HOW DARK IS DARK? HOW TO UNVEIL THE HIDDEN NATURE OF DARK MATTER

NICOLAO FORNENGO

Department of Physics, University of Torino and Istituto Nazionale di Fisica Nucleare (INFN) – Torino Italy

fornengo@to.infn.it nicolao.fornengo@unito.it

www.to.infn.it/~fornengo www.astroparticle.to.infn.it

International School of Physics "Enrico Fermi" Course 200 – Gravitational Waves and Cosmology Varenna, 12 July 2017 What's the problem?

How can we solve it?

Why can it have something to say about particles?

OK, ít's a dark matter: but how dark ís dark? Can we shed some líght on ít? (or: Can ít shed some líght to us?)

70% Dark Energy26% Dark Matter4% Nuclear Matter

Dynamics of galaxy clusters Rotational curves of galaxies Gravitational lensing Structure formation from primordial density fluctuations Energy density budget

Dark Matter

Dynamics of galaxy clusters Rotational curves of galaxies Gravitational lensing Structure formation from primordial density fluctuations Energy density budget

Dark Matter

Free Hydrogen and Helium:

GALAXY CLUSTER

ZWICKY (1933)

VELOCITY DISPERSION OF GALAXIES IN THE CLUSTER IS TOO LARGE: THE CLUSTER SHOULD "EVAPORATE"

MUCH MORE MASS THAN THE VISIBLE ONE IS NEEDED

GALAXY CLUSTER

GALAXIES 1% GAS 9% DARK MATTER 90%

Dynamics of galaxy clusters Rotational curves of galaxies Gravitational lensing Structure formation from primordial density fluctuations Energy density budget

Dark Matter

SPIRAL GALAXY

SPIRAL GALAXY

PERIFERIC STARS ARE FASTER V ~ 100KM/S THAN EXPECTED FASTER = MORE MASS

$$v(r) = \sqrt{M(r)/r}$$

MUCH MORE MASS THAN LUMINOUS MASS DARK MATTER

V~ 100KM/S

100km/s

SPIRAL GALAXY

Rubin (1970)

PERIFERIC STARS ARE FASTER THAN EXPECTED FASTER = MORE MASS

MUCH MORE MASS THAN LUMINOUS MASS DARK MATTER

Dark Matter

Dynamics of galaxy clusters Rotational curves of galaxies Gravitational lensing Structure formation from primordial density fluctuations Energy density budget

Thin lens: distances involved are much larger than the size of the lens

Galaxy Cluster Abell 2218

HST • WFPC2

GRAVITATIONAL LENSING

A LARGE AMOUNT OF MASS BETWEEN THE BACKGROUND GALAXIES AND US CAN BE INFERRED BY THE LENSING EFFECT

STRONG LENSING

WEAK LENSING

GRAVITATIONAL LENSING

A LARGE AMOUNT OF MASS BETWEEN THE BACKGROUND GALAXIES AND US CAN BE INFERRED BY THE LENSING EFFECT

Real Universe

Dynamics of galaxy clusters Rotational curves of galaxies Gravitational lensing Structure formation from primordial density fluctuations Energy density budget

DM needs to be (mainly) cold and (mainly) non-collisional

Structures in LCDM

Illustris simulation

Símulated Universe

Dynamics of galaxy clusters Rotational curves of galaxies Gravitational lensing Structure formation from primordial density fluctuations Energy density budget

Non-baryonic (cold) dark matter is needed No candidate in the Standard Model^(*) New fundamental Physics

(*) Standard neutrino: Too light: act as HDM (not CDM) **Solutions not involving new particles** The DM issue is not a problem of particles, but of gravity MOND Gravity beyond General Relativity

Primordial black holes might solve the DM problem They do not count as baryonic matter Currently under debate

FL:femtolensing of GRBNS:neutron star catpureWD:white dwarf explosionHSC:microlensing from SubaruK:microlensing from KeplerEROS:microlensing from EROSMACHO:microlensing from MACHO

Two fundamental questions - Identify the particle candidate - Identify a non-gravitational signal, manifestation of its particle nature

If a particle, where it does come from?

Produced, through some mechanism, in the early Universe The early Universe is a plasma:

Elastic processes kinetic equilibrium Reshuffle particles energies and momenta

Inelastic processes chemical equilibrium Create or destroy particles in the plasma

Detailed evolution of the particle

The detailed evolution of each species in the fluid is governed by the Boltzmann equation:

$$L[f_i] = C[f_i; f_j, f_k, ...] \qquad L[f_i] = \frac{df_i}{d\lambda}$$

Liouville operator Collision operator

.1*L*

For the Friedmann Universe (homogeneous + isotropic)

$$L[f_i] = E \frac{\partial f_i}{\partial t} - \frac{\dot{a}}{a} |\vec{p}|^2 \frac{\partial f_i}{\partial E}$$

The collision operator contains the detailed information on all possible interactions of the *i* species with all other species in the plasma

$$C[f_i; f_j, f_k, \ldots] = C_{\text{elastic}}[f_i; f_j, f_k, \ldots] + C_{\text{inelastic}}[f_i; f_j, f_k, \ldots]$$

Collision operator

 $C[f_i; f_j, f_k, \ldots] = C_{\text{elastic}}[f_i; f_j, f_k, \ldots] + C_{\text{inelastic}}[f_i; f_j, f_k, \ldots]$

Inelastic processe: do modify the number density $n_i(T)$

Particles in equilibrium the plasma

Relativistic $\langle E \rangle_i \sim T \gg m_t$ $n_i \sim T^3$

Non relativistic $\langle E \rangle_i \sim m_i \gg T$ $n_i \sim \exp\left(-m/T\right)$

But they cannot stay in equilibrium forever: it's a matter of rates

$$\Gamma_i = \sum_{j=\text{other}} n_j \langle \sigma v \rangle_{ij}$$

H

Boltzmann eq. for the number density

After integration over momenta (and some mathematical manipulation) a Boltzmann eq. for the number density can be cast in the form:

a

Abundance evolution for a cold relic

The WIMP "miracle"

WIMP: Weakly Interacting Massive Particle

$$\begin{array}{l} m_{\chi} \sim ({\rm GeV} \div {\rm TeV}) \\ \langle \sigma_{\rm ann} v \rangle \sim (\xi G_F)^2 \; m_{\rm DM}^2 \qquad \sim 10^{-10} \xi^2 \left(\frac{m}{{\rm GeV}}\right)^2 \; {\rm GeV}^{-2} \\ & \text{weak type} \end{array}$$

$$\begin{aligned} \langle \sigma_{\rm ann} v \rangle &\sim \frac{10^{-10}}{(\Omega h^2)_{\rm CDM}} \sim 10^{-9} \ {\rm GeV}^{-2} \\ \\ \text{naturally} & \qquad \frac{\Omega_{\chi} h^2 \sim 0.1}{x_f \sim (10 \div 30)} \end{aligned}$$

m _{DM} (GeV)	ξ
1	4
10	0.4
100	0.04
1000	0.004

In more details

In more details

Summarizing

Dependencies

Dependencies

Additional features Poles (Z, H, others) Coannihilations Sommerfeld enhancements

 $m_{\rm DM} \sim m_Z/2 , m_H/2$ $m_{\rm DM} \sim m_{\rm sligthly heavier state}$ líght medíator

The WIMP "miracle"

Loosely speaking a particle with:

- Mass: sligthely sub-GeV to multi-TeV
- Interactions: weak type

can succesfully explain the observed abundance (and structure) of dark matter in the Universe

Succesfull "thermal" DM candidate

- Needs to be produced in the early Universe
- Needs to be "<u>cold</u>" (or, at least, "warm" enough)
 For thermal production: weakly interacting and massive (WIMP)

$$\Omega h^2 \sim \langle \sigma v \rangle_{\rm ann}^{-1} \longrightarrow \langle \sigma v \rangle_{\rm ann} = 3 \cdot 10^{-26} {\rm cm}^3 {\rm s}^{-1}$$

unless coannihilation occurs

- If light, it nevertheless needs to act as "cold"
- Needs to be <u>neutral</u>
- Needs to be <u>stable</u> (or, if it decays, it needs a lifetime larger than the age of the Universe)

Alternative mechanisms

The standard paradigm for WIMP CDM is a thermal symmetric relic (i.e. particle and antiparticles have the same number density)

Partial thermaliztion

- Freeze-in, E-WIMP, FIMPs

Asymmetry between particle/antiparticle

- The relic abundance is set by the asymmetry, not thermal freeze-out
- This may link DM abundance to baryon asymmetry

Non-thermal production

- DM produced by the decay of a heavier particle
 Peculiar cosmological dynamics (e.g.: misalignment for axions)
- Oscillations from "friendly" states (e.g. sterile neutrinos)

Freeze-in mechanism

Asymmetric DM

Asymmetry can aríse because of:

- Initial conditions (quite fine tuned)

- Sakharov conditions (like for baryo/lepto genesis; maybe related to them)

Asymmetric DM

$$\begin{split} n_{\chi} \neq n_{\bar{\chi}} & \Omega h^2 \sim |n_{\chi} - n_{\bar{\chi}}| \, m_{\chi} \\ \\ \text{Example:} & \frac{\Omega_{\chi}}{\Omega_b} \sim 5 \\ & |n_{\chi} - n_{\bar{\chi}}| \, \sim (n_b - n_{\bar{b}}) \, \sim n_b \quad \text{(baryon asymmetry)} \\ & \frac{\Omega_{\chi}}{\Omega_b} \, = \, \frac{|n_{\chi} - n_{\bar{\chi}}|m_{\chi}}{n_b m_N} \, \sim \, k \frac{m_{\chi}}{m_N} \, \underset{\text{link (DM,B) needed}}{\text{model dependent}} \end{split}$$

If
$$k \sim 1$$
: $m_X \sim 5 m_N \sim 5 \text{ GeV}$

Asymmetry may occur also without a link between DM and B

$N \rightarrow X + (...)$ N heavier that X

Example: N can reach thermal equilibrium Then freezes-out an abundance Then decays out of equilibrium

$$n_N \longrightarrow n_\chi$$
$$\rho_\chi = m_\chi n_\chi = m_\chi \frac{\rho_N}{m_N}$$

$$\Omega_{\chi} = \frac{m_{\chi}}{m_N} \Omega_N \qquad (\text{depends on } <\sigma_N v>)$$

From oscillations

 v_{S} sterile neutrino

Needs to be very weakly mixed

 $\sin^2(2\theta) \sim 10^{-11} - 10^{-12}$ m_{vs} ~ 10 KeV

Formation of BE condensates

A multiple approach

- Astrophysical signals
 - Tests DM as particle in its environment
 - Sígnals are not produced under our own dírect control
 - Complex backgrounds
 - Multimessenger, multiwavelength, multitechnique strategy
- Accelerator / Lab sígnals
 - Produce New Physics states and help in shaping the underlying model
 - Allows (hopefully) to identify the physical properties of the DM sector - Controlled environment

One does not fit all ... profit of all opportunities

Mechanisms of DM signal production

Annihilation (or decay)

Scattering with ordinary matter

Production at accelerators

Mechanisms of DM signal production

Signals occur in astrophysical context Directly test DM the particle-physics nature of DM

Signal produced in accelerators

Directly tests New Physics: compatibility with DM needs to be cross-checked with cosmology adn astrophysics

SUSY extension of the Standard Model

		SUPER	SYMMETRY:	FER	$\mathrm{MION} \longleftrightarrow$	Boson
Normal particles/fields		Supersymmetric partners Interaction eigenstates Mass eigenstates				
Symbol	Name	Symbol	Name		Symbol	Name
q = d, c, b, u, s, t	quark	$ ilde q_L, ilde q_R$	squark		$ ilde q_1, ilde q_2$	squark
$l=e,\mu, au$	lepton	$ ilde{l}_L, ilde{l}_R$	$_{\rm slepton}$		$ ilde{l}_1, ilde{l}_2$	slepton
$ u = u_e, u_\mu, u_ au$	neutrino	$ ilde{ u}$	$\operatorname{sneutrino}$		$\tilde{ u}$	sneutrino
g	gluon	$ ilde{g}$	gluino		$ ilde{g}$	gluino
W^{\pm}	W-boson	$ ilde W^{\pm}$	wino			
H^{-}	Higgs boson	\tilde{H}_1^-	higgsino	}	$\tilde{\chi}_{1,2}^{\pm}$	chargino
H^+	Higgs boson	\tilde{H}_2^+	higgsino	J		
В	<i>B</i> -field	\tilde{B}	bino)		
W^3 .	W^3 -field	$ ilde W^3$	wino			
H_1^0 scalar	Higgs boson	$\tilde{r}t0$	1	>	$ ilde{\chi}^{0}_{1,2,3,4}$	neutralino
H_2^{0} scalar	Higgs boson	H_1^0	higgsino			
$H_3^{ ilde{0}}$ pseudoscalar	Higgs boson	H_{2}^{0}	higgsino)		

2 Higgs doublets
$$H_1 = \begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix} \qquad H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix}$$

 $h \\ H \\ A$

Extra dimensions (Kaluza Klein theories)

Further models and candidates

Models with additional scalars

[GeV-TeV, WIMP]

Singlet Doublet (e.g.: 2 higgs doublet model) Triplet

Models based on extended symmetries [GeV-TeV, WIMP] GUT inspired Discrete symmetries

Mírror dark matter

Sterile neutrinos

[keV, non WIMP, warm]

Axíon

[µeV, non WIMP, cold]

ALP (axion-like-particles, light scalars) [> 10⁻²² eV, non WIMP, cold (BE condensate)]

- Axions arise as a dynamical way to solve the strong-CP problem
- Being particles, they can have a cosmological role
- They can be:
 - -Thermally produced: hot dark matter -Non-thermally produced: born as nonrelativistic, classical field oscillations - very small mass, yet cold dark matter

Relic abundance curves

Axion Properties

Gluon coupling (generic)	$L_{aG} = \frac{\alpha_s}{8\pi f_a} G\tilde{G}a \qquad \qquad a f_{max} G$
Mass (generíc)	$m_a = \frac{\sqrt{m_u m_d}}{m_u + m_d} \frac{m_\pi}{f_\pi f_a} \approx \frac{6 \mu\text{eV}}{f_a/10^{12}\text{GeV}}$
Photon coupling	$L_{a\gamma} = -\frac{g_{a\gamma}}{4} F\tilde{F}a = g_{a\gamma} \mathbf{E} \cdot \mathbf{B} a$ $g_{a\gamma} = \frac{\alpha^{4}}{2\pi f_{a}} \left(\frac{E}{N} - 1.92\right) \qquad \qquad \Rightarrow \mathbf{E} \cdot \mathbf{B} a$
Píon coupling	$L_{a\pi} = \frac{C_{a\pi}}{f_{\pi}f_{a}} \left(\pi^{0}\pi^{+}\partial_{\mu}\pi^{-} + \cdots\right)\partial^{\mu}a \qquad \pi \qquad \pi \qquad a$
Nucleon coupling (axial vector)	$L_{aN} = \frac{C_N}{2f_a} \overline{\Psi}_N \gamma^\mu \gamma_5 \Psi_N \partial_\mu a \qquad \qquad a \bigvee_N^N$
Electron coupling (optional)	$L_{ae} = \frac{C_e}{2f_a} \overline{\Psi}_e \gamma^\mu \gamma_5 \Psi_e \partial_\mu a \qquad \qquad a = \underbrace{}_e^e$

Axions and ALPs

Techniques: Shine through wall (ALPS, OSQAR) Helioscopes (CAST, IAXO) Haloscopes (ADMX) Magnetic resonance (CASPEr)

QUAX: high-frequency magnetometer axion-electron coupling

What's dark matter?

"I can't tell you what's in the dark matter sandwich. No one knows what's in the dark matter sandwich." Try to produce the DM particle in a controlled environment

> Low-E accelerators: for lighter states Beam dumps, others: for axions, ALPs

High-E accelerators: for WIMPs (GeV-TeV)

WIMPs at accelerators

Focus now is on the LHC runs

Non-WIMPs at accelerators

- Light DM at the MeV-GeV scale:
 - Dírac or Majorana fermíonsScalars o pseudoscalars

 - Asymmetric LDM
 - Dark photons
- Medíators:
 - Vector portal
 - Híggs portal
 - Neutríno portal
 - Axion portal
- Search of visible decays (ete-), and studies for accessing invisible decays
- Rich experimental program:
 - Hadronic beams
 - Electron beams
 - Meson decays

Look at the DM particle where DM is ...

Where to search for a signal ...

We can exploit every structure where DM is present ...

- Our Galaxy
 Smooth component
 Subhalos
- Satellite galaxies (dwarfs)
- Galaxy clusters
 - Smooth component
 Individual galaxies
 Galaxies subhalos
- "Cosmíc web"

DM as a particle might ...

Interact with ordinary matter Direct detection

Produce effects in astrophysical environments, like in stars

"A piece of dark matter appeared from nowhere and... you know."

Direct detection signal

Typical process for WIMP DM $\chi + \mathcal{N}(A_{\mathcal{N}}, Z_{\mathcal{N}})_{\text{at rest}} \rightarrow \chi + \mathcal{N}(A_{\mathcal{N}}, Z_{\mathcal{N}})_{\text{recoil}}$

Recoil rate

$$\frac{dR}{dE_R} = \frac{\xi_{\mathcal{N}}}{m_{\mathcal{N}}} \frac{\rho_{\odot}}{m_{\chi}} \int_{v_{\min}(E_R)}^{v_{esc}} d^3v \, v \, f_E(\vec{v}) \frac{d\sigma_{\mathcal{N}}}{dE_R}(v, E_R)$$

For non-WIMP (kev, MeV) DM: interaction on electrons

Underground Labs

LNGS - Gran Sasso Lab (INFN)

Typical signatures of direct detection

Stationary over the lifetime of an experiment **Directional boost**

Directionality

Period: 1 year Annual modulation

Period: 1 day Diurnal modulation

Annual modulation

DAMA, 9.20 with 1.33 ton x yr, 15 cycles

Model Independent Annual Modulation Result DAMA/Nal + DAMA/LIBRA-phase1 Total exposure: 487526 kg×day = 1.33 ton×yr

No systematics or side reaction able to account for the measured modulation amplitude and to satisfy all the peculiarities of the signature

The data favor the presence of a modulated behaviour with all the proper features for DM particles in the galactic halo at more than 9σ C.L.

From Belli's talk at TAUP 2015, http://taup2015.to.infn.it

Apríle et al (XENON IT Collab), 1705.06655
Low WIMP mass

Angloher et al (CRESST), EPJC 76 (2016) 25

Agnese et al (SuperCDMS) PRL 116 (2016) 071301

Contact-type scalar interactions (O_1)

DM as a particle might ...

Self annihilate or decay

Send us messengers (indirect detection)

Exotic injections that can alter properties of messengers (e.g. CMB: SZ, reionization; gammarays absorption)

Messengers

Charged CR (e^{\pm} , antip, antiD) Neutrínos Photons -Gamma-rays Prompt production
IC from e[±] on ISRF and CMB -X-rays - IC from e[±] on ISRF and CMB -Radio -Synchro from e[±] on mag. field

 $\chi \chi \longrightarrow (\bar{l}l, \bar{q}q, ZZ, W^+W^-, GG, HH)^{had}_{dec} \longrightarrow \gamma, \nu, e^{\pm}, \bar{p}, \bar{D}$

Galactic environment

Diffusion on magnetic inhomogeneities

Transport equation

Diffusion [K] Convection [V] Adiabatic losses (in expanding plasma)

Catastrophic losses (for nuclei) elastic : N + ISM -> N + ISM inelastic : N + ISM -< X + (...)

Energy losses [b] e+/e-: synchrotron inverse Compton brems (free-free) ionization, Coulomb Nuclei: ionization, Coulomb Diffusion in momentum space (reacceleration) [K]

Primary source

Secondary sources

$$+ \left[-\vec{\nabla} \cdot \left(K(E, \vec{r}) \vec{\nabla} \right) + \vec{\nabla} \cdot \vec{V}(\vec{r}) \right) \right] N_j$$

 $+ (\Gamma_{\rm rad} + \Gamma_{\rm inel}) N_j$

 ∂N_j

 ∂t

$$+\frac{\partial}{\partial E}\left(b_j(E)N_j - K_j(E)\frac{\partial N_j}{\partial E}\right)$$

$$Q_j(E, \vec{r})$$

$$\sum_{m_i > m_j} \Gamma_{i \to j} N_i$$

Time scales

Dominant effects

Nuclei escape from the Galaxy Leptons loose their energy

Local origin

Low energy radioactive nuclei High energy electrons and positrons

Extra-galactic environment

EXTRAGALACTIC SIGNALS

Photons: gamma, X, radio Neutrinos

Sunyaev-Zeldovich effect on CMB Optical depth of the Universe

CHARGED COSMIC RAYS SIGNALS

Antímatter << Matter

Better to search for the DM signal in the antimatter channel

Energies and rates of the cosmic-ray particles

Affected by solar wind

E < 30 GeV

Affected by Earth magnetic field

Geomagnetic cutoff: $R_C = 15 \cos^4(\text{lat}) \text{ GV}$

Vertical Geomognetic Cutoff Rigidity: IGRF 1986

Cosmic antiprotons

Secondaries (background)

$p_{\rm CR} + p_{\rm ISM}$	\longrightarrow	\overline{p}
$p_{\rm CR} + He_{\rm ISM}$	\longrightarrow	\bar{p}
$He_{\rm CR} + p_{\rm ISM}$	\longrightarrow	\bar{p}

Produced in the disk

Propagation and energy redistribution in the diffusive halo

DM signal

$$\chi\chi \longrightarrow (...) \longrightarrow p\bar{p}$$

Produced in the DM halo

Propagation and energy redistribution in the diffusive halo

$$q^{\rm DM}(r, z, E) = \langle \sigma v \rangle g(E) \left(\frac{\rho_{\chi}(r, z)}{m_{\chi}}\right)^2$$
$$g(E) = \sum_{\mathcal{F}} BR(\chi \chi \to \mathcal{F}) \left(\frac{dN}{dE}\right)_{\mathcal{F}}$$

Antiprotons bounds on DM

(*) Donato, Maurín, Brun, Delahaye, Salatí, PRL 102 (2009) 071301 (+) Adrianí et al. (PAMELA Collab.), PRL 105 (2010) 121101

NF, Maccione, Vittino, JCAP 09 (2013) 031

Caveat: the bounds are reported (as is usual) under the hypothesis that the DM candidate is the dominant DM component, regardless of its thermal properties in the early Universe

Cosmic antideuterons

Donato, Fornengo, Salatí, PRD 62 (2000) 043003

Propagation and energy redistribution in the diffusive halo

Detection prospects

Events expected

For GAPS LDB+ setup

For GAPS LDB+ setup

DM configurations allowed by antiproton bounds

NF, Maccione, Vittino, JCAP 1309 (2013) 031

Cosmic-rays leptons

• Excellent data on cosmíc-rays leptons are available from spaceborne detectors, from about up 0.5 GeV to few hundreds of GeV

10²

10

e[±] energy [GeV]

PAMELA Collab, Nature 458 (2009) 607 [arXiv:0810.4995] PAMELA Collab, PRL 111 (2013) 081102 [arXiv:1308.0133] PAMELA Collab, PRL 106 (2011) 201101 [arXiv:1103.2880] Fermi LAT Collab, PRL 108 (2012) 011103 [arXiv:1109.0521] Fermi LAT Collab, PRD 82 (2010) 09004 [arXiv:1008.3999] AMS-02 Collab, PRL 110 (2013) 141102 AMS-02 Collab, 33rd ICRC Conference (2013) AMS-02 Collab, 33rd ICRC Conference (2013)

Full set of data

Bounds on DM

Dí Mauro, Donato, NF, Vittino, JCAP 1605 (2016) 031

GAMMA RAY SIGNAL

Galactic foreground emission Resolved sources Diffuse Gamma Rays Backgound (DGRB)

Ackerman et al. (Fermí Collab.) Ap. J. 799 (2015) 86

DGRB Intensity

Fornasa, Sanchez-Conde, Phys. Rep. 598 (2015) 1

Gamma-ray flux from galactic DM

Flux:

L.o.S. integral:

$$\Phi_{\gamma}^{\text{DM}}(E_{\gamma},\psi) = \frac{1}{4\pi} \frac{\langle \sigma_{\text{ann}} v \rangle_{0}}{2m_{\chi}^{2}} g_{\gamma}(E_{\gamma}) I(\psi)$$
$$I(\psi) = \int_{\text{l.o.s.}} \rho^{2}(r(\lambda,\psi)) d\lambda$$
$$\rho(\vec{r}) = \rho_{\text{halo}}(\vec{r}) + \sum_{i} \rho_{\text{sub}}(\vec{r}_{s})_{\vec{r}}$$

... and from extra galactic DM

$$\begin{aligned} \text{Host halo} \quad \mathcal{L}_{a}^{hh}(E,z,M) &= E \, \frac{(\sigma_{a}v)}{2\,M_{\chi}^{2}} \int_{0}^{R_{v}} d^{3}r \frac{d\tilde{N}_{i}}{dE} \left[(1-f) \,\rho(M,r,z) \right]^{2} \\ \text{Sub halo} \quad \mathcal{L}_{a}^{sh}(E,z,M) &= E \, \frac{(\sigma_{a}v)}{2\,M_{\chi}^{2}} \int_{M_{cut}^{s}}^{M} dM_{s} \frac{dn_{s}}{dM_{s}} (M_{s},f,M) \int_{0}^{R_{v}} d^{3}r_{s} \frac{d\tilde{N}_{i}}{dE} \,\rho_{s}^{2}(M_{s},r_{s},z) \\ \text{Mass function} \\ \int dM_{s} \, (dn_{s}/dM_{s}) \, M_{s} &= fM \end{aligned}$$

DGRB and Dark Matter

The Good: Spectral behaviour different from astro sources: (o,m, channel) The Bad: Can be quite subdominant in intensity

DGRB intensity bounds on DM

Fornasa, Sanchez-Conde, Phys. Rep. 598 (2015) 1

Galactic center: an "excess" ?

DM interpretation

Calore et al, PRD 91 (2015) 063003
Alternative approaches?

- Indirect detection signals are intrinsically anisotropic (being produced by DM structures, present at any scale)
- EM signals (and neutrinos) more directly trace the underlying DM distribution: they need to exhibit some level of anisotropy

 - "Bright" DM objects: would appear as *resolved* sources
 e.g: gamma or radio halo around clusters, dwarf galaxies or even subhalos
 - Faint DM objects: would be *unresolved* (i.e. below detector sensitivity) Diffuse flux: at first level isotropic at a deeper level anisotropic

Alternative approaches?

Extra galactic emission Higher redshift

Emission is intrisically anisotropic

Extra galactic emission Lower redshift

Anisotropic emission

Even though sources are too dim to be individually resolved, they can affect the <u>statistics of photons</u> across the sky

Currently under study

Photon statistics

Photon pixel counts (1 point PDF)

2 point correlator angular power spectrum

2 point correlator angular power spectrum

 $\langle I_i(\vec{n}_1)I_j(\vec{n}_2)\rangle \longrightarrow C_{ij}(\theta) \longrightarrow C_l^{ij}$

NEUTRINOS

and neutrinos from the Galaxy

Neutrinos from Earth and Sun

• Capture:

 Galactic DM particles that cross the Earth and the Sun, can interact with the nuclei in these bodies and loose enough energy to remain gravitationally captured

$$C = \sum_{i} \left(\frac{8}{3\pi}\right)^{1/2} \left[\sigma_{i} \frac{\rho_{\chi}}{m_{\chi}} \bar{v}\right] \left[\frac{M_{i}}{m_{i}}\right] \left[\frac{3v_{esc}^{2}}{2\bar{v}^{2}} \langle \phi \rangle_{i}\right] \xi(\infty) S_{i}$$

• Accumulation:

- After subsequent interactions they tend to drop into the innermost parts of the Earth and the Sun, where they accumulate

• Annihilation:

- When the energy density in the inner parts of the Earth and the Sun increases enough, they may start to annihilate

$$\Gamma_A = \frac{C}{2} \tanh^2 \left(\frac{t_0}{\tau_A}\right) \longrightarrow \frac{dN_{\nu}}{dE_{\nu}} = \frac{\Gamma_A}{4\pi R^2} \sum_{\mathcal{F}} BR(\chi\chi \to \mathcal{F}) \frac{dN_{\nu}^{\mathcal{F}}}{dE_{\nu}}$$

Super Kamiokande

ANTARES

Bounds on capture cross section

Warning: bounds are typically derived under the assumption of perfect equilibration between capture and annihilation (and contact interactions)

Bounds on annihilation cross section

ANTARES Collab, JCAP 1510 (2015) 068

Km3NET

The Particle Dark Matter Crossroad

PARTICLE PHYSICS

Particle Candidate: Models of New Physics (Superymmetry, Extra-dimensions, ...) Accelerator Searches

COSMOLOGY

ASTROPHYSICS

Cosmology of the Dark Matter Particle

Astrophysical Signals of the Dark Matter Particle

