### **CMB** experiments

Jacques Delabrouille Laboratoire APC, Paris

- Introduction
- Where are we?
- Science case: what next
- Challenges
  - sensitivity
  - atmosphere
  - systematics
  - foregrounds
- Suborbital experiments
- Space experiments
  - PIXIE
  - LiteBIRD
  - CORE
  - PRISM
- A strategy for the future
- Summary



#### Introduction

- Where are we?
- Science case: what next
- Challenges
  - sensitivity
  - atmosphere
  - systematics
  - foregrounds
- Suborbital experiments
- Space experiments
  - PIXIE
  - LiteBIRD
  - CORE
  - PRISM
- A strategy for the future
- Summary







- Introduction
- Where are we?
- Science case: what next
- Challenges
  - sensitivity
  - atmosphere
  - systematics
  - foregrounds
- Suborbital experiments
- Space experiments
  - PIXIE
  - LiteBIRD
  - CORE
  - PRISM
- A strategy for the future
- Summary

## The CMB blackbody





### The CMB: state of the art



CMB-S4 collaboration arXiv:1610.02743

# The CMB: state of the art

#### • The reference for CMB observations today comes from

- COBE/FIRAS (blackbody spectrum at I=0)
- the Planck space mission (T for 1<l<2500 E for 2<l<1000)</li>
- SPT/SPTPol and ACTPol (T for I>2500, E for I>1000)
- SPTPol and Polarbear (B for I>300)
- BICEP2/Keck array (B for I<300)</li>

- Ground-based experiments so far have observed relatively small patches of sky (e.g. from ≈ 1% to 6%);
  - SPT: 2,500 sq. deg. with 1.2' beam and  $\Delta T$  = 18  $\mu K.arcmin$
  - ACT: 600 sq. deg. with 1.3' beam and  $\Delta T = 17 \mu K.arcmin$
  - BICE2P-Keck: 400 sq. deg. with 1.3' beam and  $\Delta P = 3 \mu K.arcmin$







## Foreground emission



# Dust contamination ?

Planck U Stokes parameter at 353 GHz (Planck collaboration, PIP XIX).



Polarised emission from elongated dust grains aligned in the galactic magnetic field

#### **Dust contamination !**

Planck Intermediate Results XXX







19

# Where the action is: lensing

Planck lensing:

Planck Collaboration A&A 571, 17 (2014) Planck Collaboration A&A 594, 15 (2016)

Lensing potential from Planck



COPYRIGHT 2017 © EUROPEAN SPACE AGENCY.

#### SPT lensing: *PRL 114, id.101301 (2015)* $4^{h}$ $2^{h}$ $0^{h}$ $6^{h}$ 0.0320.0240.0160.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.00000.0000.0000.0000.00000.00000.0000











#### Where the action is: "delensing"



#### Figure 1. Wiener-filtered lensing potential estimated from the SMICA foreground-cleaned temperature map using the $f_{\rm sky} \simeq 80\%$ lensing mask.

#### Planck

#### Planck collaboration A&A 596, 102 (2016)



## Where the action is: "delensing"



Use lensing potential inferred from dusty galaxies (CIB) and SPT E-modes to infer lensing B-modes



#### Thermal SZ effect

- Sunyaev and Zel'dovich
  - Compton Interaction on *hot electron gas*
  - Detection possible at high redshift z
  - The SZ distortion is a very good mass proxy

Clusters of galaxies are the largest gravitationally bound structures





LFI HFI

#### Planck maps of SZ clusters



#### Cosmological information from clusters

- Number counts *dN/dMdV* 
  - Growth of structures  $\Omega_m$ ,  $\Lambda$  (dark sector in general)
  - Spectrum P(k) ( $\sigma_8$ )
- Number counts *dN/dMdz(dΩ)* 
  - Geometry  $D_A(z)$ , H(z)
- Cosmological tests
  - Velocity flows (modified gravity)
  - Correlations (SZ, ISW, lensing...)
  - Power spectrum of thermal and kinetic SZ
- Angular vs. physical size
- Gas fraction  $M_g/M_{tot}$
- Cluster physics

#### Cosmological constraints from clusters 2013



 $Y_{SZ} = (1-b) \times f(M)$ 

**Revise matter and energy content?** 

#### A handle on neutrino masses



A total mass of light neutrino species of 0.3 eV would solve the discrepancy

### Where the action is: galaxy clusters



Clusters detected through the Sunyaev-Zel'dovich (SZ) effect





# Where the action is: galaxy clusters

de Haan et al., ApJ 832, 95 (2016)





- Introduction
- Where are we?



- Science case: what next
- Challenges
  - sensitivity
  - atmosphere
  - systematics
  - foregrounds
- Suborbital experiments
- Space experiments
  - PIXIE
  - LiteBIRD
  - CORE
  - PRISM
- A strategy for the future
- Summary

# Scientific Case: what next?

- Very good fit of many cosmological observations ( $H, \Omega_m, \Omega_b, \tau, A_s, n_s, ...$ ) in spite of mild "tensions" ( $H_0, \sigma_8, A_L...$ ) and of possible anomalies (large scale power, alignments...)
- Did Inflation really happen?
- If so, physics of inflation? (r, n<sub>s</sub>, running, n<sub>t</sub>, NG...?)
- What is Dark Matter? (v's, N<sub>eff</sub>, decaying DM...?)
- What is Dark Energy? (Λ, w<sub>0</sub>, w<sub>1</sub>,...?)
- Fundamental physics (gravity, physics beyond SM)
- (Is the CMB a "perfect" blackbody?)
- •
- Is the global ACDM picture correct?



Figure 1: Left: Projected 68% CL error bars (crosses) and the theoretical prediction (purple line) for the primordial B-mode power spectrum with a tensor-to-scalar ratio of r = 0.001. The orange line shows the secondary B-mode power spectrum from gravitational lensing while the black line shows their sum. The top two lines show the power spectra of the temperature and E-mode polarization, respectively. The solid blue line shows the noise power spectrum, while the dotted line shows the error bar on the B-mode power spectrum due only to noise in the 130-220 channels. Right: Forecasts for marginalized contours for  $(n_s, r)$  at the 68 % and 95 % CL for *CORE* for two scenarios. The fiducial model at the center of the blue marginalized contours (orange dot) has r = 0.004, a value consistent with the Starobinsky model, and a second fiducial model (red contours) has a level of primordial GW undetectably small for *CORE*. The green contours show the 68 % and 95 % CL for Planck 2015 data combined with the BICEP2-Keck Array-Planck B-mode likelihood [11]. We show the predictions for natural inflation (purple band), hilltop quartic model (orange discrete band) and power law chaotic (light green discrete band) models. 3These inflationary models consistent with the current data can be ruled out by *CORE*.

Lensing spectra :  $C_{\ell}^{\phi\phi}$ 

Challinor et al. (CORE collaboration) - coming soon



# Detailed validation of the model

Inflationary parameters (initial conditions)

$$r = \frac{P_t(k_0)}{P_s(k_0)} = 0$$
  $n_t \simeq -r/8 = 0$ 

$$\frac{dn_s}{d\ln k}\simeq 0$$

Spatial curvature  $\Omega_k h^2 = 0$ 

Dark Energy equation of state  $w_0 = -1$   $w_1 = 0$ 

Neutrino sector

$$N_{\text{eff}} = 3.046$$
  $\Omega_{\nu} h^2 = \frac{\Sigma m_{\nu}}{93 \,\text{eV}}$   $\Sigma m_{\nu} \simeq 60 \,\text{meV}$ 

Helium abundance  $Y_{\rm He} \simeq 0.25$
# Detailed validation of the model

Inflationary parameters (initial conditions)

$$r = \frac{P_t(k_0)}{P_s(k_0)} = 0$$
  $n_t \simeq -r/8 = 0$ 

Spatial curvature 
$$\Omega_k h^2 = 0$$

Dark Energy equation of state  $w_0 = -1$   $w_1 = 0$ 

 $\frac{dn_s}{d\ln k}\simeq 0$ 

The CMB can still reduce the error box volume

#### by a factor >10<sup>6</sup>

(a factor of ≈5 on each parameter on average)

Neutrino sector

 $N_{\rm eff} = 3.046$ 

$$\Omega_{\nu}h^2 = \frac{\Sigma m_{\nu}}{93 \,\mathrm{eV}}$$

$$\Sigma m_{\nu} \simeq 60 \,\mathrm{meV}$$

#### Helium abundance

 $Y_{\rm He} \simeq 0.25$ 

#### **REQUIREMENT:**

measure all spectra with the best possible accuracy

### Cosmological constraints

Current tension at 2.5 $\sigma$  with H<sub>0</sub> = 73.8 ± 2.4 km/s/Mpc (Riess et al. 2011, HST)





Figure 12: Forecast 68 % and 95 % CL marginalized regions for  $(\Omega_k, H_0)$  (left panel),  $(\Omega_k, \Omega_m)$  (middle panel) and  $(H_0, \Omega_m)$  (right panel) for LiteBIRD (grey) and CORE-M5 (blue) obtained by allowing  $\Omega_k$  to vary. These forecasts assume  $\Omega_k = 0$  as fiducial value. The 68 % and 95 % CL marginalized contours for Planck 2015 TT,TE,EE + lowP + lensing (green) are shown for comparison [4]. Note that the Planck 2015 contours are based on real data <sup>39</sup> whose best-fit is different from the fiducial cosmology used.

# Scientific Case: what next?

- Mine the CMB : extract essentially *all* the information it carries about our Universe.
  - Detect primary B-modes and probe the physics of inflation;
  - Map the (dark) matter structures in the Hubble volume;
  - Constrain fundamental physics (dark sector physics, modified gravity, light relics, ...);
  - Test the cosmological scenario to exquisite precision (dark matter? dark energy? curvature? neutrinos? isotropy?)
- This is within reach in the next 1-2 decades.
- The name of the game is :
  - reach full-sky  $\Delta P = 1 \mu K$ .arcmin and 1 arcmin angular resolution
  - control foreground astrophysical emission
  - control systematics
  - redundancy !

# Outline

- Introduction
- Where are we?
- Science case: what next
- Challenges
  - sensitivity
  - atmosphere
  - systematics
  - foregrounds
- Suborbital experiments
- Space experiments
  - PIXIE
  - LiteBIRD
  - CORE
  - PRISM
- A strategy for the future
- Summary



# Need for very large focal planes

v = 100 GHz is  $\lambda = 3 \text{ mm}$ pixel size about 1 cm<sup>2</sup> 10,000 detectors require 1m<sup>2</sup> focal plane

Large telescopes and/or many telescopes

multichroic detectors + dual-polarization



#### CMB-S4 technology book, arXiv:1706.02464

# Outline

- Introduction
- Where are we?
- Science case: what next
- Challenges
  - sensitivity
  - atmosphere
  - systematics
  - foregrounds
- Suborbital experiments
- Space experiments
  - LiteBIRD
  - PIXIE
  - CORE
  - PRISM
- A strategy for the future
- Summary

#### Atmosphere : load



# Outline

- Introduction
- Where are we?
- Science case: what next
- Challenges
  - sensitivity
  - atmosphere



- systematics
- foregrounds
- Suborbital experiments
- Space experiments
  - LiteBIRD
  - PIXIE
  - CORE
  - PRISM
- A strategy for the future
- Summary

#### Systematics

$$s = I + Q\cos 2\psi + U\sin 2\psi$$

- Systematic effects !
  - Perhaps the biggest challenge
  - Let less than  $\approx 10^{-4}$  of intensity can leak into Q and U
  - Let less than  $\approx 10^{-2}$  of E can leak into B (Q-U mixing)
  - Space observations much better than ground-based
  - Use or not a rotating HWP to mitigate systematic effects?

### HWP or no HWP

$$s = I + Q\cos 2\psi + U\sin 2\psi$$

• The question of a Half wave plate...







No HWP rotate the whole instrument

HWP rotate only polarization

#### HWP or no HWP



#### 150 GHz HWP

built for the SPIDER balloon

#### Picture from Sean Bryan

### HWPs are not perfect either

- They emit radiation
- They are not homogeneous
- Response changes while they rotate
- Far sidelobes change while they rotate
- Hard to do broad band HWPs

• Do they do more harm or more good?

#### Alternative: model + deproject

$$s(p) \simeq I(p) + \eta \left( Q_{\parallel}(p) \cos 2\psi + U_{\parallel}(p) \sin 2\psi \right)$$

$$\downarrow$$

$$s(p) \simeq I(p) + \eta \left( Q_{\parallel}(p) \cos 2\psi + U_{\parallel}(p) \sin 2\psi \right)$$

$$+ a_{\parallel} \nabla_{\parallel}^{2} I(p) + a_{\perp} \nabla_{\perp}^{2} I(p) + a_{\times} \nabla_{\perp} \nabla_{\parallel} I(p)$$

$$+ b_{\parallel} \nabla_{\parallel} \left[ I(p) + \eta \left( Q_{\parallel}(p) \cos 2\psi + U_{\parallel}(p) \sin 2\psi \right) \right]$$

$$+ b_{\perp} \nabla_{\perp} \left[ I(p) + \eta \left( Q_{\parallel}(p) \cos 2\psi + U_{\parallel}(p) \sin 2\psi \right) \right]$$

$$+ 2\delta \eta \left[ -Q_{\parallel}(p) \sin 2\psi + U_{\parallel}(p) \cos 2\psi \right]$$

$$+ \epsilon I(p) + \xi \left[ Q_{\parallel}(p) \cos 2\psi + U_{\parallel}(p) \sin 2\psi \right],$$

### Alternative: model + deproject



calibration and polarization efficiency errors

### Past experience

- No Half Wave Plate
  - Planck (satellite)
  - BICEP2 and Keck array (at South Pole)
  - SPTPol (at South Pole)

— …

- With HWP
  - ACTPol (in Atacama)
  - Polarbear (in Atacama)
  - SPIDER (balloon)

# Outline

- Introduction
- Where are we?
- Science case: what next
- Challenges
  - sensitivity
  - atmosphere
  - systematics



- foregrounds
- Suborbital experiments
- Space experiments
  - PIXIE
  - LiteBIRD
  - CORE
  - PRISM
- A strategy for the future
- Summary

#### Foregrounds



Synchrotron



Credit: ESA, Planck collaboration

#### Dust in the BICEP2 field



#### T, E and B maps and spectra



#### T, E and B maps and spectra



#### T, E and B maps and spectra



### Foreground + lensing confusion



# How many channels?

• Enough to model the foreground contamination and correct for it...

| • | Synchrotron (Amplitude, spectral index)               | 2+1   |
|---|-------------------------------------------------------|-------|
| • | Thermal dust (Amplitude, spectral index, temperature) | 3+1   |
| • | CMB                                                   | 3     |
| • | thermal SZ                                            | 1+1   |
| • | free-free                                             | 1+1   |
| • | spinning dust                                         | a few |
| • | CIB                                                   | a few |
| • | Zodiacal light                                        | a few |
| • | point sources                                         | 4     |
| • | surprises                                             | 2     |
|   |                                                       |       |

TOTAL for Polarization : >15 channels

TOTAL for Intensity: >20 channels

### Foreground + lensing confusion



#### Foregrounds & CMB spectral distortions



# Outline

- Introduction
- Where are we?
- Science case: what next
- Challenges
  - sensitivity
  - atmosphere
  - systematics
  - foregrounds

#### Suborbital experiments

- Space experiments
  - PIXIE
  - LiteBIRD
  - CORE
  - PRISM
- A strategy for the future
- Summary

### At the south pole



#### Ongoing experiments: small aperture

| Project                                      | ABS    | Keck Array                             | Spider                      | Piper                 | BICEP Array                  | CLASS                  |
|----------------------------------------------|--------|----------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------|
| Physical aperture (m)                        | 0.25   | 0.25                                   | 0.27                        | 0.39                  | 0.52                         | 0.6                    |
| Illuminated aperture (m)                     | 0.25   | 0.25                                   | 0.27                        | 0.29                  | 0.52                         | 0.35                   |
| Telescope f/#                                | 2.5    | 2.2                                    | 2.2                         | 1.55                  | 1.6                          | 2, 2, 1.5, 1.5         |
| f/# at detector array (if different)         |        | 2.2                                    | 2.2                         | 1.6                   | 1.6                          |                        |
| Minimum Strehl ratio at 150 GHz              | 0.96   |                                        | 0.97                        | 0.97 (200 GHz)        | 0.99                         |                        |
| f-lambda spacing at 150 GHz                  | 2.6    |                                        | 1.8                         | 0.5                   |                              | 2.42                   |
| A*Omega of illuminated arrays (cm^2 sr)      | 50     |                                        |                             | 6                     |                              | 92                     |
| A*Omega with Strehl > 0.8 at 150 GHz         |        |                                        |                             | 51                    |                              |                        |
| Field of view per array (deg^2)              | 315    |                                        | 150                         | 28                    |                              | 315                    |
| Useable field of view diameter (deg)         |        |                                        | 12                          |                       |                              |                        |
| Number of arrays                             | 1      | 5                                      | 6                           | 2 (4 supported)       | 5                            | 4                      |
| Number of telescopes                         | 1      | 1                                      | 1                           | 2                     | 5                            | 4                      |
| Observation frequencies (GHz)                | 150    | 95, 150, 220                           | (90, 150)<br>90,150,280     | 200, 270,<br>350, 600 | 35, 95, 150,<br>220/280      | 38, 93<br>147, 218     |
| Detectors on sky per frequency               | 480    | (288, 512, 512) x<br># arrays per freq | (816, 1488)<br>272,992,1488 |                       | 384, 6106,7776,<br>9408/9408 | 72, 1036<br>1190, 1190 |
| # Frequencies per array ("multichroic-ness") | 1      | 1                                      | 1                           | 1                     | 1,1,1,2                      | 1(40,90)<br>2(150/220  |
| Window Material                              | UHMWPE | Zotefoam HD-30                         | UHMWPE                      | None                  | HDPE                         | UHMWPE                 |
| llluminated diameter of window (m)           | 0.28   | 0.26                                   | 0.35                        | n/a                   | 0.68                         | 0.35                   |
| Lens Material                                | N/A    | HDPE                                   | HDPE                        | Silicon               | Alumina                      | HDPE, silicor          |
| Temperatures of reflective optics (K)        | 4      |                                        | N/A                         | 1.4                   | -                            | 300                    |
| Temperatures of refractive optics (K)        | N/A    | 4                                      | 4                           | 1.4                   | 4                            | 4, 1                   |
| Temperature of cold stop (K)                 | 4      | 4                                      | 2                           | 1.4                   | 4                            | 4                      |
| Temperature of detector arrays (K)           | 0.3    | 0.25                                   | 0.3                         | 0.1                   | 0.25                         | 0.0                    |
| Year of initial (or partial) deployment      | 2012   | 2012                                   | (flight 1: 2015)            | 2016                  | 2015                         | 2016                   |
| Year of full deployment (all frequencies)    | 2012   | 2013                                   | flight 2: 2017              | 2020                  | 2020                         | 2018                   |

#### Ongoing experiments: large aperture

| Project                                      | QUIET                    | EBEX               | Simons Array              | Adv. ACTPol                                     | CCAT-Prime     | SPT-3G              |
|----------------------------------------------|--------------------------|--------------------|---------------------------|-------------------------------------------------|----------------|---------------------|
| Physical aperture (m)                        | 1.4                      | 1.5                | 2.5                       | 6                                               | 6              | 10                  |
| Illuminated aperture (m)                     |                          | 1.05               | 2.5                       | 5.6                                             | 5.5            | 7.5                 |
| Telescope f/#                                | 1.65                     | 1.9                | 1.9                       | 2.5                                             | 3              | 1.7                 |
| f/# at detector array (if different)         |                          | 1.9                | 1.9                       | 1.35                                            | 1.5            | 1.7                 |
| Minimum Strehl ratio at 150 GHz              |                          | 0.9                | 0.85                      | 0.8 (1 аггау),<br>0.93 <mark>(</mark> 2 аггауз) | 0.81           | 0.99                |
| f-lambda spacing at 150 GHz                  |                          | 1.74               | 1.8                       | 1.8                                             | 1.3            | 2                   |
| A*Omega of illuminated arrays (cm^2 sr)      |                          |                    |                           | 180                                             | ~2700          | 250                 |
| A*Omega with Strehl > 0.8 at 150 GHz         |                          |                    |                           | 379                                             | ~3000          | 370                 |
| Field of view per array (deg^2)              | 39 , 53                  |                    | 4 deg on sky              | 0.8                                             | 0.9            | 1.9                 |
| Useable field of view diameter (deg)         | 7.0, 8.2                 |                    |                           | 2.3                                             | 7.5            |                     |
| Number of arrays                             | 2 (in series)            | 14                 | 1                         | 3                                               | up to 50       | 1                   |
| Number of telescopes                         | 1                        | 1                  | 1                         | 1                                               | 1              | 1                   |
| Observation frequencies (GHz)                | 42, 90                   | 150, 250, 410      | 90, 150,<br>220, 280      | 28, 41, 90,<br>150, 230                         | 90 GHz - 1 THz | 90,<br>150, 220     |
| Detectors on sky per frequency               | 76 diodes,<br>360 diodes |                    | 7588, 7588,<br>3794, 3794 | 88, 88, 1712,<br>2718, 1006                     | up to ~10^5    | 5420,<br>5420, 5420 |
| # Frequencies per array ("multichroic-ness") | 1                        | 1                  | 2                         | 2                                               | 2 or 3         | 3                   |
| Window Material                              | UHMWPE                   | UHMWPE             | Zote Foam                 | UHMWPE                                          |                | HDPE                |
| Illuminated diameter of window (m)           |                          | 0.28               | 0.5                       | 0.31                                            |                | 0.6                 |
| Lens Material                                | N/A                      | UHMWPE             | alumina                   | silicon                                         |                | alumina             |
| Temperatures of reflective optics (K)        | 300                      | 300                | 300                       | 300                                             | 300            | 300                 |
| Temperatures of refractive optics (K)        | N/A                      | 4, 1               | 4                         | 4, 1                                            |                | 4                   |
| Temperature of cold stop (K)                 | N/A                      | 1                  | 4                         | 1                                               |                | 4                   |
| Temperature of detector arrays (K)           | 20K, 27K                 | 0.25               | 0.25                      | 0.1                                             | 0.1            | 0.25                |
| Year of initial (or partial) deployment      | 2008                     | 2009 (test flight) | 2017                      | 2016                                            | 2020           | 2016                |
| Year of full deployment (all frequencies)    | 2009                     | 2013               | 2017                      | 2018                                            | TBD            | 2016                |

#### Longer-term projects

• The perspectives for the 10-15 years time frame are dominated by plans for CMB-S4, a large ground-based CMB "stage 4" observatory.

 A European proposal to study a European version, or a participation to CMB-S4, has been submitted.

# Outline

- Introduction
- Where are we?
- Science case: what next
- Challenges
  - sensitivity
  - atmosphere
  - systematics
  - foregrounds
- Suborbital experiments
- Space experiments
  - PIXIE
  - LiteBIRD
  - CORE
  - PRISM
  - A strategy for the future
  - Summary

#### What next? Many proposed CMB missions



Low resolution Limited frequency coverage Primary CMB B-modes

More comprehensive science cases (spectroscopy, sub-mm astronomy, astrophysical cosmology)



#### Recent space mission proposals

# JAXA + NASA LiteBIRD

Primordial B-modes mission

Earliest Launch > 2027 Phase A not selected by NASA

 $\begin{array}{c} \textit{ONLY} \text{ large scale} \\ \hline \textit{CMB polarisation} \\ \sigma_r \approx 0.001 \\ \hline \textit{winning bet if: } 0.01 > r > 0.003 \\ \hline \textit{bonus: improve } \tau \end{array}$ 

ESA



Cosmic origins explorer

Earliest Launch > 2031 Phase A not selected by ESA

ALL CMB polarisation (almost) ultimate σ<sub>r</sub>≈0.0003 bonus: a lot of guaranteed science NASA PIXIE

Absolute spectrophotometer

Earliest Launch > 2023

very large scale polarisation Spectral distortions ? bonus: a lot of guaranteed foreground science




# Outline

- Introduction
- Where are we?
- Science case: what next
- Challenges
  - sensitivity
  - atmosphere
  - systematics
  - foregrounds
- Suborbital experiments
- Space experiments
  - PIXIE
  - LiteBIRD
  - CORE
  - PRISM
- A strategy for the future
- Summary

# LiteBIRD

Lite (Light) Satellite for the Studies of B-mode Polarization and Inflation from Cosmic Background Radiation Detection



- CMB polarization all-sky survey proposed to JAXA (Feb. 2015)
  - Also to NASA MO for U.S. participation (Dec. 2014)
  - Both proposals passed initial down-selections
  - However, NASA contribution not selected for phase A
  - ISAS/JAXA Phase-A studies have started (Aug. 2016)
- Objective : to test major large-field inflation models and quantum gravity
  - Total uncertainty on tensor-to-scalar ratio, r,  $\sigma(r=0) < 0.001$
  - Multipole coverage:  $2 \le \ell \le 200$
- Launch in ~2027 (post Hitomi) with JAXA's H3 for 3-year observations at L2
  - Currently the only CMB polarization space project in Phase-A status

Adapted from Masashi Hazumi

### LiteBIRD instrument









# Outline

- Introduction
- Where are we?
- Science case: what next
- Challenges
  - sensitivity
  - atmosphere
  - systematics
  - foregrounds
- Suborbital experiments
- Space experiments
  - PIXIE
  - LiteBIRD
  - CORE
  - PRISM
- A strategy for the future
- Summary

### The Primordial Inflation Explorer Beyond the Power Spectrum

Slide from Al. Kogut





#### Slide from Al. Kogut

### **PIXIE Samples History of the Universe**



All this science with single instrument

Questions specifically called out in Astro-2010 Decadal Survey

#### Slide from Al. Kogut

### NASA Explorer Program

#### Small PI-led missions

- 22 full missions proposed Feb 2011
- \$200M Cost Cap + launch vehicle

PIXIE not selected; urged to re-propose

- Top (Category I) science rating
- Broad recognition of science appeal

Re-propose to next MIDEX AO (2016)

- Technology is mature
- Launch early next decade



"PIXIE's spectral measurements alone justify the program" -- NASA review panel





Figure 1. Angular power spectra for unpolarized, E-mode, and B-mode polarization in the cosmic microwave background. The dashed red line shows the PIXIE sensitivity to B-mode polarization at each multipole moment  $\ell \sim 180^{\circ}/\theta$ . The sensitivity estimate assumes a 4-year mission and includes the effects of foreground subtraction within the cleanest 75% of the sky combining PIXIE data at frequencies  $\nu < 600$  GHz. Red points and error bars show the response within broader  $\ell$  bins to a B-mode power spectrum with amplitude r = 0.01. PIXIE will reach the confusion noise (blue curve) from the gravitational lensing of the E-mode signal by cosmic shear along each line of sight, and has the sensitivity and angular response to measure even the minimum predicted B-mode power spectrum at high statistical confidence.

# Outline

- Introduction
- Where are we?
- Science case: what next
- Challenges
  - sensitivity
  - atmosphere
  - systematics
  - foregrounds
- Suborbital experiments
- Space experiments
  - PIXIE
  - LiteBIRD
  - CORE
  - PRISM
- A strategy for the future
- Summary

## **CORE** The Cosmic Origins Explorer

A proposal in response to the ESA call for a Medium-Size space mission for launch in 2029-2030

Lead Proposer: Jacques Delabrouille

Co-Leads: Paolo de Bernardis François R. Bouchet

### For ultimate CMB polarisation maps

#### Lead Proposer: Jacques Delabrouille

CNRS, Laboratoire APC, 10 Avenue Alice Domon et Léonie Duquet 75013 Paris, France tel.: +33157276040, fax: +33157276071, mail: delabrouille@apc.in2p3.fr

The Lead Proposer will support the study activities by making available at least 70% of his time throughout the study period.

Proposal co-leads: Paolo de Bernardis (Sapienza Università di Roma); François R. Bouchet (IAP, Paris);

#### Executive Board:

François R. Bouchet (IAP, Paris); Anthony Challinor (IoA & DAMTP, Cambridge), Paolo de Bernardis (Sapienza Università di Roma), Jacques Delabrouille (CNRS/APC, Paris), Shaul Hanany (University of Minnesota), Eiichiro Komatsu (MPA, Garching); Enrique Martinez-Gonzalez (IFCA, Santander).

#### Consortium Board (National Spokespersons):

Austria: J. Alves; Belgium: C. Ringeval; Denmark: P. Naselsky; Finland: H. Kurki-Suonio; France: J. Delabrouille; Germany: E. Komatsu; Ireland: N. Trappe; Italy: P. de Bernardis; Netherlands: R. van de Weygaert; Norway: H.K. Eriksen; Poland: A. Pollo; Portugal: C. Martins; Spain: E. Martínez-González; Switzerland: M. Kunz; United Kingdom: A. Challinor; USA: S. Hanany.

#### Proposal Coordinators:

Science: J. G. Bartlett, F. R. Bouchet, F. Boulanger, M. Bucher, C. Burigana, A. Challinor, J. Chluba, C. Dickinson, E. Komatsu, G. de Zotti, F. Finelli, J. Lesgourgues, A. Melchiorri, J.-B. Melin, J. Mohr, J.-A. Rubiño-Martin, L. Verde:

Instrument: J. Baselmans, M. Bersanelli, P. de Bernardis, S. Hanany, E. Martinez-Gonzalez, J. Macias-Perez, D. McCarthy, B. Maffei, A. Monfardini, M. Piat, G. Pisano, G. Signorelli, A. Tartari, N. Trappe, S. Withington;

DPC: M. Ashdown, C. Baccigalupi, A. Banday, J. Borrill, H.-K. Eriksen, M. Kunz, H. Kurki-Suonio, P. Natoli, M. Remazeilles, P. Vielva;

#### Proposers of the CORE space mission:

Austria: J. Alves; Belgium: C. Arina, E. Cortina, B. Craps, C. Fidler, A. Füzfa, T. Hertog, L. Lopez, E. Renotte, C. Ringeval, M. Tytgat, B. Verknocke; Denmark: J. Ambjorn, P.H. Damgaard, A.M. Frejsel, P. Naselsky, N. Obers, S. Patil; Finland: M. Hindmarsh, E. Keihanen, H. Kurki-Suonio, J. Valiviita; France: M. Arnaud, J. Aumont, A. Banday, R. Banerji, J. G. Bartlett, K. Benabed, J.-P. Bernard, J. Bobin, F.R. Bouchet, F. Boulanger, M. Bucher, M. Calvo, Ph. Camus, C. Caprini, A. Catalano, J.-F. Cardoso, P. Chanial, I. Charles, C. Combet, B. Comis, I. Debono, J. Delabrouille, F.-X. Désert, E. Di Valentino, M. Douspis, L. Duband, J.-M. Duval, J. Errard, S. Galli, K. Ganga, A. Ghribi, M. Giard, Y. Giraud-Héraud, J. Grain, J.-C. Hamilton, D. Hazra, S. Henrot-Versillé, E. Hivon, G. Lagache, G. Lavaux, A. Le Brun, H. Le Sueur, J. Macias-Perez, B. Maffei, A. Mangilli, S. Marnieros, J. Martin, S. Martin, F. Mavet, J.-B. Melin, M.-A. Miville-Deschênes, A. Monfardini, L. Montier, G. Patanchon, O. Perdereau, L. Perotto, P. Peter, M. Piat, N. Ponthieu, V. Poulin, G. Pratt, D. Prêle, S. Renaux-Petel, V. Revéret, I. Ristorcelli, L. Rodriguez, M. Roman, G. Smoot, R. Stompor, A. Tartari, S. Triqueneaux, M. Tristram, B. Van Tent, G. Vermeulen, F. Vernizzi, F. Voisin, B. Wandelt; Germany: K. Basu, J. Beyer, H. Boehringer, T. Brinckmann, G. Chon, S. Clesse, T. Ensslin, S. Grandis, S. Hagstotz, E. Komatsu, B. Klein, J. Lesgourgues, K. Menten, J. Mohr, A. Saro, R. Sunyaev, J. Weller; Ireland: A. Murphy, C. O'Sullivan, D. McCarthy, N. Trappe; Italy: C. Baccigalupi, A. Baldini, M. Ballardini, N. Bartolo, S. Basak, P. Battaglia, E. Battistelli, M. Bersanelli, M. Biasotti, C. Burigana, A. Buzzelli, G. Cabass, P. Cabella, A. Caputo, V. Casasola, G. Castellano, F. Cavaliere, F. Cei, E. Coccia, S. Colafrancesco, I. Colantoni, A. Coppolecchia, D. Corsini, A. Cruciani, F. Cuttaia, G. D'Alessandro, S. D'Antonio, L. Danese, P. de Bernardis, G. De Gasperis, M. De Petris, A. De Rosa, G. De Zotti, A. Di Marco, G. Fabbian, V. Fafone, F. Finelli, F. Fontanelli, F. Forastieri, C. Franceschet, L. Galli, F. Gatti, M. Gerbino, M. Gervasi, E. Giusarma, M. Grassi, A. Gregorio, A. Gruppuso, M. Incagli, F. Incardona, N. Krachmalnicoff, L. Lamagna, A. Lapi, M. Lattanzi, I. Lazzizzera, M. Liguori, G. Luzzi, D. Maino, N. Mandolesi, B. Margesin, J. Martelli, S. Masi, M. Massardi, S. Matarrese, P. Mazzotta, A. Melchiorri, A. Mennella, R. Mezzena, D. Molinari, G. Morgante, P. Natoli, M. Negrello, D. Nicolò, F. Paci, L. Pagano, A. Paiella, D. Paoletti, S. Paradiso, F. Pezzotta, F. Piacentini, L. Polastri, G. Polenta, G. Puglisi, S. Ricciardi, A. Rocchi, M. Rossetti, L. Salvati, M. Sandri, G. Signorelli, F. Spinella, L. Terenzi, M. Tomasi, T. Trombetti, D. Vaccaro, F. Villa, N. Vittorio, A. Zacchei, M. Zannoni, G. Zavattini; The Netherlands: A. Achucarro, A. Baryshev, J. Baselmans, D. Baumann, M. Bilicki, K. Kuijken, A. Mazumdar E. Pajer, M. Postma, T. Prokopec, D. Roest, R. van de Weygaert, J.P. van der Schaar, S. Zaroubi; Norway: H. Dahle, H.K. Eriksen, F.K. Hansen, A. Karakci, P.B. Lilje, B. Racine, I.K. Wehus; Poland: P. Bielewicz, M. Biesiada, M. Blicki, M. Demianski, W. Hellwing, A. Janiuk, J. Krywult, B. Lew, J. Mielczarek, P. Orleanski, W. Piechocki, A. Pollo, B. Roukema, R. Szczerba; Portugal: M.A. de Avillez, D.S. Barbosa, C.S. Carvalho, A.J.C. da Silva, C.J.A.P. Martins; Spain: E. Artal, R.B. Barreiro, E. Battaner, F.J. Casas, L. de la Fuente, J. Garcia-Bellido, J. Garriga, C. Germani, J.M. Diego, R. Fernandez-Cobos, R.T. Genova-Santos, A. Gomez, J. Gonzalez- Nuevo, C. Hernandez-Monteagudo, D. Herranz, R. Hoyland, K. Kunze, E. Martinez-Gonzalez, A. Notari, R. Rebolo, J.A. Rubiño-Martin, L. Toffolatti, D. Tramonte, J. Urrestilla, L. Verde, P. Vielva; Switzerland: S. Antusch, D. Blas, C. Bonvin, V. Desjacques, P. Dubath, R. Durrer, D. Eckert, J.P. Kneib, M. Kunz, T. Montaruli, S. Paltani, R. Teyssier, M. Tucci, M. Turler, X. Wu; United Kingdom: P. Ade, M. Ashdown, R. Battye, A. Bonaldi, T. Bradshaw, M. Brown, A. Challinor, J. Chluba, D. Clements, M. Crook, C. Dickinson, B. Ellison, S. Feeney, J. Fergusson, P. Ferreira, S. Gratton, W. Handley, A. Heavens, M. Hindmarsh, A. Jaffe, M. Jones, T. Kitching, A. Lasenby, A. Lewis, J. McEwen, F. Noviello, E. Pascale, M. Peel, H. Peiris, G. Pisano, M. Remazeilles, G. Savini, P. Shellard, A. C. Taylor, A. N. Taylor, V. Vennin, C. Wallis, S. Withington; USA: C. Bennett, J. Bock, J. Borrill, J. Didier, C. Dvorkin, S. Ferraro, A. Fraisse, K. Górski, S. Hanany, J.C. Hill, H. Hubmayr, W. Jones, R. Keskitalo, T. Kisner, E. Kovetz, C. Lawrence, D. Meerburg, M. Niemack, R. O'Brient, L. Page, G. Rocha, J. Ullom, K. Young.

The CORE collaboration thanks CNES, Thales Alenia Space, and Air Liquide Advanced Technologies for advice and technical support during the preparation of this proposal. We also thank the ESA CDF team for the CMB Polarization CDF study performed in March 2016, the results of which were extensively used to define the mission concept presented in this proposal.

#### 350 proposers from 15+1 countries

### CORE mission concept

Think the mission as the **(near)-ultimate CMB** polarisation mission, with **guaranteed science** whatever the value of r, and **great legacy value** and discovery potential.

| Performance / requirement                                                                                        | Solution                                                               |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Resolve the CMB<br>≈ 4'-6' resolution or better                                                                  | Class 1.2-1.5m telescope or better<br>≈ 6' at 135 GHz; ≈ 4' at 200 GHz |
| Signal dominated data (S/N >2-3 for $B_{lens}$ )<br>$\sigma_p = 1.5-2.5 \ \mu K.arcmin \ on \approx 100\% \ sky$ | a few thousand detectors<br>at ≈ 100 mK                                |
| Exquisite control of systematic effets for polarisation measurements                                             | L2 orbit; Redundancy and polarisation modulation by scanning strategy  |
| Exquisite control/separation of polarised (and intensity) foregrounds                                            | 15-20 frequency bands (or more)<br>covering ≈ 60-600 GHz (or more)     |

## CORE in a nutshell

#### 1) Sensitivity 2 uK.arcmin

- sufficient for signal-dominated lensing maps and for r=0.001

### 2) 19 frequency channels

- 6 for low-frequency foregrounds (synchrotron...) below 115 GHz
- 6 for the CMB, between 130 and 220 GHz
- Good sensitivity in each CMB channel individually
- 7 for high-frequency foregrounds (dust...) above 250 GHz

### 3) Angular resolution ranging from 2 to 20 arcminute

- 5-10' in CMB channels

### 4) Control of systematic effects

- Very stable observing conditions
- Dedicated scan strategy to modulate polarisation

### **CORE** channels

| channel | $\mathbf{beam}$         | $N_{\rm det}$ | $\Delta T$     | $\Delta P$          | $\Delta I$              | $\Delta I$    | $\Delta y \times 10^6$ | PS $(5\sigma)$ |
|---------|-------------------------|---------------|----------------|---------------------|-------------------------|---------------|------------------------|----------------|
| GHz     | $\operatorname{arcmin}$ |               | $\mu K.arcmin$ | $\mu { m K.arcmin}$ | $\mu K_{ m RJ}$ .arcmin | kJy/sr.arcmin | $y_{\rm SZ}$ .arcmin   | mJy            |
| 60      | 17.87                   | 48            | 7.5            | 10.6                | 6.81                    | 0.75          | -1.5                   | 5.0            |
| 70      | 15.39                   | 48            | 7.1            | 10                  | 6.23                    | 0.94          | -1.5                   | 5.4            |
| 80      | 13.52                   | 48            | 6.8            | 9.6                 | 5.76                    | 1.13          | -1.5                   | 5.7            |
| 90      | 12.08                   | 78            | 5.1            | 7.3                 | 4.19                    | 1.04          | -1.2                   | 4.7            |
| 100     | 10.92                   | 78            | 5.0            | 7.1                 | 3.90                    | 1.2           | -1.2                   | 4.9            |
| 115     | 9.56                    | 76            | 5.0            | 7.0                 | 3.58                    | 1.45          | -1.3                   | 5.2            |
| 130     | 8.51                    | 124           | 3.9            | 5.5                 | 2.55                    | 1.32          | -1.2                   | 4.2            |
| 145     | 7.68                    | 144           | 3.6            | 5.1                 | 2.16                    | 1.39          | -1.3                   | 4.0            |
| 160     | 7.01                    | 144           | 3.7            | 5.2                 | 1.98                    | 1.55          | -1.6                   | 4.1            |
| 175     | 6.45                    | 160           | 3.6            | 5.1                 | 1.72                    | 1.62          | -2.1                   | 3.9            |
| 195     | 5.84                    | 192           | 3.5            | 4.9                 | 1.41                    | 1.65          | -3.8                   | 3.6            |
| 220     | 5.23                    | 192           | 3.8            | 5.4                 | 1.24                    | 1.85          | -                      | 3.6            |
| 255     | 4.57                    | 128           | 5.6            | 7.9                 | 1.30                    | 2.59          | 3.5                    | 4.4            |
| 295     | 3.99                    | 128           | 7.4            | 10.5                | 1.12                    | 3.01          | 2.2                    | 4.5            |
| 340     | 3.49                    | 128           | 11.1           | 15.7                | 1.01                    | 3.57          | 2.0                    | 4.7            |
| 390     | 3.06                    | 96            | 22.0           | 31.1                | 1.08                    | 5.05          | 2.8                    | 5.8            |
| 450     | 2.65                    | 96            | 45.9           | 64.9                | 1.04                    | 6.48          | 4.3                    | 6.5            |
| 520     | 2.29                    | 96            | 116.6          | 164.8               | 1.03                    | 8.56          | 8.3                    | 7.4            |
| 600     | 1.98                    | 96            | 358.3          | 506.7               | 1.03                    | 11.4          | 20.0                   | 8.5            |
| Array   |                         | 2100          | 1.2            | 1.7                 |                         |               | 0.41                   | 90             |





## **CORE** functional design



### Optics

Crossed-Dragone Telescope

- Excellent polarisation properties
- Large, flat, telecentric focal plane







## **CORE** shielding





V-grooves provide passive cooling of the payload to 40K

### Cooling chain



### Focal plane

|                    | GHz   | $N_{det}$ | $\begin{array}{c} (+) \times (+) \times$ |
|--------------------|-------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | 60    | 24x2      | $\bigcirc \bigcirc $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ()                 | 70    | 24×2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 80    | 24x2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 90    | 39×2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\check{\bigcirc}$ | 100   | 39×2      | $( + \times + \times + \times ) \times ( + \times + \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    | 115   | 38×2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\overline{\circ}$ | 130   | 124       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\bigcirc$         | 145   | 144       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 160   | 144       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\bigcirc$         | 175   | 160       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\bigcirc$         | 195   | 192       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ightarrow          | 220   | 192       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                  | 255   | 128       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                  | 295   | 128       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                  | 340   | 128       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                  | 390   | 96        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                  | 450   | 96        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| o                  | 520   | 96        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                  | 600   | 96        | $\bigcirc \bigcirc $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    | TOTAL | 2100      | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

### **KID detectors in Europe**





THz camera for safety scanner (Cardiff)





Horn-coupled KIDs for CMB (Cardiff + ASU)

### Spacecraft



### Scanning

![](_page_99_Figure_1.jpeg)

|                                  | CORE                                                       | LiteBIRD                                                  |
|----------------------------------|------------------------------------------------------------|-----------------------------------------------------------|
| Orbit                            | L2                                                         | L2                                                        |
| Launch year                      | >2030                                                      | 2027 ?                                                    |
| Observation time                 | 3 years                                                    | 3 years                                                   |
| Mass                             | 2.2 tons                                                   | 2.2 tons                                                  |
| Power                            | 2.2 kW                                                     | 2.5 kW                                                    |
| Main telescope                   | Gregorian,<br>1.2m aperture, 60-100K passive               | Cross Dragone<br>40cm aperture, <10K active               |
| Secondary telescope + instrument | No                                                         | Yes                                                       |
| Frequencies                      | ≈ 60-600 (19 bands)                                        | ≈ 40-400 (12+3 = 15 bands)                                |
| Detectors                        | ≈ 2000 single band single-polar,<br>100mK, One focal plane | ≈ 2000 tri-chroic dual-polar,<br>100 mK, Two focal planes |
| Cooling system                   | ST/JT/CCDR or ADR                                          | ST/JT/ADR or CCDR                                         |
| Data size                        | 100-400 Gbit/day                                           | 4 Gbit/day                                                |
| Moving parts in PLM              | none                                                       | 2 CRHWPs, cooled to <10K<br>Slip ring between PLM and SVM |
| Moving parts in SVM              | Steerable antenna                                          | Deployable solar panels<br>Steerable antenna              |
| Sensitivity                      | ≈ 2 µK.arcmin                                              | ≈ 3 µK.arcmin<br>(assumes 0.8 yield + 25% margin)         |
| Angular resolution               | 10' @ 100 GHz                                              | >30' @ 100 GHz 101                                        |

# Outline

- Introduction
- Where are we?
- Science case: what next
- Challenges
  - sensitivity
  - atmosphere
  - systematics
  - foregrounds
- Suborbital experiments
- Space experiments
  - PIXIE
  - LiteBIRD
  - CORE
  - PRISM
- A strategy for the future
- Summary

### PRISM

![](_page_102_Picture_1.jpeg)

A high resolution (1-2') absolute (10<sup>-8</sup>) imaging spectrophotometer (N<sub>freq</sub>>20)

### Large ESA mission (1B€) (not selected)

![](_page_102_Picture_4.jpeg)

Two instruments

# Outline

- Introduction
- Where are we?
- Science case: what next
- Challenges
  - sensitivity
  - atmosphere
  - systematics
  - foregrounds
- Suborbital experiments
- Space experiments
  - PIXIE
  - LiteBIRD
  - CORE
  - PRISM
- A strategy for the future
  - Summary

![](_page_104_Picture_0.jpeg)

Every small step can yield the first detection of inflationary B-modes.

Lottery ticket for a major discovery (which could happen tomorrow, or in 20 years, or never !) CMB is unique. Getting the best of it is a scientific imperative.

A comprehensive, sensitive and accurate space mission is needed for precision cosmology

### The battle field

![](_page_105_Figure_1.jpeg)

## The battle field

![](_page_106_Figure_1.jpeg)

## The battle field

![](_page_107_Figure_1.jpeg)




# The battle field





# The battle field





# The battle field





## Complementarity

### The CMB spectrum

#### The suborbital roadmap High resolution maps at v < 200 GHz **UNIQUENESS** Absolute spectrophotometry Complementarity small CMB scales **UNIQUENESS** to get 1-2' resolution (in atm. windows) absolute measurement and no foregrounds **UNIQUENESS** resolved CMB with: many frequencies JOINT OPTIMIZATION full sky **OF THE DESIGNS** systematics control

# Summary

- Still a lot of information for precision cosmology with the CMB
- Time to plan the "CMB mining"
- This requires both space and ground
- Careful synergetic designing + long timescale (10-20 yrs)
- A lot of ongoing activity with pathfinder experiments!

## To learn more

### Space mission: "Exploring Cosmic Origins (ECO) papers" (special issue of JCAP)

| DESIGN     | •       | Mission:<br>Instrument:                                                     | Delabrouille, de Bernardis, Bouchet et al.<br>de Bernardis, Ade, Baselmans et al.                                                                                                                                                                   | arXiv:1706.04516<br>arXiv:1705.02170                                                                            |
|------------|---------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| SCIENCE    | • • • • | Inflation:<br>Lensing:<br>Parameters:<br>Clusters:<br>Velocity:<br>Sources: | Finelli, Bucher, Achucarro et al.<br>Challinor, Allison, Carron, et al.<br>Di Valentino, Brinckmann, Gerbino et al.<br>Melin, Bonaldi, Remazeilles et al.<br>Burigana, Carvalho, Trombetti et al.<br>De Zotti, Gonzalez-Nuevo, Lopez-Caniego et al. | arXiv:1612.08270<br>coming soon<br>arXiv:1612.00021<br>arXiv:1703.10456<br>arXiv:1704.05764<br>arXiv:1609.07263 |
| PROCESSING | •       | Foregrounds:<br>Systematics:                                                | Remazeilles, Banday, Baccigalupi et al.<br>Natoli, Ashdown, Banerji et al.                                                                                                                                                                          | arXiv:1704.04501<br>coming soon                                                                                 |

### Ground-based: CMB-S4 Science and Technology books

- Science: CMB-S4 collaboration
- Technology: CMB-S4 collaboration

arXiv:1610.02743 arXiv:1706.02464