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GR: Gravity as Geometry

LIGO-G1701235-v1 Sutton GR and GWs



Geometry = measuring distances

Pythagoras’s formula: the line element of flat space.

ds2 = dx2 + dy2 + dz2

= (dx dy dz)

 1 0 0
0 1 0
0 0 1

 dx
dy
dz

 (1)

Flat spacetime.

ds2 = −(c dt)2 + dx2 + dy2 + dz2

= (cdt dx dy dz)


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




cdt
dx
dy
dz

(2)

Note: Everyone uses units in which c = 1 (and G = 1).
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Minkowski spacetime

Types of spacetime interval:

ds2 > 0 → spacelike (A− C)

= 0 → null (light cones)

< 0 → timelike (A− B)

Key physical concept: proper time
along a worldline.

τ =

∫
dτ ≡

∫ √
−ds2 (3)

The proper time is the time elapsed
as measured by an observer moving
on that worldline.
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Curved spacetime

Switch from Cartesian to general coordinates
xα = (x0, x1, x2, x3) with line element

ds2 =
(

dx0 dx1 dx2 dx3
)

g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33




dx0

dx1

dx2

dx3

 (4)

The matrix gµν(xα) is called the metric. Properties:
symmetric: : gµν = gνµ

a function of position in spacetime: gµν = gµν(xα).
All information on the geometry of the spacetime is
contained in the metric.

The inverse matrix is denoted with raised indices:
gµν ≡ (gµν)−1.
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Coordinate transformations

There are no preferred coordinates in General Relativity.
Spacetime intervals ds2 are invariant under coordinate
transformations.
Exercise: Use the invariance of ds2 to show that under the
coordinate transformation xα → x ′α the metric transforms
as

g′αβ = gµν
∂xµ

∂x ′α
∂xν

∂x ′β
(5)

Exercise: Use eqn (5) to show that the line element of flat
spacetime in spherical coordinates is

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) (6)
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Examples

Schwarzschild spacetime: a non-rotating, uncharged black
hole of mass M

ds2 = −
(

1− 2M
r

)
dt2+

(
1− 2M

r

)−1

dr2+r2(dθ2+sin2 θdφ2)

(7)

Friedmann-Lemaitre-Robertson-Walker spacetime: a
homogeneous isotropic universe with scale factor a(t)

ds2 = −dt2 + a2(t)
[

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)

]
(8)
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Physical Consequences of Curved Spacetime

Hypothesis: freely falling test masses move along
worldlines of extremal proper time.

τ =

∫ √
−ds2 =

∫ √
−gµνdxµdxν (9)

Exercise: Show that the Euler-Lagrange equations
become this geodesic equation:

d2xα

dτ2 + Γαβγ
dxβ

dτ
dxγ

dτ
= 0 (10)

where the Christoffel symbols are

Γαβγ =
1
2

gαδ (∂βgγδ + ∂γgδβ − ∂δgβγ) (11)

and ∂α is short-hand for ∂/∂xα.
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Einstein Field Equations

The metric components gµν(xα) are determined by the
Einstein field equations,

Rµν −
1
2

gµνR + Λgµν = 8πTµν , (12)

where:
Tµν is the stress-energy-momentum tensor that describes
all of the matter and fields in the spacetime;
Λ is the cosmological constant;
Rµν and R are the Ricci tensor and Ricci scalar,

R = gµνRµν , Rµν = Rα
µαν ; (13)

Rµ
ναβ is the Riemann tensor:

Rµ
ναβ =

∂

∂xα
Γµ

νβ−
∂

∂xβ
Γµ

να+Γµ
λαΓλ

νβ−Γµ
λβΓλ

να . (14)
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Exercise: Show that in vacuum (Tµν = 0) the Einstein
equations reduce to

Rµν = 0 . (15)

The Einstein equations are a set of 10 coupled ,
non-linear , second-order , hyperbolic-elliptic partial
differential equations for the metric components gαβ.

There is no systematic way to solve such systems. Very
few analytic solutions exist. These correspond to situations
with a high degree of symmetry.

E.g.: The exact solution for the two-body problem is not
known.

Analytic solutions exist for the Einstein equation linearised
around flat spacetime; e.g., for spacetimes describing
weak static gravitational fields or weak gravitational waves.
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Linearised gravity

A weak gravitational field in GR is a spacetime for which
there exist global coordinates xα such that

gαβ = ηαβ + hαβ , |hαβ| � 1 (16)

where ηαβ = diag(−1,1,1,1) are the components of the
Minkowski metric. Thus, a weak gravitational field differs
only slightly from flat spacetime. The quantities hαβ are
perturbations or deviations of the metric away from flat
spacetime.
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A word about coordinate transformations:

It is always possible to find coordinates for which the above
decomposition is not valid—e.g., flat spacetime in
spherical polar coordinates does not satisfy (16), even
though the gravitational field is identically zero!

The set of coordinates xα in which (16) holds is not
unique. It is possible to make an infinitesimal coordinate
transformation xα → x ′α for which the decomposition with
respect to the new set of coordinates still holds.

We’ll often refer to these infinitesimal coordinate
transformations as gauge transformations.
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Note that for weak gravitational fields, one typically raises
and lowers indices with the background Minkowski metric
ηαβ and ηαβ, and not with gαβ and gαβ. For example,

hαβ ≡ ηαµhµβ , hαβ ≡ ηαµηβνhµν . (17)

The only exception is gαβ, which still denotes the inverse of
gαβ, not ηαµηβνgµν . To first order,

gαβ = ηαβ − hαβ . (18)
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Exercise: Show that to first order in hαβ the Riemann
tensor has components

Rαβµν =
1
2

(∂µ∂βhαν − ∂µ∂αhβν + ∂ν∂αhβµ − ∂ν∂βhαµ)

(19)

Exercise: Show that to first order in hαβ the Ricci tensor
has components:

Rαβ =
1
2

(−�hαβ + ∂αVβ + ∂βVα) (20)

where

� := ηαβ∂α∂β = − ∂2

∂t2 +∇2 (21)

is the D’Alembertian (or wave operator) and

Vα := ∂βhβα −
1
2
∂αhββ (22)
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Simplification: It is always possible to find a set of
coordinates for which

Vα := ∂βhβα −
1
2
∂αhββ = 0 (23)

This is sometimes called the Loren(t)z condition (in
analogy with the gauge condition in electromagnetism).

Importance: If Vα = 0 then the vacuum Einstein equation
for a weak gravitational field in this gauge is simply

�hαβ = 0 (24)

Thus, the metric perturbations satisfy the flat space wave
equation. The solutions can therefore be interpreted as
gravitational waves.
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Existence Proof for the Lorenz Gauge

Consider an infinitesimal coordinate transformation

x ′α := xα + ξα(x) (25)

where ξα are slowly varying functions: |∂αξβ| � 1.

To first-order, the transformation matrix from x ′α to xµ is
∂xµ

∂x ′α
= δµα −

∂ξµ

∂xα
(26)

Thus, to first order, the metric components transform as

g′αβ =
∂xµ

∂x ′α
∂xν

∂x ′β
gµν = gαβ − ∂αξβ − ∂βξα (27)

h′αβ = hαβ − ∂αξβ − ∂βξα (28)

Since |∂αξβ| � 1, it follows that |h′αβ| � 1, so the new
coordinates x ′α are also valid coordinates for a weak
gravitational field.
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Exercise: Show that under this infinitesimal coordinate
transformation

V ′α = Vα −�ξα (29)

so that
V ′α = 0 ⇐⇒ �ξα = Vα (30)

Since � is just the wave operator in flat spacetime, one
can always find a solution of �ξα = Vα. Thus, if Vα 6= 0 in
the original coordinates xα, we can always find new
coordinates x ′α for which the Lorenz condition V ′α = 0 is
satisfied.
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Exercise: Show that under an infinitesimal coordinate
transformation the components of the Riemann tensor
Rµανβ given by eqn. (19) are unchanged to first-order.

This shows that the curvature of a weak-field spacetime,
and so any physical predictions such as geodesic
deviation, are unchanged to first-order by an infinitesimal
coordinate transformation.
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Solving the Wave Equation

The most general solution to �hαβ = 0 is a linear
combination of sinusoidal plane wave solutions:

hαβ = aαβ exp(ik · x) (31)

where aαβ and kα are constants satisfying:

ηαβkαkβ = 0 , (32)

kβaβα −
1
2

kαaββ = 0 . (33)

The first condition, from the wave equation, says that a
gravitational wave propagates along a null direction (i.e.,
with the speed of light); the second condition is just the
Lorenz condition (23) expressed in terms of aαβ and kα.
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Transverse traceless gauge

The Lorenz gauge does not completely fix the coordinates.
A further infinitesimal coordinate transformation

xα → x ′α = xα + ηα(x) (34)

with
�ηα = 0 (35)

preserves the Lorenz gauge condition.

We can exploit this additional coordinate freedom to set

h′ti = 0 , ηαβh′αβ = 0 (36)

in these coordinates. Such a choice of coordinates is
called the transverse traceless gauge (or TT gauge for
short).
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Exercise: Consider the infinitesimal coordinate
transformation defined by

ηα = Bα exp(ik · x) (37)

where k is the same null vector as in (31). Show that under
this coordinate transformation

hαβ → h′αβ = a′αβ exp(ik · x) (38)

with
a′αβ = aαβ − ikαBβ − ikβBα (39)

Exercise: Explicitly find Bα satisfying the TT gauge
conditions

a′ti = 0 , ηαβa′αβ = 0 (40)

[Hint: Contract a′ti = 0 with k i and solve for Bik i in terms of
Bt ; then substitute this expression for Bik i into ηαβa′αβ = 0
to solve for Bt ; finally, substitute the solution for Bt back
into a′ti = 0 to find Bi .]
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In the TT gauge, the Lorenz condition eqn. (23) reduces to
∂βhβα = 0.
Thus, in the TT gauge there are 8 conditions on the 10
independent components of hαβ:

hti = 0 , ηαβhαβ = 0 , ∂βhβα = 0 (41)

This leaves only 2 independent components of hαβ.
In terms of aαβ and kα, we have

ati = 0 , ηαβaαβ = 0 , kβaβα = 0 (42)

The remaining two independent components of aαβ
correspond to the two independent polarisation states of a
gravitational wave, typically denoted h+ and h×.
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For example, take kα = (ω,0,0, ω), corresponding to a
plane monochromatic gravitational wave with angular
frequency ω propagating in the +z-direction. Then
eqns (42) become

ati = 0 , azi = 0 , att = 0 , axx + ayy = 0 . (43)

These show that the perturbations are transverse to the
direction of propagation. The metric perturbations hαβ in
the TT gauge are thus

hαβ =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 (44)
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The corresponding line element is

ds2 = −dt2 + (1 + h+) dx2 + (1−h+) dy2 + 2h× dx dy + dz2

(45)

The most general solution of the linearised field equation is
a superposition of solutions of the form (44) having
different propagation directions, frequencies, and
amplitudes for h+, h×.
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Interpretation: The Effect of GWs

Gravitational waves are deformations of space itself, stretching
it first in one direction, then in the perpendicular direction.

6

Gravitational Wave Basics

      A consequence of Einstein’s general theory of relativity

      Emitted by a massive object, or group of objects,

      whose shape or orientation changes rapidly with time

Waves travel away from the source at the speed of light 

Waves deform space itself, stretching it first in one direction, then

in the perpendicular direction

Time

“Plus”

polarization

“Cross”

polarization
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Exercise: Consider two particles at rest at (x , y , z) = (0,0,0)
and (L,0,0). A plus polarized gravitational wave of frequency f
and amplitude h0 � 1 passes by, propagating in the z direction:

hab(t , x , y , z) = h0 sin(2πf [t − z
c

])


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 . (46)

Show that the distance d measured along the x-axis between
the two particles as the wave passes is given by

d =

[
1 +

1
2

h0 sin(2πft)
]

L . (47)
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Expected sources of gravitational waves

Inspiraling
binary systems:
Systems that
spiral toward
one another
and eventually
coalesce due to
the energy lost
in GWs.

11

Sources of GWs

Supernovae, Gamma-ray Bursts 
(GRBs) - short bursts of 
radiation

Deformed pulsars - steady sine-
wave signal

Inspiraling binaries (neutron-star 
or black-hole) - chirps

Big Bang - stochastic (random) 
GW radiation background - 
like CMB

image: K. ThorneWMAP 2003 data

SN 1987A GRB / accreting BH

The component objects need to be compact (e.g., neutron stars
or black holes) and the inspiral needs to be in its final stages
(last few minutes) in order for the GWs to be detectable by
Earth-based interferometers.
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Unmodeled burst sources: GWs produced by supernovae,
gamma ray bursters, or other sources for which we do not know
the gravitational waveform. The waveform may be too difficult to
calculate due to complicated (or unknown) initial conditions, or
numerical relativity has not yet been able to solve the Einstein
field equations for the strong-field case of interest.
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Periodic sources: Continuous sources of GWs
such as pulsars with a non-trivial quadrupole
moment (e.g., there is a “mountain” on the
surface of a neutron star that is not aligned with
the axis of rotation).

Stochastic (random) GWs: Remnant
gravitational waves from the big bang, or the
superposition of GWs produced by many
unresolved astrophysical sources (e.g.
distant supernovae or inspiral events).

11
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Stress-Energy-Momentum Tensor

Schematically:

Tαβ =


energy
density

energy
flux

momentum
density

stress
tensor

 (48)

The stress energy tensor is symmetric: Tαβ = T βα.
Momentum density is equivalent to energy flux.
Conservation law: ∇αTαβ = 0.
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“Trace-Reversed” Amplitude

When solving the linearised equations in vacuum, it was useful
to introduce the Lorenz condition

Vα := ∂βhβα −
1
2
∂αhββ = 0 .

The equations simplify if we introduce the “trace-reversed”
amplitude

h̄αβ ≡ hαβ −
1
2
ηαβhγγ . (49)

Then, the Lorenz condition simplifies to

∂βh̄βα = 0 . (50)
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Generation of Gravitational Waves

With a source term, the linearised Einstein equation is

�h̄αβ = −16πTαβ (51)

Using the Green’s function for the d’Alembertian gives

h̄αβ(t , ~x) = 4
∫

Tαβ(t − |~x − ~x ′|, ~x ′)
|~x − ~x ′|

d3x ′ (52)

∼ 4
r

∫
Tαβ(t − r , ~x ′)d3x ′ (53)

where r = |~x |.

Exercise: Using the conservation law for the stress tensor,
∇βTαβ = 0, show that the spatial components are

hij(t , ~x) ∼ 2
r

d2

dt2

∫
ρ(t − r , ~x ′) x ′ix ′j d3x ′ , (54)

where ρ = T 00 is the mass-energy density of the source.
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Example: Binary Systems

!"
!"

#"

#"

! = 2"/P 

Order-of-magnitude estimate of
GW amplitude:

I ∼ 2MR2 (55)
Ï ∼ 2MR2Ω2 (56)

Kepler’s third law for a circular
binary:

M1 + M2 = Ω2(R1 + R2)3 (57)

h ∼ M2

rR
∼ M5/3

r

(
4π
P

)2/3

(58)

It can be shown that the dominant frequency of the GWs is
twice the orbital frequency, fGW = 2forbit = 2/P.
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Exercise: For a neutron-star binary (M ' 1.4M�) at 5 kpc
with P = 1 hr show that h ∼ 10−22.
Exercise: For the same system with P = 0.02 s (giving
fGW = 2forbit = 100 Hz, in the sensitive band of LIGO) show
that h ∼ 10−22 at a distance of 15 Mpc – approximately the
distance of the Virgo cluster of galaxies.
Exercise: Show the orbital separation R ∼ 100 km when
P = 0.02 s. Thus, we can only hope to detect inspirals of
compact binary systems (e.g., NS-NS, NS-BH, or BH-BH)
with Earth-based interferometers like LIGO.

LIGO-G1701235-v1 Sutton GR and GWs



Example: Distorted Pulsar

Consider a spinning neutron star of radius R with a
non-spherical deformation (“mountain”) of mass δM on the
equator. If the angular velocity is Ω, then

I ∼ δM R2 (59)
Ï ∼ δM R2Ω2 (60)

The GW amplitude is
approximately

h ∼ 2δMR2Ω2

r
(61)

!"

!#"

" = 2#/P 

Exercise: For a star at 1 kpc with δM = 10−6M�, a spin
frequency of 50 Hz, and a stellar radius of 10 km, show that the
GW amplitude at Earth is h ∼ 10−26.

LIGO-G1701235-v1 Sutton GR and GWs



Energy in GWs

The energy flux (power/area) or energy density in GWs
can be estimated using the formula

F ∼ c3

32π2G
|ḣ|2 ∼ c3

8G
h2f 2 (62)

where f = ω/2π is the frequency of the GW (assumed
monochromatic) and h is the RMS amplitude.

Recall that energy flux or energy density in
electromagnetism is ∝ |~E |2 + |~B|2. In GR, the metric
components play the role of gravitational potential, so their
derivatives play the role of the field; hence F ∼ |ḣ|2.

Exercise: Show that

c5

G
= 3.63× 1052 Watts (63)

This equals 1 in geometric units (c = 1 = G).
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Exercise: GW150914 had a peak amplitude of h ' 10−21

at f ' 200 Hz. Show that the corresponding energy flux is

F ∼ ×10−3 W
m2 (64)

This is approximately the energy flux in electromagnetic
waves that we receive from the full moon – despite
GW150914 being at an estimated distance of ∼ 400 Mpc!

LIGO-G1701235-v1 Sutton GR and GWs



A final word: GWs vs. EM waves

12

Astrophysics with 
GWs vs. EM

Very different information, mostly mutually exclusive.

Difficult to predict GW sources based on EM observations.

10 kHz and down10 MHz and up

Very small interaction; 

matter is transparent

Absorbed, scattered, 

dispersed by matter

Wavelength large compared to 

sources ! no spatial resolution

Wavelength small compared to 

sources ! images

Accelerating aspherical massAccelerating charge

Gravitational WavesElectromagnetic waves
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