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The field equations of General Relativity

Gαβ =
8πG

c4
Tαβ

are highly non linear, as the resulting metric enters in the equations themselves.

For small perturbations to a flat space

gµν = ηµν + hµν , |hµν | ≪ 1

Einstein’s equations can be expanded to the first order in h.

Calling the trace of hαβ

h = hα
α

and defining

h̄αβ = hαβ − 1

2
ηαβh

one arrives (see for example Schutz2009 ) at

h̄µν
,αα = � h̄µν = −16πG

c4
Tµν ,

that is a wave equation for the metric perturbation h̄µν with source Tµν , that propagates at

the speed of light c.
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The amplitude of h in the static case of one point mass is

h =
2G

c2
M⊙

R

or about 4× 10−6 at the surface of the Sun. For gravitational wave emission of non relativistic

systems a rough estimate is given (Schutz 2009) :

hjk =
2G

c4R

d2Qjk

dt2

.
2G

c2R

2Mv2

c2r

∼ 2GM

c2R

2GM

c22r

=
rS

R

rS

d
= φextφint

rS is a typical Schwarzschild radius of the system. φint and φext are the gravitational potential

of one mass within the system and at the observer respectively.

For binary black holes of 30 M⊙ (rS = 3 km) at 400 Mpc, forming a system of size 600 km

h ∼ 10× 10−21
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For reference the main scales of distance are
Quantity Value Note

1 light-year 0.946× 1016 m

1 parsec (pc) 3.086× 1016 m 3.262 light-year:

observed parallax error of

one arcsecond when the Earth

moves transversally by 1 AU

Galactic center 10 kpc High stellar density, massive black hole

Galaxy diameter ∼ 30 kpc There are of the order of

109 neutron stars in our Galaxy

Local group Galaxies 50 kpc - 1.4 Mpc 50 galaxies

Virgo galaxy cluster ∼ 20 Mpc 2500 galaxies

Horizon 5 Gpc 15 billion light-year
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In order to obtain a maximal quadrupole moment derivative one needs coherent motion at high

speed.

Motion is driven mostly by gravitation

Neutron stars and black holes are the heaviest and most compact astrophysical objects known

For neutron stars the typical mass is 1.4M⊙ with a radius of 10 km

For black holes dimensions are given by their Schwarzschild radius rS = 2GM/c2

For a 30 M⊙ black hole rS= 90 km

Neutron stars are formed when a massive star undergoes core collapse when a supernova event

occurs.

Matter gets compressed under gravitational pressure and the inverse β decay reaction is favoured

energetically

e− + p → n+ νe

leading to a compact body made of neutrons, with a solid crust

Current understanding is that if the progenitor star has a mass between ∼ 8− 25M⊙, it is likely

that out of its remnants a neutron star will come out while the rest of the mass will be dispersed in

space

If the start has a mass greater than ∼ 25M⊙, neutron matter compresses until a black hole

forms
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Core collapse and rotation of non axisymmetric neutron stars are sources of gravitational waves.

Due to angular momentum conservation the neutron star will be rotating quite fast.

The presence of rotating asymmetries either on the crust or of hydrodynamical origin lead to

gravitional wave emission

The expected amplitude is very low: hpsr . 10−26, currently only upper limits have been placed

The fascinating point about these sources is that they are continuous and can be observed in

principle for years (careful of Earth motion)

During stellar core collapse a large mass undergoes high acceleration. However most of this

motion is axisymmetric so that emission of radiation low

With more and more accurate simulations the emitted energy has gone down from 0.01M⊙ to

10−8M⊙ which makes them observable with current detectors in our Galaxy. But the rate is very

low (1 every 40 years)

In the last years simulations of stellar core collapse have shown a wealth of physics that can

studied: from relativistic magnetohydrodynamics to nuclear physics to probing neutrino structure.

Signal shape was first thought to last a few milliseconds, having a characteristic frequency of 1

kHz.

Now simulations show a signal lasting for 1 second, with high and low frequency components

CAN’T MISS IT
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Cumulative of the periastron epoch in seconds for the binary system PSR B1913+16 due to

energy loss through gravitational radiation per perdita di energia per irraggiamento di onde

gravitazionali.

Data from J. M. Weisberg and J. H. Taylor, Relativistic Binary Pulsar B1913+16: Thirty Years of

Observations and Analysis, July 2004, http://arxiv.org/abs/astro-ph/0407149.
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Symbol

Parameter (units) Value

1

(i) \Physical" Parameters

Right Ascension � 19

h

15

m

28:

s

00018(15)

Declination � 16

�

06

0

27:

00

4043(3)

Pulsar Period P

p

(ms) 59:029997929613(7)

Derivative of Period

_

P

p

8:62713(8) � 10

�18

(ii) \Keplerian" Parameters

Projected semimajor axis a

p

sin i (s) 2:3417592(19)

Eccentricity e 0:6171308(4)

Orbital Period P

b

(day) 0:322997462736(7)

Longitude of periastron !

0

(

�

) 226:57528(6)

Julian date of periastron T

0

(MJD) 46443:99588319(3)

(iii) \Post-Keplerian" Parameters

Mean rate of periastron advance h _!i (

�

yr

�1

) 4:226621(11)

Redshift/time dilation 


0

(ms) 4:295(2)

Orbital period derivative

_

P

b

(10

�12

) �2:422(6)

1

Numbers in parentheses denote errors in last digit.

Data from http://puppsr8.princeton.edu/psrcat.html

Table 6: Parameters of the Binary Pulsar PSR 1913+16

64

http://puppsr8.princeton.edu/psrcat.html\hfill 
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Gauge freedom allows to write a simple wave equation.

In addition one can impose h̄µν to be traceless and transverse with respect to the direction of

propagation.

The general solution for a plane wave propagating in the z direction is:

h̄µν =







0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0






ei(Ωt−kz)

There are two independent solutions corresponding to the ”+” e ”×” polarization.

The symmetry properties attribute to the graviton a spin of two and 2 helicity states, as for a

massless particle.

For a free mass and reference system in free fall with TT gauge, one applies the geodetic equation

dUα

dτ
+ Γα

µνU
µUν = 0

For a mass initially at rest (Uα = (1, 0, 0, 0)) the equation at that moment becomes

dUα

dτ

∣

∣

∣

∣

0

= −Γα
00 = −1

2
ηαβ(hβ0,0 + h0β,0 − h00,β) = 0

The coordinate remains constant if the mass is initially at rest.
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Consider the + polarization. The metric element is

ds2 = dt2 − (1 + h+)dx2 − (1− h+)dy2 − dz2

Consider a light ray (ds2 = 0). If travelling in the transverse direction x

ds2 = 0 = cdt2 − (1 + h+)dx2

What can be measured by a single clock is the round trip time between two free falling test mass.

In the TT gauge coordinates don’t change.

Travel time is given by:
∫ t1

t0

dt =

∫

path

√

1 + h+dx

which is function of h+(t).
For h+(t) approximately constant during the round trip

t1 − t0 =
2L

c

[

1 +
h+(t)

2

]

.



Using time measurements

Gravitational

waves

• Gravitational

waves

• Sources

• Using clocks

Signal and noise

Position noise

Measurement

noise

Null instrument

Summary

13 / 63

Consider a periodic wave h+ = h cos(Ωt+ φ) and light travelling between two masses at

coordinates x = 0 and x = L.

Integration along that path gives

t1 − t0 =

∫ x=L

x=0
(1 +

h+

2
)dx =

2L

c

[

1− h

2

sin ΩL
c

ΩL
c

cos

(

Ω

(

t1 − L

c

)

+ φ

)

]

In the lab frame of the first mass (not in TT gauge) this corresponds to a displacement of the

second mass

δx = L
h

2

sin ΩL
c

ΩL
c

cos

(

Ω

(

t1 − L

c

)

+ φ

)

If ΩL/c ≪ 1, or 2π L
λGW

≪ 1 the round trip time reproduces the signal shape.
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It is possible to increase the response to h by increasing L

δx = L
h

2

sin ΩL
c

ΩL
c

cos

(

Ω

(

t1 − L

c

)

+ φ

)

In a multiple delay line one can have N round trips, leading to substituting L with NL.

If ΩL/c = kπ, that is 2L = nλGW , the response is zero. The signal gained going from one

mass to the other is lost on the return trip.

For Ω1 πc/L the response is in an envelope proportional to 1/(ΩL/c).
This procedure averages the measurement of h(t) over the time it takes to go from the light source

to the detector.

The light path acts as a low pass filter with pole at fLP = c/NL.

Sources recently detected on Earth generate an h ∼ 10−21 on Earth for L = 3− 4 km, the

distance variation is

δx = L
h

2
= 1.5− 2× 10−18 m
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By having light

bouncing back

from the second

mass one can

compare timings

in a single place,

as is done with

interferometry.
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Having two stable

clocks allows to

use one way light

transmission, tim-

ing relies on the

stability of the re-

mote clock.

This can be done

using the emis-

sion from highly

stable pulsars.

See 2016MN-

RAS.458.1267V

and references

therein.
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Consider a stochastic process X(t,K) representing the output of a continuous measurement

from an experiment K

The autocorrelation is defined by

R(t, τ) =< n(t,K)n(t+ τ,K) >

where the average <> is computed on the various instances of the experiment K.

For stationary noise n(t) (statistical properties constant in time) one can define

Rn(τ) =< n(t)n(t+ τ) >

The power spectrum Sn(f) of n(t) is

Sn(f) =

∫ +∞

−∞

Rn(τ) exp(i2πfτ)dτ

From Parseval’s theorem one has that the noise over the full frequency band

∫ +∞

−∞

Sn(f)df =

∫ +∞

−∞

Rn(τ)

∫ +∞

−∞

exp(i2πfτ)dfdτ

= Rn(0)

= var(n)

This allows to explain the name given to Sn(f).
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Consider the output n(t) of a noisy channel and distribute it to a battery of bandpass filters 1 Hz

wide.

Measure for each filter the power dissipated on a 1 Ω resistor.

It is

∫ +∞

−∞

Sn(f)df =

2

∫ f+1Hz

f
Sn(f)df ∼=

Sn(f)
Sn(f) is the variance of noise per unit frequency.
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As in the case of single measurements one prefers to use the standard deviation σ =
√

var(n)
rather than the variance.

One finds often

ñ(t) =
√

Sn(f)

called the linear power spectrum (LPS).

Sn(f) has units of n(t)2/Hz

ñ(f) has units of n(t)/
√

Hz

The power spectrum for the noise from several uncorrelated sources is the sum of the power

spectra.

The linear power spectrum is obtained summing in quadrature the various LPS.

For Gaussian noise, that is assuming that the real and the imaginary components of the Fourier

transform of the signal are independent and Gaussian distributed with mean 0 and variance σ2,

the probability density distribution for r = Sn(f) is a Rayleigh distribution

p(r) =
r

σ2
exp

(

− r2

2σ2

)

which is asymmetric with a tail toward higher values
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Important caveat: check whether the power spectrum is defined for 0 ≤ f < +∞ or

−∞ < f < +∞.

Physically one measures only f ≥ 0 but the definition is for −∞ < f < +∞
The power spectrum defined considering f > 0 is twice the one defined over the full real axis.

The linear power spectrum defined considering f > 0 is
√
2 times the one defined for

−∞ < f < +∞.

Experimentally noise is measured making many averages over time:

Sn(f) = E

[

1

2T

∣

∣

∣

∣

∫ +T

−T
n(t) exp(i2πft)dt

∣

∣

∣

∣

2
]

T will determine the frequency resolution. The number of averages will reduce the fluctuations of

the measured Sn(f).
This usually works well, a typical pathology is when one is in presence of a monochromatic signal.
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Nowadays signal spectrum analyzers are digital. The signal is sampled at some frequency fs.

The Nyquist frequency fN = fs/2 is the maximum frequency that can be analyzed. Higher

frequency signals appear as lower frequency one, like when one sees a car wheel accelerating in

a movie. When the rotation is too fast it seems that the wheel is going backward, more and more

slowly

This is called aliasing and high frequency components must be filtered BEFORE sampling.

Using sampled signals the Fourier transform becomes a series that will provide Fourier

coefficients ak, bk for the fundamental frequency f1 = 1/T and its harmonics fk = kf1 up to

fN . The time average is obtained repeating the computation of the coefficients and averaging

S(fk) = E[a2k + b2k] for a given number of times n.

The Fourier analysis is made in terms of functions that have period T , and trying to achieve

continuity between n(+T ) and n(−T )
To avoid this the analysis is made applying a window that weighs less the extremities of the time

interval, and performing the analysis over time intervals that typically overlap by 50

Summarizing, for a sampling frequency fs the spectrum is computed for 1/T < f < fs/2] with

a number of overlapping samples (n/2).

The precision at each frequency will increase with
√
n
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Assume that noise is added to the signal so that the detector output is s(t) = n(t) + h(t)
In a way similar to the minimum χ2 method one asks that

∫ T

0

∫ t

0

(s(t− τ)− αh(t− τ))(s(t)− αh(t))

C(t, t− τ)
dτdt

be minimum. The product is weighted with the equivalent of the covariance, taken between noise

at different time differences

C(t, t− τ) =< n(t)n(t− τ) >= Rn(τ)

Minimizing with respect to α requires that
∫ T

0

∫ t

0

(s(t− τ)− αh(t− τ))h(t)

C(t, t− τ)
dτdt = 0

The solution for α is

α =

∫ T
0

∫ t
0

(s(t−τ)h(t)
C(t,t−τ)

dτdt
∫ T
0

∫ t
0

h(t−τ))h(t)
C(t,t−τ)

dτdt
= 0
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This can be translated in the frequency domain

h(t) is a function of several parameters (coalescence time, masses, . . . )

The optimal filter for a deterministic signal requires to compute

sW = 2

∫ +∞

0

s̃(f)h̃∗(f)

Sn(f)
df

=

∫

h(t)

∫

s(τ)w(t− τ) dτ dt

w(t) weighs s(t) more at frequencies where the detector is less noisy

sW is Gaussian with mean zero and standard deviation 1 if the template h(t) is properly

normalized.

The signal-to-noise ration (SNR) is given by

SNR2 = 4

∫ +∞

0

|h̃(f)|2
Sn(f)

df

SNR2 is an integral over a frequency band:

one should cover as much as possible of the signal band with a low noise detector

One can perform a best fit varying the signal parameters obtaining best estimates.

Note that resonant detectors can be broadband, it is a matter of how low is the noise, which

comes from the electronics

A. Papoulis, Probability, Random Variables and Stochastic Processes, McGrawHill.

S. Kay, Statistical Signal Processing, Estimation Theory, Detection Theory, Prentice-Hall.
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Detection principle: measure the round trip time between to free falling masses

For ground detectors one can have free masses in the horizontal plane, for signal with frequency

higher than the pendulum frequency

Distance is measured using the phase of the light electric field

Available clocks are not stable enough, one has to compare travel time in two orthogonal

directions using the particular structure of hµν : an extension along x corresponds to a

contraction along y.

The following are the main noise sources that are encountered in interferometric gravitational

detectors

Mass position noise

◦ Seismic noise

◦ Thermal noise

◦ Local gravity fluctuations

◦ Radiation pressure
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Measurement noise

◦ Photon counting noise (shot noise)

Quantum limit

◦ Reducing shot noise requires to increase the circulating power. This increases the size of the

fluctuations in photon number or radiation pressure

◦ This increase the fluctuations of the position of the mass

◦ This is the Heisenberg principle

◦ Elegant workarounds have been tested on km scale detectors, measuring only one of the two

non commutating physical quantities, phase φ and photon number nγ

◦ The uncertainty principle says

σnγσφ >
1

4

but only φ is needed, so one can decrease σφ with a larger σnγ

◦ This is achieved by modifying the vacuum state of the quantized electromagnetic field
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Seismic noise: elastic waves of the earth crust and interior, propagating with different speed and

attenuation length as the nature of the medium varies.

Origin

◦ Earthquakes, even very light ones.

◦ Ground vibrations from anthropic activity, manufacturing processes, transportation

infrastructures.

◦ Pressure variations on soil due to sea motion, ocean swell, wind, planes and helicopters

◦ On time scale of hours: earth crust deformation due to the tide.

The typical spectrum at the Virgo location is

x̃s(f) = 10−6

(

1Hz

f

)2

m/
√

Hz

for f > 1Hz
Below: presence of a peak at 140 mHz: from wind and sea.
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Coupling with the ground has to be severely reduced leaving test masses inertial.

This is achieved by using a chain of masses one connected to the other, that are more and more

isolated through the inertia present upstream: a cascade of mechanical filters.

Consider a pendulume with suspension point that moves according to xs(t). The equation of

motion for the pendulum mass is well known:

ẍ+ Γẋ+
g

l
x =

g

l
xs(t)

In the frequency domain the solution for an excitation xs(t) = x0 exp [jωt] has an amplitude

x(ω) = x0
ω2
0

√

(ω2 − ω2
0)

2 + Γ2ω2
, ω2

0 =
g

l

At high frequency, ω ≫ ω0, this becomes

x(ω) = x0
ω2
0

ω2

Attenuation is achieved through inertia.

Dissipation must be low, otherwise coupling to the ground is higher. Furthermore dissipation is

intrinsically noisy.
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By cascading n pendula one has a system with n normal modes.

Above the highest mode frequency the reaction of pendulum i on pendulum i− 1 becomes

negligible and attenuations can be multiplied.

The total attenuation A can be estimated taking the order of magnitude of the frequency of the

highest mode.

For a 1 m pendulum

ω2
0 =

√
gl = 10 rad2 sec−2

while for n pendulums

A ∼
(

ω2
0

ω2

)n

=

(

10

40f2

)n
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Requiring a noise floor at f = 10 Hz of h = 10−23/
√

Hz with an arm of L = 3 km implies

A <
h(f)L

2xs(f)
=

1.5× 10−20

10−8
= 1.5× 10−12

On the other hand

A =

(

ω2
0

(2πf)2

)n

=

(

10

4000

)n

< 1.5× 10−12

n >
− log 1.5 + 12

log 400 + 2 log f
= 4.5

Five filters, that include the test mass are necessary In the frequency band of the normal modes, if

dissipation is low, motion is amplified, and this may take the interferometer out of its working point.

Through an active control on the first stages one can avoid the excitation of these modes.

This requires a complex feedback system with low noise sensors and actuators.

Acting upstream allows to filter the additional noise introduced at high frequency.

Another requirement on the attenuation system is to to be able to control the mirror position in 6

degrees of freedom.

This must be achieved without reintroducing noise. In particular the actuator should not act by

contact and have a low relative position noise with respect to the mirror due to unavoidable force

gradients.
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The ratio in amplitude (and phase) in the frequency domain between the mirror motion xm(ω)
and the ground motion xs(ω) is called the transfer function:

A(f) =
xm(f

xs(f

Below |A(f)| for the Virgo Superattenuator is shown.

10
−2

10
−1

10
0

10
1

10
2

10
3

frequency (Hz)

10
−39

10
−36

10
−33

10
−30

10
−27

10
−24

10
−21

10
−18

10
−15

10
−12

10
−9

10
−6

10
−3

10
0

10
3

horizontal TF

vertical TF * 10
−2



Thermal noise

Gravitational

waves

Signal and noise

Position noise

• Seismic noise

• Thermal noise

• Gravity

fluctuations

Measurement

noise

Null instrument

Summary

34 / 63

The test mass is a body in thermal equilibrium with the environment.

Position and velocity degrees of freedom have on average an energy of

kBT = 3.9× 10−21 J

For a 40 kg mirror suspended by a 1 m pendulum, the elastic constant of the equivalent harmonic

oscillator is

mg/l = 400N/m

and the corresponding oscillation amplitude xT is

xT =

√

kBT

k
=

√

kBT l

mg
= 3.1× 10−12 m

This is the rms value, integrated over the whole frequency band.

Luckily in terms of power spectrum the energy is not distributed evenly over the band
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The Fluctuation-Dissipation theorem links the power spectrum of noise from thermal origin to the

dynamics of the system

SẋT
(ω) = 2kBTℜY (ω), Y =

1

Z(ω)
=

ẋ

F

Z(ω) is the impedance of the system, its inverse Y (ω) is the admittance.

Considering a pendulum in vacuum, with a model for the dissipation inside the wires different from

the usual viscous damping, one has

ẍ+ ω2
0 [1 + jφ(ω)]x = F/m

with φ(ω) ∼ 10−6.

The motion is given by

x(ω) =
F

m

ω2
0 − ω2 − jφ(ω)ω2

0

(ω2
0 − ω2)2 + φ2(ω)ω4

0

Applying the Fluctuation-Dissipation theorem

ℜY =
ω

m

φ(ω)ω2
0

(ω2
0 − ω2)2 + φ2(ω)ω4

0

The linear power density for the pendulum thermal noise is given by

x̃T (ω) =

√

SẋT
(ω)

ω
=

√

4kBTφ(ω)ω2
0

mω[(ω2
0 − ω2)2 + φ2(ω)ω4

0 ]

for ω ≥ 0.
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To mitigate the effects of thermal noise one can act on the temperature T
This leads to a number of complications in the experimental apparatus and is not the preferred

solution, although some experiments are running some tens of K above the absolute zero.

The second possibility is to act on the dissipation mechanism so that the channel with the

environment is narrow.

In this way the motion will be described by a very narrow peak at the resonant frequency, with low

tails.

While gravitational motion of the pendulum doesn’t dissipate (forget about gravitational radiation),

flexion of the suspending wires does.

Normal modes of the mirrors have similar effects.

One has to select materials that are elastic and won’t flow or creep before they break, like very

pure fused silica.

Currently a serious limitation comes from the coatings deposited on mirrors to obtain the desired

transmission coefficient. The dielectric materials used have a much higher dissipation than the

mirrors substrates and are currently determining over most of the frequency band the noise of the

interferometers.
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Variations with time of the local gravitational field cannot be shielded and can mimic perfectly the

effect of gravitational waves

These fluctuations can be generated by the motion of large masses, or by density variations.

This noise is often called Newtonian noise.

Seismic waves can rise the surface of the Earth increasing the mass surrounding a mirror and

introducing a force.

This effect can be reduced by having ground completely surrounding the mirror, that is operating

underground

Density variations can be found in the atmosphere, due to wind, humidity and rain

One finds also density variation in the propagation of longitudinal seismic waves

Research is going on to understand how, by monitoring the ground or air motion, the effect of local

gravity fluctuations can be predicted and therefore subtracted. It is expected that arrays of

hundreds of seismic sensors are necessary.
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Main noise sources
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Noise budget in commissining phase
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Consider a Michelson interferometer with incident light power Pin, and detected power Pout .

Consider a phase difference between arms

∆ϕ = π + α+ φOG

π + α is to be chosen

α = 0 means destructive interference in transmission, it is usually said that the interferometer is

”on the dark fringe”.

φOG is the phase change from the gravitational wave.

One has:

Pout = Pin sin2
(

α+ φOG

2

)

For φOG ≪ 1:

Pout = Pin

(

sin2
α

2
+

1

2
φOG sinα

)
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The interferometer sensitivity is:

dPout

dφOG
= Pin sin

(

α+ φOG

2

)

cos

(

α+ φOG

2

)

= sin (α+ φOG),

which is maximum for α = π/2.

The instrument is at half fringe: Pout = P ¯out = Pin/2.

Note: this is the usual instrument sensitivity, that is the variation of the output for a given input

variation. No reference is made to noise. In the GW community, the word sensitivity is used

differently: it is the noise curve including the detector response.
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One needs to know how Pout fluctuates due to photon counting to compute the precision.

If one counts on average N pulses per second that are Poisson distributed (Poisson process), the

noise spectrum over positive and negative frequencies is

Sγ(ω) = 2πN2δ(ω) +N.

Leaving aside the DC term δ(ω), one has that the variance per Hz is N .

Counting pulses for one second gives a 1 Hz resolution and the Poisson statistics has variance N .

The fluctuation in Pout is

σPout
=

√

ηN =

√

ηPin

hν

(

sin2
α

2
+

1

2
φOG sinα

)

η is the quantum efficiency of the photon detector.

In absence of signal

σPout
=

√

ηPin

hν

∣

∣

∣sin
α

2

∣

∣

∣
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The signal-to noise ratio in a 1 Hz band, that is for 1 s measurement time is:

SNR =

√

ηPin

2hν

∣

∣

∣cos
α

2

∣

∣

∣φOG

which is maximum per α = 0. It is more convenient to work on the dark fringe.

GW community defines sensitivity as the signal level that has the same spectral amplitude of the

detector noise or SNR = 1.

The phase sensitivity is

φmin
OG =

√

2
hν

ηPin

over 1 second.



Measurement noise V

Gravitational

waves

Signal and noise

Position noise

Measurement

noise

• Optical scheme

• Measurement

noise

• Fabry-Perot

cavities

• Power recycling

• Standard

quantum limit

Null instrument

Summary

46 / 63

As a case study consider infrared light with λ = 1064nm, an incident power of 10 W and an

ideal detector: η = 1).

The resulting phase noise is

φmin
OG ∼

√

2hν

ηPin
= 2.0× 10−10 radHz−1/2

For a wave arriving perpendicularly to the interferometer plane with + polarization,

φOG =
2π

λ
2L

h

2
× 2.

One has

hmin =
λ

4πL

√

2hν

ηPin

This is as expected a spectral density in Hz−1/2.

Here are two cases

L hmin Hz−1/2

Michelson da tavolo 1 m 1.6× 10−17

Virgo 3 km 5.3× 10−21

off by several orders of

magnitude.
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Increasing the optical path allows to increase the observed effect of the gravitational wave.

The simplest way is to have multiple reflections, building a delay line.

However if too many reflections are required mirrors have to be large and light diffused at the

reflection point may contaminate the other beams changing in an uncontrolled way the output

phase.

The largest interferometers use Fabry-Perot resonant cavities, made by a semitransparent mirror

at the input and an essentially totally reflective mirror at the end.

This is a device frequently used when one has to have precise wavelength measurements.

Here it will be used for its phase response to length variations.

Consider the incoming and outgoing electric fields Ein e Eout at the input mirror, and those

inside the cavity E1, E2, E3 e E4.

Here are the relations between the various fields

E1 = t1Ein + jr1E4

E2 = exp [jkL]E1

E3 = jr2E2

E4 = exp [jkl]E3

Eout = jr1Ein + t1E4

Ein

Eout

E1 E2

E3E4

With transmission phase change equal to pi/2 (dielectric materials).
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Solving for E1

E1 =
t1

1 + r1r2 exp [2jkl]
Ein

which is maximum for 2kL = π giving

E1 =
t1

1− r1r2
Ein

Power at resonance is

P1 =
ǫ0c

2
|E1|2 =

(

t1

1− r1r2

)2

Pin

e in generale

P1 =

(

t1

1− r1r2

)2 Pin

1 + 4F2

π2
sin2 [x/2]

where x is the deviation from resonance expressed in radians and F defines the finesse of the

cavity

F =
π
√
r1r2

1− r1r2
The various resonances are at

νn =

(

n+
1

2

)

c

2L
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The separation between resonances is called free spectral range (FSR).

For a 3 km cavity FSR = 50 kHz.

The reflected field Eout is:

Eout = jr1Ein + jr2t1 exp [j2kL]E1 = jREin

with

R =
r1 + (1− p1)r2 exp [j2kL]

1 + r1r2 exp [j2kL]

p1 is the absorption in the cavity, usually very small.

The sensitivity to the phase variation is

dΦ

δL
=

8F
λ

for not too high F and low absorption.

However this doesn’t correspond to the maximum precision, because this corresponds to

maximum absorption and therefore little light available for detection.

More complex detection schemes allow to work around this, however one reduces the precision

by a factor of 2.
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The phase difference between two cavities leads to the level

hmin =
λ

8FL
2

√

hν

ηPin

√

1 +
4F2

π2
sin2

(

ΩL

c

)

to be compared with the Michelson case

hmin =
λ

2πL

√

hν

ηPin

At low frequency Ω ≪ c/L the sensitivity gain is

2F
π

Forr F = 450 the gain is 286, bringing the sensitivity of Advanced Virgo to

1.9× 10−23 Hz−1/2.
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By increasing the laser power sensitivity can be improved.

However it is possibile to recycle the light coming from the input port of the interferometer, which is

intense since we are have a dark fringe at the output port

By positioning another semitransparent mirror before the beam splitter one creates a resonant

cavity having the full Michelson with Fabry-Perot arms reflecting light with some phase.

By positioning the recycling mirror one can build another ”Fabry-Peor” cavity in which light power

can build up.

The total absorption in the optical system will ultimately limit to the available circulating power

Recycling gains C = 30− 50 are achieve.

La sensibilità risultante con questi dati è data da

hmin =
λ

4FL

√

hν

ηCPin

√

1 +
4F2

π2
sin2

(

ΩL

c

)
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Fluctuations in the radiation pressure introduce position variations that increase with intensity

On the other hand a high circulating power is required to achieve high sensitivity.

Reflected photons introduce a momentum change of the mirror Mm∆v = 2hν
For an incident power on the mirror Pin, the number of photons per second is

Nγ =
Pin

hν
which is equal to its variance (Poisson distribution) in one second

The variance of the acceleration of the mirror is

var(F ) =

(

2hν

Mm

)2 Pin

hν
=

4Pinhν

M2
m

resulting in a position noise spectrum

Sx(f) =
4Pinhν

16π4M2
mf4

which is frequency dependent.

On the other hand shot noise leads to a position measurement error spectrum

Sxs =
c2

8π2

hν

Pin

which is frequency independent.
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Varying Pin, there is an envelope that sets a lower noise limit

Quantum noise curves for

several values of Pin and the Standard Quantum Limit (M. Bloom Thesis)
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The Pound-Drever-Hall technique is used in gw interferometers to interrogate resonant cavities

through phase shifts rather that through the intensity, which is quadratic in the field.

La derivative

dI

dφ

can be obtained through the Pound-Drever-Hall technique

This was used to stabilize a laser in frequency against a reference Fabry-Perot cavity

R. V. Pound, Electronic Frequency Stabilization of Microwave Oscillators, Rev. Sci. Instrum. 17

(1946) 490-505

R. W. P. Drever et al., Laser phase and frequency stabilization using an optical resonator, Appl.

Phys. B: Photophys. Laser Chem. 31 (1983) 97-105

Eric D. Black, An introduction to Pound-Drever-Hall laser frequency stabilization, Am. J. Phys. 69

(2001) 79-87
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The reflection coefficient is a function of frequency

F (ω) =
Eout

Ein
=

r
(

exp[iω/∆νfsr]− 1
)

1− r2 exp[iω/∆νfsr]

with ∆νfsr = c/2L FSR.

By modulating in phase the laser

Ein = E0 exp[jωt+ β sinΩt]

≃ E0{J0(β) exp[jωt] + J1(β) exp[j(ω +Ω)t] + J1(β) exp[j(ω − Ω)t]}
These are three beams superimposed of different frequency. The central beam (carrier) resonates

in the cavity while the other two are reflected immediately

There is an interference between these beams generating an intensity modulation of the light at Ω
(e also 2 Ω, ...)

The error signal is obtained as the sidebands contain the instantaneous laser frequency while the

carrier resonates at the cavity frequency.
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s(t)

c(t)

+

-
A

e(t)

+

measuring
device

Balance scale: deviation and zeroing of ∆ϕ. Equivalent system.

Keeping the instrument in a fixed state reduces systematic errorss

Around an equilibrium position these dependencies will be quadratic.
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For a simple case the state of the system, that is the error signal e(t) is:

e(t) = s(t) + c(t)

where s(t) is the signal to be measured and c(t) the correction signal.

Here a linear system is assumed.

The closed loop equation is:

−Ae(t) + s(t) = e(t)

yielding

e(t) =
s(t)

A+ 1
, c(t) = − A

A+ 1
s(t).

For large A e(t) ≃ 0 while −c(t) measures s(t).
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The experiment of Roll, Krotkov and Dicke.

Feedback in measurement
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Applied General Relativity is subtle and effects are very small

It is about tracking geodetics, marking the shape of space time

Local effects must be shielded, masses should not move due to seism, thermal energy, gravity, ...

The most precise techniques are needed to perform the measurement: interferometry using an

ultrastable unit of length, making comparisons rather than absolute measurements, using

powerful optical techniques

Performing a null measurement to be always at the top of precision

All this has been shown to be possible

It is up to you to progress!
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