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GR: Gravity as Geometry
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Geometry = measuring distances

@ Pythagoras’s formula: the line element of flat space.

ds? = dx?®+dy? + dz?
100 dx
= (dxdydz)| 0 1 0 dy (1)
0 0 1 dz
@ Flat spacetime.
ds?® = —(cdt)®+ dx®+ dy? + dz?
-1 0 00 cat
0O 1 0O dx
= (cdt dx dy dz) 0 01 0 dy (2)
0O 0 0 1 dz

@ Note: Everyone uses units in whichc =1 (and G = 1).
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Minkowski spacetime

Types of spacetime interval:

ds® > 0 — spacelike (A —C)
= 0 — null (light cones)
< 0 — timelike (A —B)

Key physical concept: proper time
along a worldline.

T_/dfz/@ 3)

The proper time is the time elapsed
as measured by an observer moving
on that worldline.
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Curved spacetime

@ Switch from Cartesian to general coordinates
x® = (x%, x1, x2, x3) with line element

goo 901 Qo2 Qo3 ax ?

d32 _ (dXO dX1 dX2 dXS) Jio 911 912 G13 dX2 (4)
G20 921 Qo2 023 ax
g3 931 g32 33 dx3

@ The matrix g, (x*) is called the metric. Properties:
e symmetric: : g, = Gu,
e a function of position in spacetime: g,,, = g,..(Xx*).
e All information on the geometry of the spacetime is
contained in the metric.
@ The inverse matrix is denoted with raised indices:

gl = (guu)_1 .
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Coordinate transformations

@ There are no preferred coordinates in General Relativity.

@ Spacetime intervals ds? are invariant under coordinate
transformations.

@ Exercise: Use the invariance of ds? to show that under the
coordinate transformation x® — x’® the metric transforms

as axi 9
;o X XY
gaﬁ - g,lLV 8X/a aX/B (5)

@ Exercise: Use eqgn (5) to show that the line element of flat
spacetime in spherical coordinates is

ds? = —dt? + dr? + r?(d6? + sin® 0d$?) (6)
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@ Schwarzschild spacetime: a non-rotating, uncharged black
hole of mass M

—1
ds? = — <1 _ 2> dt2+<1 - 2;‘”) dr?+r?(d6?+sin? 0d$?)
@)

@ Friedmann-Lemaitre-Robertson-Walker spacetime: a
homogeneous isotropic universe with scale factor a(t)

ds® = —dt? + aqt) [ + r?(d6? + sin?0d¢?)|  (8)

— kr2
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Physical Consequences of Curved Spacetime

@ Hypothesis: freely falling test masses move along
worldlines of extremal proper time.

r= [ V=dst = [ -gudxidk ©)

@ Exercise: Show that the Euler-Lagrange equations
become this geodesic equation:

a?x e ax®dx”
dr? Prdr dr
where the Christoffel symbols are

(10)

Mg, = 29 * (0896 + 0495 — 0593) (11)

and 9, is short-hand for 9/0x“.
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Einstein Field Equations

@ The metric components g, (x*) are determined by the
Einstein field equations,

1
R/w - égpr + /\g;w =8rm T;w, (12)

where:

e T, is the stress-energy-momentum tensor that describes
all of the matter and fields in the spacetime;

e Ais the cosmological constant;
e R, and R are the Ricci tensor and Ricci scalar,

R= gl“/Ruuv Huu = Rauau; (13)
e A",z is the Riemann tensor:
0 0

H#uaﬂ - r#ua‘i’r#)\arAvﬂ*r#)\ﬁr)\wx . (14)

S /TR
oxe “PT 9xB
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@ Exercise: Show that in vacuum (7, = 0) the Einstein
equations reduce to
R. =0. (15)

@ The Einstein equations are a set of 10 coupled,
non-linear, second-order, hyperbolic-elliptic partial
differential equations for the metric components g, 3.

@ There is no systematic way to solve such systems. Very
few analytic solutions exist. These correspond to situations
with a high degree of symmetry.

e E.g.: The exact solution for the two-body problem is not
known.

@ Analytic solutions exist for the Einstein equation linearised
around flat spacetime; e.g., for spacetimes describing
weak static gravitational fields or weak gravitational waves.
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Linearised gravity

@ A weak gravitational field in GR is a spacetime for which
there exist global coordinates x* such that

gaB = Naps + haﬁa |ha6| < 1 (16)

where 7,3 = diag(—1, 1,1, 1) are the components of the
Minkowski metric. Thus, a weak gravitational field differs
only slightly from flat spacetime. The quantities h,s are
perturbations or deviations of the metric away from flat
spacetime.
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A word about coordinate transformations:

@ It is always possible to find coordinates for which the above
decomposition is not valid—e.g., flat spacetime in
spherical polar coordinates does not satisfy (16), even
though the gravitational field is identically zero!

@ The set of coordinates x® in which (16) holds is not
unique. It is possible to make an infinitesimal coordinate
transformation x® — x’® for which the decomposition with
respect to the new set of coordinates still holds.

@ We'll often refer to these infinitesimal coordinate
transformations as gauge transformations.
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@ Note that for weak gravitational fields, one typically raises
and lowers indices with the background Minkowski metric
n*# and 7,4, and not with g*# and g,,5. For example,

haﬁ = naﬂh‘uﬂ , haﬁ = naunﬁVhMV . (1 7)

The only exception is g*#, which still denotes the inverse of
Gap, NOt 0P g ... To first order,

g* =" — P (18)
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@ Exercise: Show that to first order in h,5 the Riemann
tensor has components

1
Raﬂ;w = E (8uaﬂhau - auaahﬂy + c%@ahgﬂ — 8,,85hau)
(19)

@ Exercise: Show that to first order in h,z the Ricci tensor
has components:

1

Fl’ag = > (—Dhag + Oa Vg + 85 Va) (20)
where
— 0,05 = — 2 4 V2 (21)
U= n atp — _W -+

is the D’Alembertian (or wave operator) and

]
V, = dgh’, — Eaah% (22)
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@ Simplification: It is always possible to find a set of
coordinates for which

V., = 95h°, — %aah% =0 (23)

e This is sometimes called the Loren(t)z condition (in
analogy with the gauge condition in electromagnetism).

@ Importance: If V,, = 0 then the vacuum Einstein equation
for a weak gravitational field in this gauge is simply

Ohas =0 (24)

Thus, the metric perturbations satisfy the flat space wave
equation. The solutions can therefore be interpreted as
gravitational waves.
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Existence Proof for the Lorenz Gauge

@ Consider an infinitesimal coordinate transformation
X' = XY+ £%(x) (25)
where ¢ are slowly varying functions: [0,£°| < 1.

@ To first-order, the transformation matrix from x’® to x* is
OxH o&H

— S

oxa e 5xa (26)

@ Thus, to first order, the metric components transform as

ox* ox”
g;éﬁ = WW g;w = 0uaB — aaéﬁ - aﬁga (27)

h,aﬁ = ha,B - 8a§,3 - aﬁga (28)
Since [0a&s| < 1, it follows that [ ;| <1, so the new
coordinates x’® are also valid coordinates for a weak
gravitational field.

LIGO-G1701235-v1 Sutton GR and GWs



@ Exercise: Show that under this infinitesimal coordinate

transformation
VI =V, - 0¢, (29)

so that
VI=0 — 0¢&,=V, (30)

@ Since [ is just the wave operator in flat spacetime, one
can always find a solution of ¢, = V,,. Thus, if V,, #0in
the original coordinates x®, we can always find new
coordinates x’® for which the Lorenz condition V), =0 is
satisfied.
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@ Exercise: Show that under an infinitesimal coordinate
transformation the components of the Riemann tensor
R, given by eqgn. (19) are unchanged to first-order.

@ This shows that the curvature of a weak-field spacetime,
and so any physical predictions such as geodesic
deviation, are unchanged to first-order by an infinitesimal
coordinate transformation.
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Solving the Wave Equation

@ The most general solution to Jh,z = 0 is a linear
combination of sinusoidal plane wave solutions:

hog = anp exp(ik - X) (31)

where a,g and k“ are constants satisfying:
Nask®k? =0, (32)
ksa®,, — %kaa% =0. (33)

The first condition, from the wave equation, says that a
gravitational wave propagates along a null direction (i.e.,
with the speed of light); the second condition is just the
Lorenz condition (23) expressed in terms of a,5 and k.
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Transverse traceless gauge

@ The Lorenz gauge does not completely fix the coordinates.
A further infinitesimal coordinate transformation

X* = X' = x* + n%(x) (34)

with
On®=0 (35)

preserves the Lorenz gauge condition.

@ We can exploit this additional coordinate freedom to set
i =0, n*h,5=0 (36)

in these coordinates. Such a choice of coordinates is
called the transverse traceless gauge (or TT gauge for
short).
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@ Exercise: Consider the infinitesimal coordinate
transformation defined by

o = Ba exp(ik - X) (37)

where K is the same null vector as in (31). Show that under
this coordinate transformation

hag — H,5 = &5 exp(ik - X) (38)

with
a’aﬁ = a,3 — IkaBs — ikgB, (39)

@ Exercise: Explicitly find B, satisfying the TT gauge
conditions
a;=0, n*d,;=0 (40)

[Hint: Contract &} = 0 with k' and solve for Bk’ in terms of
By; then substitute this expression for Bik' into n*a,; =0
to solve for Bs; finally, substitute the solution for B; back
into & = 0 to find B;.]
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@ Inthe TT gauge, the Lorenz condition egn. (23) reduces to
dsh®, = 0.

@ Thus, in the TT gauge there are 8 conditions on the 10
independent components of h,z:

hi=0, n*h,;=0, 93h°, =0 (41)

This leaves only 2 independent components of h,g.
@ Interms of a,3 and k“, we have

ai=0, n*Pa,; =0, ksa’,=0 (42)

The remaining two independent components of a,3
correspond to the two independent polarisation states of a
gravitational wave, typically denoted hy and hy.
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@ For example, take k“ = (w, 0, 0,w), corresponding to a
plane monochromatic gravitational wave with angular
frequency w propagating in the +z-direction. Then
egns (42) become

ai=0, a;=0, ar=0, ax+ay=0. (43)

@ These show that the perturbations are transverse to the
direction of propagation. The metric perturbations h,s in
the TT gauge are thus

0 O 0 O

(o h om0
hag = 0 he —hy O (44)

0 O 0 O
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@ The corresponding line element is

ds® = —dt? + (14 h,) dx® + (1 — h,) dy? + 2h, dx dy + dz?
(45)

@ The most general solution of the linearised field equation is
a superposition of solutions of the form (44) having
different propagation directions, frequencies, and
amplitudes for h, hy.
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Interpretation: The Effect of GWs

Gravitational waves are deformations of space itself, stretching
it first in one direction, then in the perpendicular direction.

%II»
“ ” '4 A '4 A 4 '\
Plus’ {0 =T |
polarization TN h\_‘ N TN [T/
Ll .

Time .
uCrOSSn 7 \‘ 7 “ 'V A ><
polarization N1 NEEY 4 A
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Exercise: Consider two particles at rest at (x, y,z) = (0,0,0)
and (L, 0,0). A plus polarized gravitational wave of frequency f
and amplitude hy < 1 passes by, propagating in the z direction:

hab(t, X, Y, Z) = hO S|n(27'rf[t _ %])
Show that the distance d measured along the x-axis between

the two particles as the wave passes is given by

d= 1+%hosin(27rft) L. (47)
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Expected sources of gravitational waves

Inspiraling
binary systems: Insplral | Merger ' Ringdown
Systems that | |

i P
spiral toward e
one another x"%_\ :

nd eventuall

and eventually B @
coalesce due to i -
the energy lost . image: K. Thorne
in GWs.

The component objects need to be compact (e.g., neutron stars
or black holes) and the inspiral needs to be in its final stages
(last few minutes) in order for the GWs to be detectable by
Earth-based interferometers.
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Unmodeled burst sources: GWs produced by supernovae,
gamma ray bursters, or other sources for which we do not know
the gravitational waveform. The waveform may be too difficult to
calculate due to complicated (or unknown) initial conditions, or
numerical relativity has not yet been able to solve the Einstein
field equations for the strong-field case of interest.

v

SN 1987A ‘ GRB / accreting BH
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Periodic sources: Continuous sources of GWs
such as pulsars with a non-trivial quadrupole
moment (e.g., there is a “mountain” on the
surface of a neutron star that is not aligned with
the axis of rotation).

Stochastic (random) GWs: Remnant
gravitational waves from the big bang, or the
superposition of GWs produced by many
unresolved astrophysical sources (e.g. e
distant supernovae or inspiral events). WWIIAP 2003 data

LIGO-G1701235-v1 Sutton GR and GWs



Stress-Energy-Momentum Tensor

@ Schematically:

energy energy
density flux
TP =
momentum stress (48)
density tensor

@ The stress energy tensor is symmetric: T = TP,
@ Momentum density is equivalent to energy flux.
@ Conservation law: V, 7% = 0.
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“Trace-Reversed” Amplitude

When solving the linearised equations in vacuum, it was useful
to introduce the Lorenz condition

’
V., = 9sh°, — Eﬁah% =0.

The equations simplify if we introduce the “trace-reversed”
amplitude

1
hoeﬁ = haﬂ — Enaﬁh’y’y . (49)

Then, the Lorenz condition simplifies to

95H0 = 0. (50)
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Generation of Gravitational Waves

@ With a source term, the linearised Einstein equation is
OhP = —167 T8 (51)

@ Using the Green’s function for the d’Alembertian gives

o TeB(t— % — X/|, %)
of — 4 ) 3,/ 2
s (t, %) / =7 Bx (52)

N % / TeB(t — 1, %)X’ (53)
where r = |X|.

@ Exercise: Using the conservation law for the stress tensor,
\ T8 = 0, show that the spatial components are

20"

r dt2

where p = T is the mass-energy density of the source.

hi(t, X) / p(t—r,X)X'x"d3x",  (54)
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Example: Binary Systems

Order-of-magnitude estimate of
GW amplitude:

| ~ 2MR? (55)
I ~ 2MR?*Q?  (56)

/ Kepler’s third law for a circular
/\ " | binary:
M | My + Mp = Q*(Ry + Re)* (57)

M2 MB/3 (4273
r r P

(58)

It can be shown that the dominant frequency of the GWs is
twice the orbital frequency, fow = 2f,wit = 2/ P.
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@ Exercise: For a neutron-star binary (M ~ 1.4M) at 5 kpc
with P = 1 hr show that h ~ 1022,

@ Exercise: For the same system with P = 0.02 s (giving
fow = 2fmwic = 100 Hz, in the sensitive band of LIGO) show
that h ~ 10722 at a distance of 15 Mpc — approximately the
distance of the Virgo cluster of galaxies.

@ Exercise: Show the orbital separation R ~ 100 km when
P =0.02 s. Thus, we can only hope to detect inspirals of
compact binary systems (e.g., NS-NS, NS-BH, or BH-BH)
with Earth-based interferometers like LIGO.
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Example: Distorted Pulsar

Consider a spinning neutron star of radius R with a
non-spherical deformation (“mountain”) of mass 6 M on the
equator. If the angular velocity is 2, then

. Q=2qP
I ~ SMR? (59) y
I~ sMRPQ®  (60) [ \ M

The GW amplitude is | / |

approximately

\
\
\

2092 \
b 26M,:a’ Q 61) \ y

Exercise: For a star at 1 kpc with M = 10-M,,, a spin
frequency of 50 Hz, and a stellar radius of 10 km, show that the
GW amplitude at Earth is h ~ 10725,

LIGO-G1701235-v1 Sutton GR and GWs



Energy in GWs

@ The energy flux (power/area) or energy density in GWs
can be estimated using the formula

c® 2 c o
~ 3on 26|h| 8th (62)
where f = w/27 is the frequency of the GW (assumed
monochromatic) and h is the RMS amplitude.

e Recall that energy flux or energy density in
electromagnetism is o |E|2 + |BJ2. In GR, the metric
components play the role of gravitational potential, so their
derivatives play the role of the field; hence F ~ |hJ2.

@ Exercise: Show that

5
% — 3.63 x 102 Watts (63)

This equals 1 in geometric units (c = 1 = G).
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@ Exercise: GW150914 had a peak amplitude of h ~ 102"
at f ~ 200 Hz. Show that the corresponding energy flux is

Frx07 2y (64)

This is approximately the energy flux in electromagnetic
waves that we receive from the full moon — despite
GW150914 being at an estimated distance of ~ 400 Mpc!
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A final word: GWs vs. EM waves

Electromagnetic waves Gravitational Waves
Accelerating charge Accelerating aspherical mass
Wavelength small compared to Wavelength large compared to
sources =» images sources =» no spatial resolution
Absorbed, scattered, Very small interaction;
dispersed by matter matter is transparent
10 MHz and up 10 kHz and down

Very different information, mostly mutually exclusive.

Difficult to predict GW sources based on EM observations.
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