy

About 6 months are needed to cover ~95% of the sky.

esa

Survey ≥ 5: cycloid phase shifted by 90 deg.

During LFI only phase (surveys 6-8): scanning strategy combines standard mode with deep annuli on calibration sources to improve the quality of calibration and systematic effect control.

Planck final performance in temperature & polarization

Average sensitivity, δT/T, per FWHM² resolution element (FWHM in arcmin) and white noise (per frequency channel for LFI and per detector for HFI) in 1 sec of integration (NET, in $\mu K \cdot \sqrt{s}$) in CMB temperature units. Acronyms: DT = detector technology, N of R (or B) = number of radiometers (or bolometers), EB = effective bandwidth (in GHz). At 100 GHz all bolometers are polarized, thus the temperature measure is derived combining data from polarized bolometers.

HFI $\simeq 29.5$ mont		onths	of integration	$(\simeq 5 \text{ surveys})$		
Frequency (GHz)		100		143	217	353
FWHM in $T(P)$		9.6 (9.6)		7.1 (6.9)	4.6(4.6)	4.7(4.6)
N of B in $T(P)$		(8)		4 (8)	4 (8)	4 (8)
EB in $T(P)$		33 (33)	43 (46)	72 (63)	99(102)
NET in $T(P)$		100 (10	0)	62 (82)	91 (132)	277(404)
$\delta T/T \ [\mu K/K]$ in T (P	?)	2.04(3.3)	31)	1.56(2.83)	3.31(6.24)	13.7(26.2)
HFI						
Frequency (GHz)	545	857	-			
FWHM in T	4.7	4.3	-			
N of B in T	4	4				
EB in T	169	257				
NET in T 2	2000	91000				
$\delta T/T \ [\mu K/K]$ in T	103	4134				
LFI	$\simeq 2$	9.5 + 21 r	nonths	of integration	$(\simeq 8 \text{ surveys})$	_
Frequency (GHz)		30		44	70	
InP DT		MIC		MIC	MMIC	_
FWHM		33.34		26.81	13.03	
N of R (or feeds)		4 (2)		6 (3)	12(6)	
EB		6		8.8	14	
NET		159		197	158	
$\delta T/T ~[\mu K/K]$ (in T)		1.85		2.85	4.69	
$\delta T/T \ [\mu K/K] \ (in P)$		2.61		4.02	6.64	
esa 🧐	APE ISTIT	C. Buriga	ina – V	arenna 6/7/201	7 ASFBO	

HOW TO EXTRACT INFORMATION FROM THE MEASUREMENTS

Zodiacal emission

...measured by IRAS (it's the white 'S', not the Galaxy)

Classical ZLE:

Separated in "time domain", for now simply exploiting differences in surveys

- PLANCK
- In successive surveys we observe similar, but different total columns of interplanetary (local) dust (IPD)
- Making differences of successive surveys allows us to remove "contamination", but still be sensitive to the IPD

OPLANO

http://coolcosmos.ipac.caltech.edu/image_galleries/IRAS/allsky.html

- This is what we usually think about when we talk about the IDP
- It varies with our "cycloid" scanning strategy
- The difference is about what we will use to detect it.
- Top: Survey 1; Middle: Survey 2; Bottom: Survey Difference (Survey 2 minus Survey 1)

The sky as seen by Planck

Frequency maps! Real and fundamental measure / product of Planck

Planck polarization frequency maps: synchrotron & dust components

Fig. 15. Maximum posterior amplitude polarization maps derived from the *Planck* observations between 30 and 353 GHz (Planck Collaboration X 2015). The left and right columns show the Stokes Q and U parameters, respectively. Rows show, from top to bottom: CMB; synchrotron polarization at 30 GHz; and thermal dust polarization at 353 GHz. The CMB map has been highpass-filtered with a cosine-apodized filter between $\ell = 20$ and 40, and the Galactic plane (defined by the 17 % CPM83 mask) has been replaced with a constrained Gaussian realization (Planck Collaboration IX 2015).

Planck 2015 data release

- Timelines for each detector at 30, 44, 70, 353, 545 and 858 GHz and for the unpolarized bolometers at 100, 143, 217 GHz
- Maps of the sky at 9 freqs in temp, and at 30, 44, 70, 353 GHz in pol
- Four high-res maps of the CMB sky in T (Commander, NILC, SEVEM, SMICA)
- Four high-pass filtered maps of the CMB sky in pol
- A low-res CMB T map (Commander)
- Maps of thermal dust, CIB, CO, synchrotron, free-free, spinning dust temperature emission
- Maps of synchrotron and dust polarized emission
- Map of the estimated lensing potential
- Map of the SZ Compton parameter
- MC chains used for cosmological parameter estimation
- Planck catalogue of compact sources
- Planck catalogue of SZ sources
- Planck catalogue of galactic cold clumps

Planck Products → PLA

http://pla.esac.esa.int/pla/

PLANCK LEGACY ARCHIVE CONTENTS

	MAPS	
	Search through all	
	maps stored in the	
Planck Legacy Archive.		

all catalogues in the Planck Legacy Archive.

products of the Planck Legacy Archive.

coordinate-based and time-based queries on all Planck time-ordered data.

Browse instrument models and software of the Planck Legacy Archive.

-AA- OPERATIONAL DATA

Spacecraft and instrument house-keeping data acquired during Planck operations.

USEFUL INFORMATION

EXTERNAL DATA & SOFTWARE

Links to external data related to Planck products.

List of scientific publications by the Planck consortium.

	USE OF	PLANCK
Ð	DATA	

How to acknowledge the use of Planck products.

functionalities.

PLANCK LEGACY ARCHIVE UPDATE

HISTORY Changes to Planck Legacy Archive products and PLANCK SCTENCE TEAM HOME

General information Planck on directed to the astronomical community.

PR2 - 2015 MAPS

CMB maps Frequency maps

agenzia spazial

Foreground maps Ancillary maps

Beams → ES 🙆 545GHz 30GHz 44GHz 70GHz 70GHz Frequency maps w NS1024 NS1024 NS1024 NS2048 NS2048 NS2048 NS2048 NS2048 NS2048 NS2048 (480 MB) (480 MB) (480 MB) (1.9 GB) (576 MB) (576 MB) (576 MB) (1.9 GB) (576 MB) (576 MB) FULL OPLANCK **V**ÁSFBO esa C. Burigana – Varenna 6/7/2017

Planck Products → PLA

Fr	equency maps	CMB maps	Foreground maps	Ancillary maps	
					→ ES 🥹
	METHOD				DESCRIPTION
	SMICA				Maps of the Cosmic Microwave Background fluctuations built with the Spectral-Matching Independent Component Analysis method
	COMMANDER			Maps of the Cosmic Microwave Background fluctuations made with the Commander software	
				Maps of the Cosmic Microwave Background fluctuations built with the Spectral Estimation Via Expectation Maximisation method	
	NILC				Maps of the Cosmic Microwave Background fluctuations built with the Needlet Internal Linear Combination method
	COMMON				Masks of the common field used for CMB analysis
Fr	equency maps	CMB maps	Foreground maps	Ancillary maps	

🕂 ES 🍘

COMPONENT	DESCRIPTION
AME	Maps of the foreground Anomalous Microwave Emission
СМВ	Map of the Cosmic Microwave Background fluctuations from foreground analysis
со	Maps of the carbon monoxide emission
DUST	Maps of the diffuse thermal dust emission
FREEFREE	Maps of the foreground free-free emission
SYNCHROTRON	Maps of the foreground synchrotron emission
SZ	Maps of the SZ contamination
XLINE	Map of line emissions common to the WMAP W-band (94 GHz) and the HFI 100 GHz band (including the HCN line)

PR2 - 2015 MAPS

PCCS: Characteristics

Many of the *Planck* PCCS sources can be associated with stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features.

As expected, the high frequency channels (545 and 857 GHz) are dominated (> 90 %) by dusty galaxies and the low frequency ones are dominated (> 95 %) by synchrotron sources.

C. Burigana – Varenna 6/7/2017

ASFBC

Galaxies and AGN evolution: *Planck* observations → models

Microwave/mm/sub-mm surveys are crucial because in these bands we can study:

- Transition between radio (synchrotron/free-free) and dust emission occurrs
- break (v_M) of emission of jets related to compactness (r_M≈pc) of emission region:

```
FSRQs: v<sub>M</sub> ≅ 10-100 GHz - BL Lacs : v<sub>M</sub> >100 GHz
```

→ Multifrequency studies can not miss information in this range

The Planck Catalogue (PCCS): the most complete all-sky catalog in the microwaves

Planck, Swift Fermi observations of Radio and high-energy selected blazars

Planck Collaboration 2011, A&A 563, A16 and Giommi et al. A&A 2012, 514, 160

- Large number of sources:

175 blazars observed by Swift when they were in the FOV of Planck: ~160 Swift ToOs

- Simultaneous Planck Swift Fermi + ground based telescopes
- Multi-selection approach. Four flux-limited samples.

Radio (100 brightest northern sources) Soft X-ray (RASS, sample) Hard X-ray (Swift-BAT sample) γ-ray (Fermi sample)

C. Burigana – Varenna 6/7/2017

 \implies Best model (C2Ex): BLLacs more compact than FSRQs. Break frequency is typically

 $10 \lesssim \nu_M \lesssim 100 \,\mathrm{GHz}$ for FSRQs $\nu_M \gtrsim 100 \,\mathrm{GHz}$ for BL Lacs

Tucci et al. 2001 model

Extragalactic sources in polarization

The analysis of the sub-mm/far-IR background provides integrated information on star formation even where/when optical/UV signals are masked by dust

Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation

VASFBC

Marginalized constraints to the rate of star formation (SFR) obtained from the extended halo model In *Planck* 2013 results. XXX (solid red line; limits at $\pm 1\sigma \& \pm 2\sigma$: orange regions).

Comparison with averaged values computed from two different break (dashed lines). Violet values: density of obtained from the model of cross-correlation of CIB with CMB lensing

C. Burigana – Varenna 6/7/2017

(from Planck 2013 results. XVIII. The gravitational lensing-infrared background correlation).

Mollweide projection with the Galactic plane horizontal and the Milky Way centre in the middle, of the 1653 *Planck clusters and candidates across the sky, 1203 confirmed by external data.* Planck 2015 results. XXVII.

Distribution of raw detections of clusters with SZ effect from Planck (deleted IR flagged candidates in red and retained IR flagged detections in green)

44 GHz

545

857

The Sunyaev-Zeldovich effect allows to study intergalactic medium gas at relatively lower densities than those accessible to X rays

Distribution in z of clusters at different masses from various CMB experiments. From Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources

Planck all-sky maps of the Comptonization parameter derived with two different methods. From Planck 2015 results XXII. A map of the thermal Sunyaev-Zeldovich effect

C. Burigana – Varenna 6/7/2017

5.0 y x 10

Some cosmological implications

From cluster counts (Planck 2015 results. XXIV):

✓ cosmological parameters for ∧CDM model

✓ extension from ACDM

esa

Methods. Example I: sky pixelization

COBE sky cube scheme

(Chan & O'Neill 1976; O'Neill & Laubsher 1976) 1. The sphere is inscribed in a cube, whose faces are pixelized with a regular square grid.

- 2. The points are mapped radially onto the sphere.
- 3. The points are shifted around slightly, to give all pixels approximately equal area.

The "(ex)standard" COBE-cube pixelisation ("good" equal-area conditions, hierarchic) satisfies two simple symmetry properties: 1) if $\theta_k \in \{\theta_i\}$, then also $-\theta_k \in \{\theta_i\}$

2) if
$$\varphi_k \in \{\varphi_j\}$$
 then also $(\varphi_k + \pi) \in \{\varphi_j\}$

→ It allows to divide by four the computational time for generating maps using spherical harmonic expansion, because the temperature anisotropy can be computed in four points of the sky at the same time.

In spite of this, generating maps was extremely time consuming!

Icosahedron pixelization scheme

(M. Tegmark 1996)

 The sphere is inscribed in an icosahedron (instead of a cube), whose faces are pixelized with a regular triangular (instead of a square) grid.
 The points are mapped radially onto the sphere.
 The points are shifted around slightly, to give all pixels approximately equal area.

FIG. 2.—A regular triangular grid (*left*) is adjusted (*right*) to give all pixels the same area. As illustrated, the pixels have a hexagonal shape. A triangular icosahedron face can be symmetrically decomposed into six identical right triangles (one is shaded), and the area-equalization mapping is seen to respect this symmetry.

"Moment of inerzia" of pixels is minimum

→ Very good from the pixel geometry point of view

→ But again: generating maps was extremely time consuming!

Link between

spherical harmonic expansion and FFT

Muciaccia et al. (1997)

A really huge change in map generation and analysis!

$$Y_{lm}(\theta, \phi) = \lambda_l^m(\cos \theta) e^{im\phi}, \qquad (2)$$

$$a_{lm} = \int d\Omega \, \frac{\Delta T}{T}(\hat{\gamma}) Y_{lm}^*(\hat{\gamma}). \tag{7}$$

Fortunately, after substituting equation (2) in equation (7) we can write

$$a_{lm} = \int \sin \theta d\theta \lambda_l^m(\theta) b_m(\theta),$$

where

$$b_m(\theta) = \int_0^{2\pi} d\phi \Delta(\phi, \ \theta) \exp(-im\phi).$$

Thus, equation (8) is the conjugate of equation (4): the b_m values are the Fourier antitransform of the anisotropy pattern along a parallel in the ECP of the sky and are easily computed at fixed θ with an FFT. In conclusion, inverting a map to obtain the a_{im} values requires $\approx l_{max}^2 \propto N_{\phi}^2$ recurrence relations for evaluating the λ_l^m values plus an FFT (which scales as $N_{\phi} \ln N_{\phi})$ to evaluate the b_m values. All of this must be done $N_{\theta} (\propto N_{\phi})$ times to be able to perform the integral in equation (8). Using these tricks, we can invert a full-sky, high-resolution map with a number of operations that are, in principle, comparable with those needed for generating a map, i.e., $N_{pix}^2 \ln N_{pix}$. As in that case, we can exploit the symmetries of the λ_{lm} values evaluated at θ and $\pi - \theta$, respectively.

C. Burigana – Varenna 6/7/2017

(9)

HEALPIX (K. Gorski 1997 → K. Gorski et al. 2005)

Hierarchical, Equal Area, and iso-Latitude Pixelation of the sphere

C. Burigana – Varenna 6/7/2017

- Great idea!
- Combining/ ingesting link between spherical harmonic expansion and FFT into suitable sky pixelization
- Implemented with many facilities/tools!

Figure 2: Orthographic view of HEALPix partition of the sphere. Overplot of equator and meridians illustrates the octahedral symmetry of HEALPix. Light-gray shading shows one of the eight (four north, and four south) identical polar base-resolution pixels. Dark-gray shading shows one of the four identical equatorial base-resolution pixels. Moving clockwise from the upper left panel the grid is hierarchically subdivided with the grid resolution parameter equal to $N_{\rm side} = 1, 2, 4, 8$, and the total number of pixels equal to

 $N_{\rm pix} = 12 imes N_{
m side}^2$ = 12, 48, 192, 768. All pixel centers are located on

 $N_{
m ring} = 4 imes N_{
m side} - 1$ rings of constant latitude. Within each panel the areas of all

pixels are identical.

IGLOO; GLESP

R.G. Crittenden 1998; A.G. Doroshkevich et al. 2009-2011

C. Burigana – Varenna 6/7/2017

es2

FIGURE 2. The left figure shows a polar cap division scheme which is hierarchical and causes little pixel distortion. This is implemented in the right figure, a 3:6:3 pixelization, with each of its twelve base pixels broken into 64 subpixels in an equal area way.

Euclid survey projection into HEALPix Courtesy T. Trombetti & C.B. 2016

mask_ns64_nobsmin3_frazobs0.50_visWIDE_SURVEY_Gmap_NEST

Fig. 1. Left column is the Molldweide projection of pixelization grids (from top to bottom): (a) the standard pixelization grid of the GLESP 1.0 (b) the GLESP-pol rectangular grid with the same number of pixels per each ring (the so called case 'grN'), (c) the GLESP-pol grid with an pixel number increment 4 (case 'grS') starting from 10 pixels near poles but not greater than a given resolution in the equator ring, (d) the HEALPix grid. The right column shows the corresponding pixelization in the vicinity of the polar cups.

Methods. Example II: separating CMB from foregrounds

Separation of diffuse foreground in temperature - I

4 methods applied to Planck maps:

1. SEVEM, in real space. It is based construction foreground template typically based on of Planck maps at highest & lowest frequencies. They are subtracted to maps at central frequencies, where CMB dominates, through suitable coefficients minimizing the variance of each difference map in the considered. \rightarrow cleaned maps of CMB at various frequencies \rightarrow they are typically combined in pairs in harmonic space \rightarrow final CMB cleaned.

2. NILC (Needlet Internal Linear Combination), data are first remapped in localized domains in both real and harmonic space, **needlets** \rightarrow production of solutions of minimum variance in each space \rightarrow recombination of them \rightarrow CMB map in original domain. The methods allows localized and scale dependent, and improved the fit to space and angular size varying foregrouds.

Separation of diffuse foreground in temperature - II

3. Commander, based on a-priori knowledge of foreground components characterized by parameters to be reconstructed with bayesian methods in real space independently for each resolution element.

2 steps: low resolution fit of parameters to describe foreground frequency scaling & high resolution fit of CMB & foreground amplitudes based on previous step output.→ control of space variations of foreground properties.

Also, noise full covariance matrix is propagated in the first step.

The method is also ingested in the construction of Planck likelihood.

4. SMICA, general parametrization of mixing coefficients of various components in the harmonic or needlet domain. CMB can be obtained under various assumptions, e.g. minimum variance, parametrization & fitting.

Burigana – Varenna 6/7/2017

The first worked better on simulated data in temperature.

From Planck Coll. 2015, Pap. IX Diffuse component separation: CMB maps

Fig. 1. Preferred masks for analysing component-separated CMB maps in temperature (*left*) and polarization (*right*).

Sky coverage 77.6 %

Sky coverage 77.4 %

Separation of diffuse foreground in polarization - I

CMB power very different in E & B modes \rightarrow advantageous for separation to operate in harmonic domain (**NILC & SMICA**) to specialize methods to E & B modes separation indipendently.

input maps Q, U → maps of E & B

Differently, COMMANDER & SEVEM work in real space & perform separation directly & indipendently in Q & U.

In Planck release 2014, E & B are official products. COMMANDER & SEVEM apply a post-processing to obtain E & B. Constrained impainting is adopted to fill non relevant for CMB areas & E & B maps are reconstructed through all-sky decomposition.

The observed degree of polarization (P/I)_{obs} is up to 18%.

➡The intrinsic degree of dust polarization ((P/I)_{dust} ≥(P/I)_{obs}) is high

This result is consistent with earlier results from the Archeops experiment (Benoit et al. 2004).

▶ $(P/I)_{dust}$ is likely to vary across the sky. Theory says alignment depends on the grain size distribution, the spectrum of the radiation field, and its orientation with respect to the B field. H₂ formation can also locally enhance $(P/I)_{dust}$ (Hoang & Lazarian 2008).

OPLANC

CMB products & analysis - I CMB Stokes, T, Q & U maps with 4 methods

CMB products & analysis - II

C. Burigana – Varenna 6/7/2017

Consistency of CMB map from the 4 methods

Cross-verifications also with cosmological parameter estimation,

higher statistics

(ex. for non-Gaussianity),

cross-check on different masks & different fractions of satellite data

Q & U (Commander & SEVEM) (NILC & SMICA) Solutions closest to each other

Fig. 4. Pairwise difference maps between CMB temperature maps. As in the previous Fig. 3, the maps have been smoothed to FWHM 80' and downgraded to $N_{side} = 128$.

JÁSFBC

CMB maps and power spectrum from Planck **Cosmological parameters &** DM, DE, neutrinos ...

CMB map in Q,U (2015)

Planck 2015 all-sky CMB polarization maps

Planck 2015 Polarization map

Maximum posterior amplitude Stokes Q (left) and U (right) maps derived from Planck observations between 30 and 353 GHz.

These maps have been high pass-filtered with a cosine-apodized filter between I= 20 and 40, and a 17% region of the Galactic plane has been replaced with a constrained Gaussian realization.

OPLANC

multipole components = 5, 6, 7, 8

CMB_Tonly_G_ns256_K_nested_uptol_5.fits: TEMPERATURE

 $\texttt{CMB_Tonly_G_ns256_K_nested_uptol_6.fits: TEMPERATURE}$

K _{CMB} = Units: 0.00030 unknown -0.00030-0.000300.00030 unknown Eq. Therm.Temp. CMB_Tonly_G_ns256_K_nested_uptol_7.fits: TEMPERATURE CMB_Tonly_G_ns256_K_nested_uptol_8.fits: TEMPERATURE -0.000300.00030 unknown 0.00030 unknown -0.00030**ASFBC** C. Burigana – Varenna 6/7/2017 PLANCK

multipole components = 9, 10, 11 & Planck CMB map

CMB_Tonly_G_ns256_K_nested_uptol_9.fits: TEMPERATURE

CMB_Tonly_G_ns256_K_nested_uptol_10.fits: TEMPERATURE

Large scales Planck results: flat-decoupled-Bianchi model?

There is an elephant in the room? ©

Omogeneous but anisotropic Generalization of the standard model generated by 3-parameter Lie groups: Bianchi IX (closed) vs Bianchi VIIh (open)

Biaxial symmetric Bianchi IX → "squashed 3-sphere" Universe

esa

C. Burigana – Varenna 6

C. Burigana – Varenna 6/7/2017

Geometry of the Universe with CMB anisotropy at about 1 deg resolution

OPLANCK

B-polarization

Gravitational lensing of CMB

PLANCK 2013-2015 HAS A 25-40 σ DETECTION OF CMB LENSING

The effect is similar to a de-focusing of the maps

CMB photons are almost unperturbed in their journey from the last scattering surface ... but not completely ... LENSING EFFECT

MATTER DISTRIBUTION DEFLECTS THE LIGHT PATH LENSING THE CMB PHOTONS

Temperature

Unlensed

ensed

esa

C. Burigana

E-polarization

 \mathbf{x}

APS DEPENDENCE ON COSMOLOGICAL PARAMETERS

Planck: a single experiment spanning a wide multipole range!

tom) angular power spectra. Here $\mathcal{D}_{\ell} \equiv \ell(\ell+1)C_{\ell}/(2\pi)$.

Current status: CMB & foregrounds in terms of APS

C. Burigana – Varenna 6/7/2017

esa

()

agenzia spaziale

PLANCK COSMOLOGICAL PARAMETERS

The CMB anisotropy angular power spectrum shape and amplitude is strongly dependent on the underlying cosmological model.

Cosmological models are characterized by cosmological parameters

STANDARD VANILLA MODEL PARAMETERS

Baryon Density today	$\omega_{\rm b} \equiv \Omega_{\rm b} h^2$
Dark Matter Density today	$\omega_{\rm c} \equiv \Omega_{\rm c} h^2$
•Horizon @REC Angular Diameter Dist	tance $100\theta_{\rm MC}$
 Optical depth for reionization 	τ
 Cosmological perturbation tilt P(k) = A 	n _s k ⁿ n_s
•Cosmological perturbation amplitude	$\ln(10^{10}A_{\rm s})$

C. Burigana – Varenna 6/7/2017

PLANC

Some more information on parameter definition - I

Evolution of cosmic scale factor a=1/(1+z)

 $H^{2} = [(da/dt)/a]^{2} = [da / (a^{2} d\eta)]^{2} = (8\pi G/3) [\rho_{M}/a^{3} + \rho_{R}/a^{4} + \rho_{v}(a) + \rho_{\Lambda} + \rho_{K}/a^{2}]$ where dq=dt/a, t =time, q=conformal time

• Ratio of energy densities relative to the total:

 $\Omega_i = 3\rho_i/(8\pi GH_0^2)$; $H_0 = H(@t=today) = Hubble constant,$

h=H₀/[100Km/s/Mpc] $1/H_0$ related to the age of the Universe for example: $t_0 = (2/3)/H_0$ for a simple Einstein-de Sitter model

 ρ_{Λ} = 3//(8 π G) ; ρ_{K} = 3K/(8 π G) (K=0,+1,-1)

Some more information on parameter definition - II

- Thomson optical depth due to reionization $\tau = \int \chi_e n_e \sigma_T c dt$ (integral from the raising of ionization fraction after "quiescent phase" following recombination up to current epoch)
- Redshift of last-scattering, z_{\star} , such that optical depth to Thomson scattering from z = 0 to $z = z_{\star}$ is unity, assuming no reionization
- Angular scale of the sound horizon at last-scattering

 $\theta_* = r_{\rm s}(z_*)/D_{\rm A}(z_*)$

where

$$r_{\rm s}(z) = \int_0^{\eta(z)} \frac{d\eta'}{\sqrt{3(1+R)}},$$

with

JASEB

 $R \equiv 3\rho_{\rm b}/(4\rho_{\gamma})$

• Typically $100 \times \theta_{\star}$ is given

PLANCK COSMOLOGICAL PARAMETERS: ACDM model

2015 Release

Table 3. Parameters of the base ACDM cosmology computed from the 2015 baseline Planck likelihoods illustrating the consistency of parameters determined from the temperature and polarization spectra at high multipoles. Column [1] uses the TT spectra at low and high multipoles and is the same as column [6] of Table 1. Columns [2] and [3] use only the TE and EE spectra at high multipoles, and only polarization at low multipoles. Column [4] uses the full likelihood. The last column lists the deviations of the cosmological parameters determined from the TT+lowP and TT,TE,EE+lowP likelihoods.

Parameter	[1] Planck TT+lowP	[2] Planck TE+lowP	[3] Planck EE+lowP	[4] Planck TT, TE, EE+lowP	$([1] - [4])/\sigma_{[1]}$
$\overline{\Omega_{\rm b}h^2}$	0.02222 ± 0.00023	0.02228 ± 0.00025	0.0240 ± 0.0013	0.02225 ± 0.00016	-0.1
$\Omega_c h^2$	0.1197 ± 0.0022	0.1187 ± 0.0021	$0.1150^{+0.0048}_{-0.0055}$	0.1198 ± 0.0015	0.0
$100\theta_{MC}$	1.04085 ± 0.00047	1.04094 ± 0.00051	1.03988 ± 0.00094	1.04077 ± 0.00032	0.2
τ	0.078 ± 0.019	0.053 ± 0.019	$0.059^{+0.022}_{-0.019}$	0.079 ± 0.017	-0.1
$\ln(10^{10}A_{\rm s})$	3.089 ± 0.036	3.031 ± 0.041	$3.066^{+0.046}_{-0.041}$	3.094 ± 0.034	-0.1
<i>n</i> _s	0.9655 ± 0.0062	0.965 ± 0.012	0.973 ± 0.016	0.9645 ± 0.0049	0.2
H_0	67.31 ± 0.96	67.73 ± 0.92	70.2 ± 3.0	67.27 ± 0.66	0.0
Ω_m	0.315 ± 0.013	0.300 ± 0.012	$0.286^{+0.027}_{-0.038}$	0.3156 ± 0.0091	0.0
$\sigma_8 \dots \dots$	0.829 ± 0.014	0.802 ± 0.018	0.796 ± 0.024	0.831 ± 0.013	0.0
$10^{9}A_{s}e^{-2\tau}$	1.880 ± 0.014	1.865 ± 0.019	1.907 ± 0.027	1.882 ± 0.012	-0.1

Main difference with respect to previous release in T now polarization comes from *Planck*

WP (WMAP 9) reanalysed with *Planck* dust emission maps

esa

 $\tau = 0.066 \pm 0.0016$ $z_{re} = 8.8^{+1.7}_{-1.4}$ (68 %CL, *Planck* TT + lensing + lowP) $\tau = 0.074^{+0.011}_{-0.013}$ $z_{re} = 9.6 \pm 1.1$ (68 %CL, *Planck* TT + lowP + WP) More accurate CMB polarization measurements will allow reionization history reconstruction **"beyond the \tau approximation"** with both "blind" methods" (e.g. principal component method, reconstruction of χ_e in z bins) and estimation (e.g. with MCMC methods) of physical / phenomenological reionization model parameters.

Robustness n_s - r

Initial conditions of the Universe

Planck 2015 results XX: Constraints on inflation

OPLANCK

PLANCK

VASFBO

Euclidean geometry	$\Omega_K = -0.005^{+0.016}_{-0.017}$	68% CL						
Primordial perturbations spectrum	$n_{\rm s}=0.968\pm0.006$	68%CL						
Spectral index of primordial perturbation: limits on running	$\frac{dn_{\rm s}}{d\ln k} = -0.003 \pm 0.007$	68%CL						
	$r_{0.002} < 0.11$ 95 % CL							
	$r_{0.002} < 0.09$ (IIICL DICEF/F	(CL						
Isocurvature	$eta_{ m iso} < 0.038$ 95%CL							
Gaussian perturbations	$\begin{split} f_{\rm NL}^{\rm local} &= 2.5 \pm 5.7 \\ f_{\rm NL}^{\rm equil} &= -16 \pm 70 \qquad 68\% {\rm CL} \end{split}$	Planck 2015 results XVII: Constraints on primordial non-Gaussianity						
	$f_{\rm NL}^{ m ortho} = -34 \pm 33$	$Planck \mathrm{TT} + \mathrm{lensing} + \mathrm{lowP}$						
N.B.: polarization still not fully explored \rightarrow								
improvements expected for th	ie iast release							

agenzia spazial

Neutrinos with CMB & Planck

- Neutrinos with a mass ≈ 0.001-1 eV contribute to the radiation density at the time of equality and to the non-relativistic matter density today → affect primary CMB spectrum
 - → Integrated Sachs-Wolfe effect (@ early & late times) &/or change in angular diameter distance to the last scattering surface
 - → constraints on neutrino mass from CMB data
- With Planck: precise analysis of intermediate/high multipoles
 → dominant effect is gravitational lensing.
 Increasing the neutrino mass suppresses clustering on scales smaller than the size of the horizon at the time of the NR transition, suppressing the lensing potential.

C. Burigana – Varenna 6/7/2017

ÅSFBO

Nature of Dark Energy

Planck 2015 results XIII: Cosmological parameters

Fundamental physics constants

C. Burigana – Varenna 6/7/2017

VASFBC

Planck 2013 results XXVI: Cosmological parameters

Planck Intermediate results XXIV: Constraints on variation of fundamental constants

Polarization with Planck & B-modes

Polarization with *Planck*:

Planck 353 GHz full sky maps in polarization

C. Burigana – Varenna 6/7/2017

ASFBO

Planck first results on

Compare BK 150 GHz (left) with Planck 353 GHz (right)

E-modes and B-modes filtered to range I=50-120

all maps shown with the same color stretch

The Real Data

FIG. 12 (color). (Upper) *BB* spectrum of the BICEP2/*Keck* maps before and after subtraction of the dust contribution, estimated from the cross spectrum with *Planck* 353 GHz. The error bars are the standard deviations of simulations, which, in the latter case, have been scaled and combined in the same way. The inner error bars are from lensed- Λ CDM + noise simulations as in the previous plots, while the outer error bars are from the lensed- Λ CDM + noise + dust simulations. The red curve shows the lensed- Λ CDM expectation. (Lower) Constraint on *r* derived from the cleaned spectrum compared to the fiducial analysis shown in Fig. 6.

C. Burigana – Varenna 6/7/2017

Fundamental conclusion: dust is detected at high significance, r < 0.12 at 95% CL. Multi-component likelihood gives $\sigma(r) \sim 0.035 \rightarrow$ very direct constraint on tensors! \circ No significant evidence for r > 0. Currently r = 0 and r = 0.1 are at equal likelihood. • There may yet be a gravitational wave signal, but if there is it must be considerably smaller than the full signal. We have checked the stability of the analysis under variations of the data selection and other details. Most variations make little difference. There is some difference in the results depending onwhether BICEP2 or Keck data is used but this is shown to be within noise fluctuation. BICEP2 / Keck Array VI: ... Adding 95 GHz Data From Keck Array, arXiv:1510.09217: combining with *Planck* analysis of CMB temperature and other evidence yields r _{0.05} < 0.07 at 95%_CL.

Microwave sky complexity

rms fluctuations in T & P: CMB vs foregrounds Change of paradigm from *Planck* maps

Fig. 16. Brightness temperature rms as a function of frequency and astrophysical component for temperature (*left*) and polarization (*right*). For temperature, each component is smoothed to an angular resolution of 1° FWHM, and the lower and upper edges of each line are defined by masks covering 81 and 93 % of the sky, respectively. For polarization, the corresponding smoothing scale is 40', and the sky fractions are 73 and 93 %.

Classical ZLE - Separated in "time domain", for now simply exploiting differences in surveys

Secondary components? KBOE?

&

Synchrotron emission in polarization: radio vs mm

POLARIZED INTENSITY - True maximum = 2220 mK

Relativistic cosmic ray electrons spiralling in the Galactic magnetic field \rightarrow Galactic synchrotron emission

Significant depolarization appearing in a wide region around the Galactic center in the radio, much less relevant in the microwaves

AME – spinning dust <u>all-sky</u> diffuse component

Planck Int. XV (2014)

CMB, dust and free-free killed ILC combination

Rising spectrum between 30 & 44 GHz

AME with high-frequency peak

es

QUIJOTE (10-18 GHz), C-BASS (5 GHz) S-PASS (2.3 GHz) GMIMS (300 -1800 MHz) for synchrotron

Planck Commander model has 2 AME components:

- Main component has variable peak with prior centred on 19 GHz
- "High frequency" component with peak 30 GHz
 - Still too low for some regions (Oph, California Nebula)
- AME flexibility forces us to use fixed template for synchrotron spectrum, despite plausible evidence for spectral variability

THE HAZE AS SEEN BY <u>PLANCK</u> AND WMAP

Galactic Haze at 30 and 44 GHz, from Planck

The Galactic Haze is seen to be distributed around the Galactic Centre

Its spectrum is similar to that of synchrotron emission

However, compared to the synchrotron emission seen elsewhere in the Milky Way, the Galactic Haze has a 'harder' spectrum, meaning that its emission does not decline as rapidly with increasing frequency
 Diffuse synchrotron emission is interpreted as radiation from highly energetic electrons that have been accelerated in shocks created by supernova explosions
 Several explanations: enhanced supernova rates, galactic winds and even annihilation of dark-matter particles ... but none of them have been confirmed

Impact of residuals & subdominant components / features complexity in dominant components

General remarks

- The analysis of the *Planck* nine frequency channels reveals the complexity of the mm sky
- At the sensitivity level of *Planck*, only two astrophysical diffuse components are significantly polarized, namely the synchrotron and thermal dust emissions
- On the other hand, the recent limits set on primordial B-modes derived combining data from *Planck* and BICEP2-Keck array call for

→ a new generation of precise polarization measurements for detecting and *characterizing* primordial B-modes

- Particularly for low values of the tensor-to-scalar ratio, r, they
 - a very large number of receivers
 - frequency channels necessary for the accurate treatment of (even subdominant) foreground emissions

Future of CMB anisotropy missions

National coordinators:

P de Bernardis (IT), F Bouchet (FR), E Kreysa (GE), L Piccirillo (UK), R Rebolo (SP)

Instrument working group:

P de Bernardis, L Piccirillo, P Ade, M Bersanelli, FX Desert, E Kreysa, L Kuzmin, B Maffei, N Mandolesi, S Masi, P Mauskopf, T Peacocke, F Piacentini, M Piat, G Pisano, R Rebolo, G Savini, R Tascone, F Villa, S Withington, G Yassin

Science working group:

M Bucher, J Bartlett, F Bouchet, C Caprini, A Challinor, R Battye, G Efstathiou, F Finelli, K Ganga, J Garcia-Bellido, F Hansen, K Land, A Jaffe, S Matarrese, A Melchiorri, P Natoli, L Popa, R Stompor, B van Tent, L Verde

Foregrounds working group:

C Burigana, T Arshakian, C Baccigalupi, A Banday, D Barbosa, R Beck, JP Bernard, G Bernardi, A Bonaldi, E Carretti, D Clements, P Coles, G de Zotti, R Fabbri, P Fosalba Vela, J Gonzales-Nuevo, M Hobson, L La Porta, P Leahy, JF Macias-Perez, E Martinez-Gonzalez, M Massardi, P Naselsky, N Ponthieu, W Reich, S Ricciardi, F Stivoli, L Toffolatti, M Tucci, P Vielva

Here is a list of the institutions presently involved in B-pol:

Canada: Dept. of Physics and Astronomy, Univ. of British Columbia, Vancouver; Canadian Institute for Theoretical Astrophysics (CITA), University of Toronto.

Denmark: Neils Bohr Institute

France: Laboratoire AstroParticule et Cosmologie (APC), Univ. Paris VII; Institut d'Astrophysique Spatiale (IAS), Univ. Paris-Sud, Orsay; Centre d'Etude Spatiale des Rayonnements (CESR), Toulouse; Commissariat à l'Energie Atomique (CEA), Saclay; Institut d'Astrophysique de Paris (IAP); Institut Néel - Matière Condensée et Basses Températures (IN-MCBT), Grenoble; Laboratoire de l'Accélérateur Linéaire (LAL), Univ. Paris-Sud, Orsay; Laboratoire d'Astrophysique de l'Observatoire de Grenoble (LAOG); Laboratoire de Physique Théorique (LPT), Univ. Paris-Sud, Orsay; Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Grenoble.

Germany: Argelander-Institut für Astronomie (AIfA), Bonn Univ.; Institut für Photonische Technologien (IPHT), Jena; Max-Planck-Institut für Astrophysik (MPA), Garching; Max-Planck-Institut für Radioastronomie (MPIfR), Bonn.

Ireland: Maynooth.

Italy: Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni (CNR-IEIIT), Torino; Istituto di Astrofisica Spaziale e Fisica cosmica (INAF-IASF), Bologna; Istituto di RadioAstronomia (INAF-IRA), Bologna; Istituto Nazionale di Fisica Nucleare (INFN) - Sezioni di Genova, Perugia, Roma1; Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste; Univ. di Firenze, Dip. di Fisica; Univ. di Genova, Dip. di Fisica; Univ. di Milano Bicocca, Dip. di Fisica; Univ. di Milano, Dip. di Fisica; Univ. di Padova, Dip. di Fisica; Univ. di Perugia, Dip. di Fisica; Univ. di Roma La Sapienza, Dip. di Fisica; Univ. di Roma Tor Vergata, Dip. di Fisica.

Norway: Institute of Theoretical Astrophysics, University of Oslo

Portugal: Instituto de Telecomunicações (IT), Lisbon; Instituto de Telecomunicações (IT), Aveiro; Instituto Superior Técnico (IST), Lisbon.

Romania: Institute for Space Sciences (ISS), Bucharest.

Spain: Instituto de Astrofísica de Canarias (IAC), La Laguna; Instituto de Física de Cantabria (IFCA), Santander; Instituto de Ciencias del Espacio (ICE), Barcelona; Universidad Autonoma de Madrid (UAM), Madrid.

Sweden: Chalmers Univ. of Technology, Dept. of Microtechnology and Nanoscience.

Switzerland: U. Genève

- United Kingdom: Univ. of Manchester, Physics Dept.; Jodrell Bank; Univ. of Cardiff, Physics and Astronomy Dept.; Univ. of Oxford, Physics and Astronomy Dept.; Univ. of Cambridge, Physics and Astronomy Dept.; Imperial College, London; Univ. of Edinburgh.
- USA: Caltech; NASA Goddard Space Flight Center (GSFC); NASA Jet Propulsion Laboratory (JPL); Univ. of Wisconsin, Madison, Dept. of Physics.

Contact for proposal:

Paolo de Bernardis, University of Rome – La Sapienza, paolo.debernardis@roma1.infn.it, +390649914271

CMB missions proposals to ESA – I: B-Pol, COrE (medium-size (M) missions)

C. Burigana – Varenna 6/7/2017

A satellite mission for probing cosmic origins, neutrinos masses and the origin of stars and magnetic fields

through a high sensitivy survey of the microwave polarisation of the entire sky

A proposal in response to the European Space Agency

National coordinators:

F. R. Bouchet (FR), P. de Bernardis (IT), B. Maffei (UK), E. Martinez-Gonzalez (SP)

Mission & programmatics working group

F. R. Bouchet, P. de Bernardis, B. Maffei, M. Piat, N. Ponthieu, R. Stompor

Instrument working group:

B. Maffei, M. Bersanelli, P. Bielewicz, P. Camus, P. de Bernardis, M. De Petris, S. Masi, F. Nati, F. Piacentini, L. Piccirillo, M. Piat, G. Pisano, M. Salatino, R. Stompor, S. Withington, T. Peacocke

Science working group:

M. Bucher, D. Barbosa, N. Bartolo, R. Battye, J.-P. Bernard, F. Boulanger, A. Challinor, S. Chongchitnan, S. Colafrancesco, T. Ensslin, J. Fergusson, P. Ferreira, K. Ferriere, F. Finelli, J. Garcia-Bellido, S. Galli, M. Haverkorn, M. Hindmarsh, A. Jaffe, M. Kunz, J. Lesgourgues, A. Liddle, M. Liguori, S. Matarrese, A. Melchiorri, P. Mukherjee, L. Pagano, D. Paoletti, H. Peiris, L. Perroto, C. Rath, J. Rubino Martin, C. Rath, P. Shellard, J. Urrestilla, B. Van Tent, L. Verde, B. Wandelt

Foregrounds working group:

C. Burigana, J. Delabrouille, C. Armitage-Caplan, A. Banday, A. Bonaldi, S. Basak, D. Clements, G. De Zotti, C. Dickinson, J. Dunkley, M. Lopez-Caniego, E. Martinez-Gonzalez, M. Negrello, S. Ricciardi, L. Toffolatti

The Polarized Radiation Imaging and Spectroscopy Mission

An Extended White Paper

CMB missions proposals to ESA – II: PRISM (Large mission ideas) COrE+ (M mission)

Authors

Philippe André, Carlo Baccigalupi, Anthony Banday, Domingos Barbosa, Belen Barreiro, James Bartlett, Nicola Bartolo, Elia Battistelli, Richard Battye, George Bendo, Alain Benoît, Jean-Philippe Bernard, Marco Bersanelli, Matthieu Béthermin, Pawel Bielewicz, Anna Bonaldi, François Bouchet, François Boulanger, Jan Brand, Martin Bucher, Carlo Burigana, Zhen-Yi Cai, Philippe Camus, Francisco Casas, Viviana Casasola, Guillaume Castex, Anthony Challinor, Jens Chluba, Gayoung Chon, Sergio Colafrancesco, Barbara Comis, Francesco Cuttaia, Giuseppe D'Alessandro, Antonio Da Silva, Richard Davis, Miguel de Avillez, Paolo de Bernardis, Marco de Petris, Adriano de Rosa, Gianfranco de Zotti, Jacques Delabrouille, François-Xavier Désert, Clive Dickinson, Jose Maria Diego, Joanna Dunkley, Torsten Enßlin, Josquin Errard, Edith Falgarone, Pedro Ferreira, Katia Ferrière, Fabio Finelli, Andrew Fletcher, Pablo Fosalba, Gary Fuller, Silvia Galli, Ken Ganga, Juan García-Bellido, Adnan Ghribi, Martin Giard, Yannick Giraud-Héraud, Joaquin Gonzalez-Nuevo, Keith Grainge, Alessandro Gruppuso, Alex Hall, Jean-Christophe Hamilton, Marijke Haverkorn, Carlos Hernandez-Monteagudo, Diego Herranz, Mark Jackson, Andrew Jaffe, Rishi Khatri, Martin Kunz, Luca Lamagna, Massimiliano Lattanzi, Paddy Leahy, Julien Lesgourgues, Michele Liguori, Elisabetta Liuzzo, Marcos Lopez-Caniego, Juan Macias-Perez, Bruno Maffei, Davide Maino, Anna Mangilli, Enrique Martinez-Gonzalez, Carlos Martins, Silvia Masi, Marcella Massardi, Sabino Matarrese, Alessandro Melchiorri, Jean-Baptiste Melin, Aniello Mennella, Arturo Mignano, Marc-Antoine Miville-Deschênes, Alessandro Monfardini, Anthony Murphy, Pavel Naselsky, Federico Nati, Paolo Natoli, Mattia Negrello, Fabio Noviello, Créidhe O'Sullivan, Francesco Paci, Luca Pagano, Rosita Paladino, Nathalie Palanque-Delabrouille, Daniela Paoletti, Hiranya Peiris, Francesca Perrotta, Francesco Piacentini, Michel Piat, Lucio Piccirillo, Giampaolo Pisano, Gianluca Polenta, Agnieszka Pollo, Nicolas Ponthieu, Sara Ricciardi, Matthieu Roman, Cyrille Rosset, Jose-Alberto Rubino-Martin, Maria Salatino, Alessandro Schillaci, Paul Shellard, Joseph Silk, Radek Stompor, Rashid Sunyaev, Andrea Tartari, Luca Terenzi, Luigi Toffolatti, Maurizio Tomasi, Neil Trappe, Matthieu Tristram, Tiziana Trombetti, Marco Tucci, Rien Van de Weijgaert, Bartjan Van Tent, Licia Verde, Patricio Vielva, Ben Wandelt, Robert Watson, Stafford Withington

Proposal leader: Paolo de Bernardis

Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, Roma, Italy tel.: +390649914271, fax: +39064957697, mail: paolo.debernardis@roma1.infn.it.

The Lead Proposer is committed to support the study activities by making available more than 20% of his time throughout the study period.

COrE+

Cosmic Origins Explorer+

A satellite mission for probing cosmic origins through a high sensitivity survey of the microwave polarization of the entire sky

> sal in response to the ESA Call for a Medium-size mission opportunity for a launch in 2025

Proposal leader: Paolo de Bernardis (Universita di Roma la Sapienza) Proposal co-leads: François Bouchet (IAP, Paris): Jacques Delabrouille (APC, Paris)

Proposal co-leads: François Bouchet (IAP, Paris); Jacques Delabrouille (APC, Paris)

Steering Committee:

Austria: J. Alves; Denmark: P. Naselsky; Finland: H. Kurki-Suonio; France: F. Bouchet, M. Bucher, J. Delabrouille, M. Giard; Germany: E. Komatsu, R. Sunyaev; Ireland: N. Trappe; Italy: M. Bersanelli, C. Burigana, P. de Bernardis; Netherlands: R. van de Weygaert; Norway: H.K. Eriksen; Poland: A. Pollo; Portugal: C. Martins; Spain: E. Martínez-González, J.A. Rubiño-Martín, L. Verde; Switzerland: M. Kunz; United Kingdom: A. Challinor, B. Maffei, G. Pisano; USA: S. Hanany.

Main contributors to proposal writing:

Coordinators

Mission: Paolo de Bernardis; François Bouchet; Jacques Delabrouille; CMB Science: Martin Bucher (proposal writeup coordinator); Anthony Challinor; Eiichiro Komatsu; Non-CMB Science: Gianfranco de Zotti; François Boulanger; Jean-Baptiste Melin; Instrument and Payload: Bruno Maffei; Michel Piat.

Ph. André, P. Andreani, M. Ashdown, C. Baccigalupi, A. Baryshev, J. Bartlett, S. Basak, J. Baselmans, J.-P. Bernard, M. Bersanelli, P. Bielewicz, M. Bilicki, J. Bock, L. Bonavera, J. Borrill, F.R. Bouchet, F. Boulanger, T. Bradshaw, M. Bucher, C. Burigana, Z-Y. Cai, Ph. Camus, G. Castex, A. Catalano, A. Challinor, I. Charles, M. Clemens, D.L. Clements, B. Comis, M. Crook, P. de Bernardis, A. De Rosa, G. de Zotti, T. Decourcelle, J. Delabrouille, F.-X. Désert, C. Dickinson, J.M. Diego, S. Dodelson, J.-M. Duval, H.-K. Eriksen, J. Errard, G. Fabbian, P. Ferreira, F. Finelli, M. Gervasi, J. García-Bellido, A. Ghribi, J. Gonzalez-Nuevo, M. Griffin, A. Gruppuso, S. Golwala, R. Guesten, S. Hanany, A. Heavens, F. Helmich, D. Herranz, J. Hubmayr, K. Irwin, D. Johnson, A. Karakci, T. Kitching, L. Knox, A. Kogut, E. Komatsu, N. Krachmalnicoff, M. Kunz, M. Lattanzi, C. Lawrence, A. Lee, J. Legourgues, F. Levrier, A. Lewis, Y. Longval, M. Lopez-Caniego, J.F. Macias-Perez, B. Maffei, J. Martin, C. Martins, J. Martino, S. Masi, S. Matarrese, D. McCarthy, J.-B. Melin, A. Melchiorri, A. Mennella, M.-A. Miville-Deschenes, J. Mohr, A. Monfardini, L. Montier, G. Morgante, H. Moseley, P. Natoli, M. Negrello, F. Noviello, L. Pagano, L. Page, D. Paoletti, G. Patanchon, L. Perotto, F. Piacentini, M. Piat, G. Pisano, G. Polenta, N. Ponthieu, G. Pratten, D. Préle, G. Puglisi, M. Remazeilles, V. Revéret, C. Ringeval, I. Ristorcelli, J. Bodriguez, L. Rodriguez, J.-A. Rubiño-Martín, S. Serjeant, P. Shirron, D. Spergel, R. Stompor, R. Sunyaev, A. Tartari, L. Toffolatti, N. Trappe, T. Trombetti, M. Tucci, R. van de Weygaert, V. Vennin, L. Verde, N. Vittorio, F. Voisin, B. Wandelt, K. Young, A. Zacchei, F. Zandanel, M. Zannoni.

C. Burigana – Varenna 6///201/

CMB missions proposals to ESA – III:

now: ESA M5 → CORE

A satellite mission for probing cosmic origins, neutrinos masses and the origin of stars and magnetic fields

through a high sensitivy survey of the microwave polarisation of the entire sky

A proposal in response to the European Space Agency Cosmic Vision 2015-2025 Call

C. Burigana – Varenna 6/7/2017

PLANCK

S4 Meeting Notes from Radek Stompor

- Huge and there seems to be a strong commitment to go ahead;
- Broad canvass of potential science goals: from primordial B-modes to lensing to crosscorrelations to SZ effects (both thermal and kinematic);
- Cost now on order of 200-300 M\$ (up a factor of 2-3 from the initial 100 M\$);
- All major US CMB experimentation group represented;
- Still many differences and no common vision, but seems difficult to avoid multiple observatories in many (at least two ?!) sites with different, complementary characteristics.
- Stress on it being self contained and complementary to other probes (balloons, satellites) but the unanswered question is to what extent this is possible.
- Stress on need for continuing support for CMB-S3 projects as the necessary pathfinders for S4;

- General interest in the international collaboration -- very general and vague;
- Some seem to be interested in a Norther Hemisphere observatory (Greenland ?!)
- Real beginning (money!) anticipated for around 2018 (coinciding with the end of the LSST construction);
- But organizationally is already moving:
 - science paper in the next 6-12 months;
 - regular face-to-face meetings (next in Berkeley in January 2016), some of which may be more focused;
 - working groups, telecons, wiki, git etc in the weeks to come.
- Major questions for us:
 - is there a place for a significant external contribution ?!

VASFBO

- how can we be visible given the anticipated size and cost of the overall effort ?

Courtesy K.Ganga

HEI PLANCK

Perspectives from ground - II CMB-S4 Ann Arbor Meeting Update

Ex.: CLASS @ Chile

LiteBIRD Overview

Lite (Light) Satellite for the Studies of B-mode Polarization and Inflation from Cosmic Background Radiation Detection

- CMB B-mode satellite proposed to JAXA and NASA
- Proposed launch year: JFY 2022
- Success criteria
 - Total uncertainty on r: $\sigma(r) < 0.001^*$
 - Multipole coverage: $2 \le \ell \le 200$
 - Each bump (reionization, recombination) with >5sigma if r > 0.01
- Orbit: L2
- Observing time: ≥3 years

*Our current studies yield $\sigma(\mathbf{r}) = 2 \ge 10^{-4}$ for 3 year observation

2015/9/29

esa

Masashi Hazumi (KEK, Kavli IPMU)

Why targeting $\sigma(r) < 0.001$?

- Many models predict r>0.01 \rightarrow >10 σ discovery.
- What if we do not see the signal ?
 - Focus on the simplest models based on Occam's razor principle.
 - Single field models that satisfy slow-roll conditions give

$$r \simeq 0.002 \left(\frac{60}{N}\right)^2 \left(\frac{\Delta\phi}{m_{pl}}\right)^2$$

Lyth relation

0

N: e-folding, m_{pl} : reduced Planck mass

 Establishing a bound r < 0.002 (95%C.L.) will rule out large field models that satisfy the Lyth relation. <u>Setting this limit is a very</u> <u>significant contribution to cosmology and fundamental physics.</u>

 $V^{1/4} = 1.06 imes 10^{16} imes \left(rac{r}{0.01}
ight)^{1/4} [{
m GeV}]$

GUT-scale physics

2015/9/29

5

C. Burigana – Varenna 6/7/2017

JASFBC

H**F**i planck

CORE (ESA M5 Call) channels and sensitivity

Channel	Beam	$N_{\rm det}$	ΔT	ΔP	ΔI	ΔI	$\Delta y \times 10^6$	PS (5σ)
[GHz]	[arcmin]		$[\mu K.arcmin]$	$[\mu K.arcmin]$	$[\mu K_{\rm RJ}. {\rm arcmin}]$	[kJy/sr.arcmin]	$[y_{SZ}.arcmin]$	[mJy]
60	17.87	48	7.5	10.6	6.81	0.75	-1.5	5.0
70	15.39	48	7.1	10.0	6.23	0.94	-1.5	5.4
80	13.52	48	6.8	9.6	5.76	1.13	-1.5	5.7
90	12.08	78	5.1	7.3	4.19	1.04	-1.2	4.7
100	10.92	78	5.0	7.1	3.90	1.20	-1.2	4.9
115	9.56	76	5.0	7.0	3.58	1.45	-1.3	5.2
130	8.51	124	3.9	5.5	2.55	1.32	-1.2	4.2
145	7.68	144	3.6	5.1	2.16	1.39	-1.3	4.0
160	7.01	144	3.7	5.2	1.98	1.55	-1.6	4.1
175	6.45	160	3.6	5.1	1.72	1.62	-2.1	3.9
195	5.84	192	3.5	4.9	1.41	1.65	-3.8	3.6
220	5.23	192	3.8	5.4	1.24	1.85		3.6
255	4.57	128	5.6	7.9	1.30	2.59	3.5	4.4
295	3.99	128	7.4	10.5	1.12	3.01	2.2	4.5
340	3.49	128	11.1	15.7	1.01	3.57	2.0	4.7
390	3.06	96	22.0	31.1	1.08	5.05	2.8	5.8
450	2.65	96	45.9	64.9	1.04	6.48	4.3	6.5
520	2.29	96	116.6	164.8	1.03	8.56	8.3	7.4
600	1.98	96	358.3	506.7	1.03	11.4	20.0	8.5
Array		2100	1.2	1.7			0.41	

Table 1. Proposed *CORE* frequency channels. The sensitivity is calculated for a 4-year mission, assuming $\Delta \nu / \nu = 30\%$ bandwidth, 60% optical efficiency, total noise of twice the expected photon noise from the sky and the optics of the instrument being cooled to 40 K. This configuration has 2100 detectors, about 45% of which are located in CMB channels between 130 and 220 GHz. Those six CMB channels yield an aggregate CMB sensitivity in polarisation of 2 μ K.arcmin (1.7 μ K.arcmin for the full array).

Cesa Maria

CORE in a global framework

CORE scanning strategy & typical sensitivity map

145 GHz Polarisation Sensitivity : 144 Detectors : 4 years

Figure 3. On an orbit around the Sun-Earth L2 Lagrange point, 1.5 million kilometre away from the Earth, the spacecraft scans the sky with three modulations of the pointing direction on various timescales. The spacecraft spins at a rate of order $f_{\rm spin} \simeq 0.5$ RPM, so that the line of sight scans the sky on quasi-circles of opening angle β with a period of about 2 minutes. The circles are not perfectly closed by reason of a slower precession, with a period of $T_{\rm prec} \simeq 4$ days, with precession angle α . The precession axis is kept anti-solar, so that the symmetric spacecraft always receives the same amount of illumination from the Sun, ensuring hence the thermal stability of the payload. The last modulation is provided by the slow revolution of the whole system around the Sun with a period of one year.

Aimed at optimizing polarization reconstruction through many different beam orientations

CORE alone

Delensing through arcmin resolution

Foreground cleaning through wide multifrequency

esa
Future CMB - Ex: cosmological parameters with CORE

Parameter	Description	Current results (Planck 2015+Lensing)	CORE expected uncertainties	
ACDM				
$\Omega_b h^2$	Baryon Density	$\Omega_b h^2 = 0.02226 \pm 0.00016$ (68 % CL) [12]	$\sigma(\Omega_b h^2) = 0.000037$ {4.3}	
$\Omega_c h^2$	Cold Dark Matter Density	$\Omega_c h^2 = 0.1193 \pm 0.0014~(68~\%~{\rm CL})~[12]$	$\sigma(\Omega_c h^2) = 0.00026 \ \{5.4\}$	
n_s	Scalar Spectral Index	$n_s = 0.9653 \pm 0.0048$ (68 % CL) [12]	$\sigma(n_s) = 0.0014 \ \{3.4\}$	
au	Reionization Optical Depth	$0.063 \pm 0.014~(68~\%~{\rm CL})~[12]$	$\sigma(\tau) = 0.002$ {7.0}	
$H_0 \ [\mathrm{km/s/Mpc}]$	Hubble Constant	$H_0 = 67.51 \pm 0.64$ (68 % CL) [12]	$\sigma(H_0) = 0.11 \ \{5.8\}$	
σ_8	r.m.s. mass fluctuations	$\sigma_8 = 0.8150 \pm 0.0087$ (68 % CL) [12]	$\sigma(\sigma_8) = 0.0011$ {7.9}	
Extensions				
Ω_k	Curvature	$\Omega_{\rm k} = -0.0037^{+0.0083}_{-0.0069}$ (68 % CL) [12]	$\sigma(\Omega_k) = 0.0019$ {4}	
$N_{ m eff}$	Relativistic Degrees of Freedom	$N_{\rm eff} = 2.94 \pm 0.20~(68~\%~{\rm CL})~[12]$	$\sigma(N_{ m eff}) = {f 0.041} \ \{4.9\}$	
$M_{ u}$	Total Neutrino Mass	$M_{\nu} < 0.315 {\rm eV}$ (68 % CL) [12]	$\sigma(M_{\nu}) = 0.043 \text{ eV} \{7.3\}$	
(m_s^{eff}, N_s)	Sterile Neutrino Parameters	$(m_s^{eff} < 0.33 eV, N_s < 3.24)$ (68 % CL) [12]	$\sigma(m_s^{eff},N_s) = (\textbf{0.037}eV,\textbf{0.053}) \ \{8.9,4.5\}$	
Y_p	Primordial Helium abundance	$Y_p = 0.247 \pm 0.014$ (68 % CL) [12]	$\sigma(Y_p) = 0.0029 \ \{4.8\}$	
Y_p	Primordial Helium (free N_{eff})	$Y_p = 0.259^{+0.020}_{-0.017}$ (68 % CL) [12]	$\sigma(Y_p) = 0.0056$ {3.2}	
τ_n [s]	Neutron Life Time	$\tau_n = 908 \pm 69 (68 \% \text{ CL}) [167]$	$\sigma(\tau_n) = 13 \{5.3\}$	
w	Dark Energy Eq. of State	$w = -1.42^{+0.25}_{-0.47}$ (68 % CL) [12]	$\sigma(w) = 0.12 \{3\}$	
T_0	CMB Temperature	Unconstrained [12]	$\sigma(T_0) = 0.018 \ \mathrm{K}$	
p_{ann}	Dark Matter Annihilation	$p_{ann} < 3.4 \times 10^{-28} \ cm^3/GeV/s$ (68 % CL) [12]	$\sigma(p_{ann}) = {\bf 5.3 \times 10^{-29}} \ cm^3/GeV/s \ \{6.4\}$	
$g_{ m eff}^4$	Neutrino self-interaction	$g_{ m eff}^4 < 0.22 imes 10^{-27}$	$\sigma(g_{ m eff}^4) = 0.34 imes 10^{-28} \; \{6.4\}$	
α/α_0	Fine Structure Constant	$\alpha/\alpha_0 = 0.9990 \pm 0.0034$ (68 % CL)	$\sigma(lpha/lpha_0) = 0.0007 \; \{4.8\}$	
$\Sigma_0 - 1$	Modified Gravity	$\Sigma_0 - 1 = 0.10 \pm 0.11$ (68 % CL) [53]	$\sigma(\Sigma_0 - 1) = 0.044 \ \{2.5\}$	
$A_{2s1s}/8.2206$	Recombination 2 photons rate	$A_{2s1s}/8.2206 = 0.94 \pm 0.07~(68~\%~{\rm CL})~[12]$	$\sigma(A_{2s1s}/8.2206) = 0.015$ {4.7}	
$\Delta(z_{reio})$	Reionization Duration	$\Delta(z_{reio}) < 2.26$ (68 % CL) [35]	$\sigma(\Delta z_{reio}) = 0.58 \{3.9\}$	

From E. Di Valentino et al. arXiv:1612.00021

Table 34. Current limits from Planck 2015 and forecasted CORE-M5 uncertainties. The first 6 rows assume a Λ CDM scenario while the following rows give the constraints on single parameter extensions. In the fourth column, numbers in curly brackets {...} give the improvement in the parameter constraint when moving from Planck 2015 to CORE-M5, defined as the ratio of the uncertainties $\sigma^{Planck}/\sigma^{CORE}$.

🔎 👸 C. Buri

n_s – r ; improvement from COrE

Y map gives us lots of clusters

Detection limits for a diffraction-limited survey

Effect of CORE detection limit for extragalactic source counts

- Extragalactic radio-sources almost dominated by blazars, that is also dominating population in gamma-rays
- Planck data crucial to characterize their synchrotron peak and understanding their physics (Giommi et al. 2012)

Extracted from Massardi et al. 2016

Galaxies with active star formation

- starlight absorbed by circumstellar dust grains and re-emitted in far-IR/sub-mm
- CORE will fill gap between Planck flux limit and Herschel flux range, a gap where
 - cosmological evolution appears and thus particularly important for evolutionary models
 - ✓ it is easier to identify extreme cases of flux gravitational amplification

Predicted counts in polarization for a 1m telescope

Complete samples in polarization are currently limited to:

 some tens of radio-sources (microwaves/mm)

v negligible number (sub-mm)

COrE-M5 high sensitivity in polarization open a new window

Simulations for COrE-M5 suggest:

 detection of:
 thousands of sources in its whole frequency range
 for the first time:
 hundreds of galaxies with intense star formation with

polarized signal by dust grains

→ Unique information on:

> their magnetic fields

 unknown origin of tight correlation between
 IR and radio luminosities
 of these objects

Future of CMB spectrum

CMB spectrum: current status

Fig. 5 — CMB thermodynamic temperature measured at low frequencies (see

To firmly observe such small distortions the Galactic and extragalactic foreground contribution should be accurately modelled and subtracted.

CMB distorted spectra as functions of the wavelength λ (in cm) in the presence of a late energy injection with $\Delta \epsilon/\epsilon_i \approx 4y = 5 \times 10^{-6}$ plus an early/intermediate energy injection with $\Delta \epsilon/\epsilon_i = 5 \times 10^{-6}$ occurring at the "time" Comptonization parameter $y_h = 5$, 1, 0.01 (from the bottom to the top; in the figure the cases at $y_h = 5$ – when the relaxation to a Bose-Einstein modified spectrum with a dimensionless chemical potential given, in the limit of small distortions, by $\mu \approx 1.4\Delta\epsilon/\epsilon_i$ is achieved – and at $y_h = 1$ are extremely similar at short wavelengths; solid lines) and plus a free-free distortion with $y_B = 10^{-6}$ (dashes). From Burigana et al. '04.

Ideas of the future of CMB spectrum from space

- * The current limits on CMB spectral distortions and energy dissipation processes in the plasma, Δε/ε_i|≤10⁻⁴, are mainly set by the NASA COBE/FIRAS experiment.
- ★ High accuracy CMB spectrum experiments from space, like DIMES at λ ≥ 1 cm (Kogut 1996) and FIRAS II at λ ≤ 1 cm (Fixsen & Mather 2002), have been proposed to constrain (or probably detect) energy exchanges 10–100 times smaller than the FIRAS upper limits possibly generated by heating (but also by cooling) mechanisms at different cosmic epochs.
- These perspectives have been recently renewed:
 - in the context of a new CMB space mission like PIXIE (Kogut et al. 2011) proposed to NASA
 - □ in the possible inclusion of spectrum measures in the context of a polarization dedicated CMB space mission, of high sensitivity and up to arcmin resolution, like PRISM proposed to ESA in 2013

exploting differential approaches in anisotropy missions (CORE)

⁵ Probing primordial power spectrum on very small scales using spectral distortion

- Current constraints on the power spectrum (and the spectral index n_s) are limited by the size of current horizon (CMB quadrupole) on large scales, and by nonlinearity and Silk damping on small scales.
- Little improvement can be expected from galaxy surveys and SKA because of these fundamental limitation.
- The small scale primordial power dissipated by Silk damping does not disappear completely, but leaves its imprint in spectral distortions from the perfect CMB blackbody spectrum. Important target for the PRISM spectrometer.

Adiabatic cooling (BE condensation) vs perturbation dissipation

Sketch of fractional rate of energy release due to Silk damping and free streaming for different initial power spectra. Also shown for comparison is the rate of energy loss due to adiabatic cooling of baryonic matter. Energy injection in µ

n _s	$\Delta E/E$						
1.07	6.8×10^{-8}						
1.04	4.7×10^{-8}						
1.0	2.9×10^{-8}						
0.96	1.8×10^{-8}						
0.92	1.1×10^{-8}						
BEC	-2.2×10^{-9}						
յ ~1.4 /	Δε/ε _i as						
a function of							
a function of							
spectral index n _s							
without running)							
ronna $6/7/2017$ VAS							

distortions during $5 \times 10^4 < z < 2 \times 10^6$ for different initial power spectra without running compared with energy losses due to **Bose-Einstein** condensation. Chluba et al. 2012: also amplitude unknown @ small scales \rightarrow larder rang

"Exotic" spectral distortions

Fig. 4. Relaxation to a Bose-Einstein like spectrum of early distortions in presence of radiative decay with $\Delta n_{\gamma}/n_i = 7.5 \, 10^{-3}$ and $\Delta \epsilon/\epsilon_i$ such that $\mu = 10^{-3}$ (a) and $\mu = -10^{-3}$ (b) (see eq. (28), $\Delta \epsilon/\epsilon_i \simeq 0.01$). The initial spectrum is a black-body plus a "line" due to the radiative decay (dotted lines). The numerical results for the present spectrum (solid lines) and the approximation of Burigana et al. (1991a) (dashed lines) are showed. The agreement results to be quite good ($\Omega_b = 0.1$, $H_0 = 50$, $\Omega_T = 1$).

$$\mu \simeq 1.4 \left(rac{1 + \Delta \epsilon/\epsilon_i}{\left(1 + \Delta n_\gamma/n_i
ight)^{rac{4}{3}}} - 1
ight) = 1.4 \left(rac{1 + R_X B_\gamma x_X/\overline{x}_{CMB}}{\left(1 + R_X B_\gamma
ight)^{rac{4}{3}}} - 1
ight)$$
 $R_x = (3/8)(g_f/X)$

esa

agenzia spaziale

g_! is the number of states per momentum mode and X is the effective number of relativistic interacting species at the decay epoch

Fig. 13. Evolution of a BB spectrum since z = 1500 (dotted line) for the case of ionised matter with a constant ratio $T_e/T_r = 0.2$ between the matter and radiation temperature. The spectrum at several times is showed: z = 749 (dashed line), 499 (long dashes), 245 (dots plus dashes) and present time (solid line) ($H_0 = 50$, $\Omega_T = 1$). The distorted spectrum is characterized by negative values of u and y_B as a consequence of the assumption on the ratio T_e/T_r (see eqq. (35) and (46)). Of course at very long wavelengths, where bremsstrahlung is very efficient, the spectrum approaches to that of a black-body with temperature $T = T_e$. The top panel is only a blow-up of a part of the bottom one for sake of comparison between the distortions at submillimetric and RJ spectral regions.

Summary of CMB spectral distortions in intensity

Dipole spectrum: CMB distortions and CIB

Original idea by Danese & de Zotti 1981; rediscussed in 2016 by de Zotti et al. and Balashev et al.

Courtesy T. Trombetti & C.B. 2016

- Without absolute calibration, but with only accurate relative & interfrequency calibration CORE will have the chance to detect CIB & reonization (& others?) distortions through low multipole pattern
- → Global & (almost) model independent constraints on energy dissipations

From dipole to higher multipoles

(BE spectrum - current BB); ν = 60 GHz; ℓ = 1; μ_0 = 1.4 \cdot 10⁻⁵

76.1 nK_{CMB}

(BE spectrum - current BB); ν = 60 GHz; ℓ = 2; μ_0 = 1.4 \cdot 10⁻⁵

Courtesy T. Trombetti & C.B. 2016

Compute full effect → maps Harmonic expansion → Computations of all multipole components at each frequency for each type of signal

C. Burigana – Varenna 6/7/2017

0.050 nK_{mm}

Great hopes from PIXIE absolute spectrum measurements (Kogut et al. 2011) to constrain (or detect) energy exchanges 1000 times smaller than the FIRAS upper limits Angular power spectrum of the dipole map difference between distorted spectra and current blackbody spectrum vs CORE (black) & LiteBIRD (red) white noise power spectrum

Recovery dipole amplitude

	A(mk)	$\theta(^{\circ})$	$\phi(^{\circ})$	$T_0(mK)$
68% CL	3.36440 ± 0.00034	48.2402 ± 0.0059	264.0002 ± 0.0090	2725.45379 ± 0.00020
95% CL	$3.36440^{+0.00065}_{-0.00068}$	$48.240^{+0.012}_{-0.012}$	$264.000^{+0.018}_{-0.018}$	$2725.45379^{+0.00040}_{-0.00039}$
99% CL	$3.36440^{+0.00084}_{-0.00089}$	$48.240^{+0.015}_{-0.016}$	$264.000^{+0.023}_{-0.023}$	$2725.45379^{+0.00052}_{-0.00051}$

Tab: 68, 95 and 99% confidence level of the parameters A, θ , ϕ and T_0 .

C. Burigana – Varenna 6/7/2017

OPLANCK

	$E_{ m cal}$ (%)	$E_{\rm for}$ (%)	CIB amplitude	Bose-Einstein	Comptonization
Ideal case, all sky	-	-	$\simeq 4.4 \times 10^3$	$\simeq 10^3$	$\simeq 6.0 imes 10^2$
All sky	10^{-4}	10 ⁻²	$\simeq 15$	$\simeq 42$	$\simeq 18$
P76	10^{-4}	10^{-2}	$\simeq 19$	$\simeq 42$	$\simeq 18$
P76ext	10^{-2}	10^{-2}	$\simeq 17$	~ 4	~ 2
P76ext	10^{-4}	10^{-2}	$\simeq 22$	$\simeq 47$	$\simeq 21$
P76ext	10^{-4}	10-3	$\simeq 2.1 imes 10^2$	$\simeq 2.4 imes 10^2$	$\simeq 1.1 imes 10^2$
P76ext	$10^{-3}_{(\leq 295)}$ $-10^{-2}_{(\geq 340)}$	10^{-2}	$\simeq 19$	$\simeq 26$	$\simeq 11$
P76ext	$10^{-3}_{(\leq 295)}$ $-10^{-2}_{(\geq 340)}$	10^{-3}	$\simeq 48$	$\simeq 35$	$\simeq 15$
P76ext, $N_{\rm side} = 128$	$10^{-3}_{(\leq 295)}$ $-10^{-2}_{(\geq 340)}$	10^{-2}	$\simeq 38$	$\simeq 51$	$\simeq 23$
P76ext, $N_{\rm side} = 128$	$10^{-3}_{(\leq 295)}$ $-10^{-2}_{(\geq 340)}$	10^{-3}	$\simeq 43$	$\simeq 87$	$\simeq 39$
P76ext, $N_{\rm side} = 256$	$10^{-3}_{(\leq 295)}$ $-10^{-2}_{(\geq 340)}$	10^{-2}	$\simeq 76$	$\simeq 98$	$\simeq 44$
P76ext, $N_{\rm side} = 256$	$10^{-3}_{(\leq 295)}$ $-10^{-2}_{(\geq 340)}$	10^{-3}	$\simeq 85$	$\simeq 1.6 imes 10^2$	$\simeq 73$

Table 11. Predicted improvement in the recovery of the distortion parameters discussed in the text with respect to FIRAS for different calibration and foreground residual assumptions. This table summarizes the results derived with approach (c). "P06" stands for the *Planck* common mask, while "P06ext" is the extended P06 mask. When not explicitly stated, all values refer to E_{cal} and E_{for} at $N_{side} = 64$.

C. Burigana – Varenna 6/7/2017

arXiv:1704.05764

VASFBO

Hierarchy of issues vs type of signal

• From a wide set of simulations with different residual levels

→ following hierarchy

Free-free distortions from cosmological reionization vs SKA

Radiosource confusion noise – I

To observe tiny CMB sp distortions control of Galactic emission & xGal foreground XGal sources below obs threshold appear as Galaxy not isotropic signal diffuse isotropic radio background Used spatial separation SKA will obs sources down 2 very faint fluxes (few techniques Gal-CMB tens nJy) --- reduces confusion noise & background $\log[L(W \text{Hz}^{-1})]$ at $\langle z \rangle = 0.8$ Integrating differential # counts in 21 29 3 flux densities +> source confusion $\nu = 1.4 \text{ GHz}$ 2 noise contribution & Tb due 2 og[S^{5/2}n(S) (Jy^{3/2} sr⁻¹)] background of xGal sources 0 Owen & Morrison (2008) -1Mitchell & Condon (1985) This paper

 $^{-2}$ $10 \text{ mK} @ v \le 0.3 \text{ GH}$ $\log[S(Jy)]$ Courtesy T. Trombetti 2015 **Å**SFBO C. Burigana - Varenna 6/7/2017

esa

Wilman et al. (2008)

0

Condon et al. 2012

Condon (1984)

 $^{-2}$

Radiosource confusion noise – II

Comparison of source detection @ 1.4 GHz sky fluctuations due to xGal threshold from instrumental noise & sources are (Condon et al. 2012) source confusion noise $5\sigma_{mf} = 5 \times 1.2 (v / 3GHz)^{-07} (\theta / 8')$ res ~ 1" Thus ... for deep surveys $@v \sim few GHz ...$ source confusion noise is not a limit & ... $@1GHz \le v \le \text{some GHz} (\lambda \approx 1 \text{ dm})$ signal amplitude for CMB distorted spectra background from xGal sources @ lower freq source confusion noise too big \rightarrow GOAL of SKA excellent Courtesy T. Trombetti 2015

esa

Conclusion - I

- *Planck* legacy will set the scene for many years
- Time is appropriate for new CMB missions/projects, from both scientific expertise and technological development
- CMB science ("primary" & "secondary") essential for early Universe and cosmic evolution
- Competition/<u>synergy</u> between ground & space projects
- While achieving Higgs/Starobinsky limit (r ~ 0.004) is the minimum goal of a future CMB polarization mission ...
- for "ultimate" polarization mission targeted to characterize, not only detect B-modes down to r ≅ 10⁻³, or even lower,
- other key scietific goals are "automatically" assured

Conclusion - II

- * Astrophysical foregrounds: *limitation* & *opportunity*
- We need to map & understand them with high accuracy in order to properly extract CMB maps and spectrum
 - This is crucial in polarization and for B-modes for low r values
 - This is crucial for spectral distortions
- Microwave sky complexity calls for many frequency channels (e.g. 15 or more in about one decade in frequency, for polarization), related to the global number of foreground parameters
- Spectrum is currently as anisotropy before COBE/DMR
- ♦ A new window!
- Huge synergy with radio observations in particular for reionization

Conclusion - III

- Legacy science of a future CMB mission potentially immense, e.g.:
 - ➤ all-sky → essential for Galactic studies, extragalactic samples, high-z studies, rare phenomena
 - polarization: even *Planck* is only at the beginning (ex.: 2 Galactic components, about 10² sources)
 - > products: mapping all Solar System & Galactic components, identify fine features, producing sample of thousands of galaxies
 - ➤ cross-product: "absolute" calibration → legacy data for calibrating ground observations

Thanks for the attention!

