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What are GW Bursts?

By convention, “bursts” are transients for which the GW waveform is
not known or is too complicated to allow for a templated search.
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Examples: supernovae, long gamma-ray bursts, post-merger
binary neutron star systems, flaring magnetars, . . .

LIGO, Virgo: typically < 1 s, but some signals up to O(100) s or
possibly more.

Potentially rich source of (astro-)physics.
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Burst Sources (slide by C. Ott)
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Burst Science (slide by C. Ott)

LIGO-G1701241-v2 Sutton GWB Detection 4 / 35



Outline of this Lecture

We will review the basic concepts on how we can detect and
interpret GW signals without prior knowledge of the waveform.

Standard matched filtering is a special case of the techniques
used for bursts.

Topics
detection
waveform reconstruction
glitch rejection
sky position estimation

Further reading (i.e., not covered in this talk!):

For a brief overview of potential sources, see:
http://bcc.impan.pl/13Gravitational/uploads/Sutton_sources.pdf
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Excess Power Detection
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Key Concept: Excess Power

Assumptions:
Assume detector noise n is uncorrelated with GW signal.
Assume detector responds linearly to GW signal.

Detector output:

d(t + ∆t(Ω)) = n(t + ∆t(Ω)) + F +h+(t) + F×h×(t)

Notation
Assume the data have been time shifted to compensate for
time-of-flight between detectors: ∆t(Ω) = 1

c (r0 − r) · Ω
Treat each timeseries as a vector: n(t)→ n,
h+×(t)→ h+×.

Then (suppressing F +,×):

d ' n + h
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Key Concept: Excess Power

The assumption that n and h are uncorrelated means

〈nT h〉 = 0

where 〈. . .〉 denotes the average over noise realisations.

Why is this useful? Because signal and noise add in quadrature
in the energy:

energy = dT d
〈energy〉 = 〈nT n〉+ 〈hT h〉︸ ︷︷ ︸

positive−definite

+ 2〈nT h〉︸ ︷︷ ︸
zero

> 〈nT n〉

Key Idea:
Any non-zero GW will cause excess power in the data
regardless of its waveform. (But so will noise glitches!)
[Anderson et al. (2001)]
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Multi-Detector Coherent Analysis
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Physical Point of View
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Notation for discrete data

We’ll work in the frequency domain unless specified otherwise.

measured data: dstrain
noise: nstrain

power spectrum: S, defined in k th frequency bin by

〈n∗strain[k ]nstrain[k ′]〉 =
N
2
δk ,k ′S[k ] .

whitened data: d ≡ dstrain/
√

(N/2)S, and similarly for n

With these conventions the whitened noise has the simple
normalisation

〈n∗[k ]n[k ′]〉 = δk ,k ′ .
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Single-Sample, Known Sky Position

Assume the sky position Ω of the GW is known, and time-shift
the data streams appropriately.

Work in the frequency domain. Consider one sample of
whitened data from each of D detectors (σ ≡

√
(N/2)S):




d1
d2
...

dD




︸ ︷︷ ︸
measured

=




F +
1 (Ω)/σ1 F×

1 (Ω)/σ1
F +

2 (Ω)/σ2 F×
2 (Ω)/σ2

...
...

F +
D (Ω)/σD F×

D (Ω)/σD




︸ ︷︷ ︸
known (for each Ω)

[
h+

h×

]

︸ ︷︷ ︸
unknown

+




n1
n2
...

nD




︸ ︷︷ ︸
noise

Burst search: treat h+,h× as free parameters to be fit to the
data.

linear
over-constrained (allows consistency tests)
sky-position dependent
repeat for each time-frequency data sample
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Detection: the likelihood ratio

Switch to matrix notation, where elements correspond to
different detectors.

d = [ F+ F× ] h + n
= F h + n

Detection question: Is d inconsistent with h = 0?
Construct the likelihood ratio:

L ≡ 2 log
p(d|h)

p(d|0)

Importance: Can show thresholding on L is the optimal
strategy for detecting known h.

Highest detection probability for fixed false alarm rate
(“Neyman-Pearson” criterion).
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Gaussian noise case

Need to known statistical properties of n.
Assume noise is not correlated between detectors
(realistic).
Assume noise is Gaussian (unrealistic).

So probability of measuring data d in the absence of a GW
(h = 0) is

p(d|0) ' exp
{
−1

2
dT d

}

And probability of measuring data d given a GW h is

p(d|h) ' exp
{
−1

2
(d− Fh)T (d − Fh)

}
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Matched filter

Likelihood ratio becomes

L = dT Fh + (Fh)T d︸ ︷︷ ︸
matched filter

− (Fh)T (Fh)︸ ︷︷ ︸
independent of data

(ignored in matched filtering)

Typical matched filtering search procedure:
Construct template bank spanning all h.
Matched filter with each template separately for each
detector.
“Detection” if filter SNR > threshold in each detector.
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Life without templates: Waveform Reconstruction

Burst search: Define best-fit waveform ĥ as that which
maximizes L:

0 =
∂L
∂h

∣∣∣∣
h=ĥ

Simple linear problem. Solution for any d is:

ĥ = F−1
MP d = (FT F)−1FT d

where F−1
MP is the Moore-Penrose inverse.

Caveats:
Bayesians: We’ve assumed a flat (improper) prior on h.
(FT F) tends to be singular, requiring regularisation.
Number of free parameters ' number of data points . . .

More on these later.
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Example: Supernova injection

Salerno 2006.05.25 Coherent network searches for gravitational-wave bursts G060276-00-Z

#8

Example:  Supernova GWB Recovery

Network: H1-L1-GEO

GWB: Zwerger-Muller

A4B1G4, SNR=40 

[Astron. Astrophys. !"#$

209 (1997)]

Recovered signal (blue) 

is a noisy, band-passed

version of injected

GWB signal (red)

Injected GWB signal

has hx = 0.

Recovered hx (green) is

just noise.
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Bayesian Waveform Reconstruction: GW150914

B. P. Abbott et al., PRL 116, 061102 (2016)

Fit by BayesWave pipeline, which includes priors on
amplitude, clustering, etc. [Cornish & Littenberg (2015)].

Match with best-fit template: 94% (SNR=24).
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Maximum likelihood detection statistic

How significant is the
reconstructed GW?
Threshold on the
maximum likelihood:

EML ≡ 2L(ĥ) = dT FF−1
MPd

FF−1
MP is simply a 2D

projection operator.

Many similar likelihood
statistics have been
proposed and used.
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Time-Frequency Analysis: Multiple Pixels

A generic GW burst will be spread over multiple data samples.
Standard approach: threshold and cluster. E.g.:

Zero-out most (e.g. 99%) of the lowest-value pixels.

Group together remaining pixels which share an edge or corner
(next-nearest neighbors).

Sum energy (likelihood) over all pixels in a given cluster.
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Time-Frequency Analysis: Clustering

A generic GW burst will be spread over multiple data samples.
Standard approach: threshold and cluster. E.g.:

Zero-out most (e.g. 99%) of the lowest-value pixels.

Group together remaining pixels which share an edge or corner
(next-nearest neighbors).

Sum energy (likelihood) over all pixels in a given cluster.
LIGO-G1701241-v2 Sutton GWB Detection 21 / 35



Time-Frequency Analysis: Clustering

Bayesian Interpretation
Signal prior: colored Gaussian random process with unimodal
time-frequency shape, uniform in size and shape [Was, PhD
Thesis, 2011].
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Sensitivity: Excess power vs. matched filter

In Gaussian noise with a fixed time-frequency region of N
pixels the maximum likelihood is non-central chi-squared
distributed [Anderson et al. 2001, Sutton et al. 2010]:

2EML ∼ χ2
4N(ρ2)

mean [2EML] = ρ2 + 4N

st.dev. [2EML] = (8N)
1
2

Here ρ2 is the expected SNR of a matched filter:

ρ2 = 2
∑

pixels

(Fh)T (Fh) .

Matched filter (N → 2) more sensitive by amplitude factor
∝ N1/4 (volume factor ∝ N3/4 ).

N ∼ 100 for low-mass binary mergers.
N ∼ 1 for high-mass binary mergers.
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Example: IMBBH Searches

Search for BBH
systems in LIGO
O1 data [Abbott et
al., 1704.04628].

Burst sensitive
range (sensitive
volume) typically
80% (50%) that of
matched filter.
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Sky Localisation Accuracy
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Unknown Sky Position

Typically we don’t know the incident sky direction Ω of the GW a
priori.

Coherent analysis depends on Ω through antenna
responses F +(Ω), F×(Ω) and through arrival time delay
between detectors.
Standard approach: Repeat analysis over a grid of Ω
covering the entire sky. Gives likelihood map E(Ω).

7

Waveform f0 (Hz) Q Polarization

SGQ3 235/1053 3 Linear

SGQ9 235/1053 9 Linear

SGCQ9 235/1053 9 Circular

TABLE IV: Simulated sine-Gaussian waveforms with quality
factors Q=3 and Q=9, low (235Hz) and high (1053Hz) fre-
quencies, and two polarization types - linear and circular.

resolution of d⌦ = 0.4 ⇥ 0.4 square degrees: ⇠ 200, 000
sky locations (pixels) total. Figure 3 shows an example
of such a skymap for one of the SGQ9 (235Hz) injec-
tions. For such events it is typical to see a pattern of

FIG. 3: Example of the likelihood sky map Lsky for an injected
signal at ✓ = �30� and � = 144�: Lsky as a function of ✓ and
� (top), Lsky distribution around the reconstructed location
(bottom).

fringes with large value of Lsky corresponding to a good
match between responses due to a common GW signal
reconstructed in di↵erent detectors. Such sky points are
the most probable as the source location. Depending on
many factors, such as the signal strength, waveform mor-
phology, etc, the Lsky statistic can be well localized in a
single small cluster in the sky or distributed over a large
area which can be also split into several disjoint clusters.
This type of ambiguity is typical for the least constrained
unmodeled search and networks with only three spatially
separated detectors.

To characterize the accuracy of the coordinate recon-

struction for a single injection we define an error region:
total area of all pixels in the sky which satisfy the condi-
tion Lsky(✓, �) � Lsky(✓i, �i), where (✓i, �i) is the injec-
tion sky location. Given a population of injected signals
uniform in the sky, the 50 CL and 90 CL error regions,
containing 50% and 90% of injections respectively, can
be calculated. The median error angle is defined as the
square root of the 50% error area.

The Lsky skymap can be also converted into the prob-
ability skymap which is normalized to unity if integrated
over the entire sky. In this case the 50 CL and 90 CL
error regions are represented by the most probable pixels
with the cumulative probability of 50% and 90% respec-
tively. Such probability skymaps are not relevant for the
simulation studies we perform, but they are important
for the analysis of real data.

V. RESULTS

A. Coordinate Reconstruction

The accuracy of the coordinate reconstruction strongly
depends on the strength of detected signals which can be
conveniently characterized by the average (per detector)
signal-to-noise ratio

⇢det = ⇢net/
p

K . (5.1)

For example, Figure 4 shows the dependence of the me-
dian error angle ↵50% on ⇢det for all injected signals,
which is well approximated by a function

↵50% = A + B

✓
10

⇢det

◆
+ C

✓
10

⇢det

◆2

. (5.2)

The parameter A is the median error angle for events
with very large SNR and A+B+C is the median error
angle for events with ⇢det = 10. Figure 4 also shows a
dependence of the coordinate resolution on the number
of detector sites in the network. There is a significant
improvement of the resolution when more sites are added
to the network. This is particularly noticeable at low
SNR, which is very important because the anticipated
GW signals are likely to be weak.

Because of several limiting factors (see section VI)
the reconstruction is not uniform in the sky. Figure 5
shows the distribution of the median error angle across
the sky for di↵erent network configurations. There is a
dramatic improvement of the coordinate reconstruction
for the LHVA, ALVJ and LHVAJ networks. However for
the 4-site networks there remain areas where the source
localization is poor. Figure 6 compares the pointing ca-
pabilities of the network consisting of three, four and five
sites by presenting the fraction of the sky where the re-
construction is performed with a given error area. This
figure also shows a significant improvement of the source
localization (particularly for the 90% error area) as more

Ex: coherent
WaveBurst sky
map for
SG235Q9
GWB at
(θ, φ) =

(−30◦, 144◦).
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Sky Localisation Accuracy

Klimenko et al., 1101.5408 predictions for 90% containment
regions for advanced detector networks.

test signals: mix of white-noise bursts and sine-Gaussians
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Background Glitch Rejection
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Non-Stationary Background

Real detector noise isn’t Gaussian or stationary.
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The “Null Stream”

Residual data with signal ĥ
removed should be
Gaussian. Can reject
non-Gaussian glitches by
looking at the null energy
[Wen and Schutz (2005)]:

Enull ≡ dT (I− FF−1
MP)︸ ︷︷ ︸

projection

d

Enull ∼ χ2
2N(D−2) in

Gaussian noise.
Analogous to χ2 test for
inspirals [Allen (2005)].
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Advanced Glitch Rejection

Instead of assuming Gaussian noise, re-derive optimal statistic
using a quantitative model for glitches. E.g.:

Locally Optimum Detectors [Creighton 1999, Allen et al.
2002].
Maximum likelihood analysis using Middleton glitch model
[Principe & Pinto 2009, 2017].
Bayesian model selection with a similar glitch model
[Littenberg et al. (2016)]
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Example: Bayes Factors for Signal vs. Gltich

[Littenberg et al. (2016)]
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Summary

We have powerful techniques for detecting and studying
GW bursts that don’t rely on detailed knowledge of the
waveform.

detection
background rejection
waveform reconstruction
source localization on the sky

Full exploitation relies crucially on having a network of
detectors at several sites (at least 3).

More work is still needed! In particular:
Searches are still limited by non-Gaussian backgrounds.
Searches (esp. Bayesian analyses) are computationally
expensive.
How will we interpret eventual detections without reference
models?
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