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What are GW Bursts?

By convention, “bursts” are transients for which the GW waveform is
not known or is too complicated to allow for a templated search.

@ Examples: supernovae, long gamma-ray bursts, post-merger
binary neutron star systems, flaring magnetars, ...

@ LIGO, Virgo: typically < 1s, but some signals up to O(100) s or
possibly more.

@ Potentially rich source of (astro-)physics.
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Burst Sources (slide by C. Ott)
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Burst Science (slide by C. Ott)
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Outline of this Lecture

We will review the basic concepts on how we can detect and
interpret GW signals without prior knowledge of the waveform.

@ Standard matched filtering is a special case of the techniques
used for bursts.

@ detection

@ waveform reconstruction
@ glitch rejection
@ sky position estimation

Further reading (i.e., not covered in this talk!):

For a brief overview of potential sources, see:
http://bcc.impan.pl/13Gravitational/uploads/Sutton_sources.pdf
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Excess Power Detection
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Key Concept: Excess Power

Assumptions:
@ Assume detector noise n is uncorrelated with GW signal.
@ Assume detector responds linearly to GW signal.

Detector output:
d(t+ At(Q)) = n(t + At(Q)) + FThy(t) + F*h.(t)

@ Assume the data have been time shifted to compensate for
time-of-flight between detectors: A{(Q) = L(ro—r)- Q

@ Treat each timeseries as a vector: n(t) — n,
h+><(t) - I"|+><-

Then (suppressing F1*):
d~n+h
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Key Concept: Excess Power

The assumption that n and h are uncorrelated means
(n"Th)y =0
where (...) denotes the average over noise realisations.

Why is this useful? Because signal and noise add in quadrature
in the energy:

energy = d'd

(energy) = (n"n)+ (h"h) +2(n"h) > (n"n)
N—— ——
positive—definite  zero

Key Idea:

Any non-zero GW will cause excess power in the data
regardless of its waveform. (But so will noise glitches!)
[Anderson et al. (2001)]
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Multi-Detector Coherent Analysis
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Physical Point of View

unknowns:

* arrival time

* incident direction
* waveform
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Notation for discrete data

We’ll work in the frequency domain unless specified otherwise.

measured data:  dyain
NOISe:  Ngrain
power spectrum: S, defined in k% frequency bin by

N
<n;ktrain[k]nstrain[k,]> — E(Sk»k/s[k] .

whitened data: d = Oiain// (N/2)S, and similarly for n

With these conventions the whitened noise has the simple
normalisation

(n*[K]N[K']) = Ok -
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Single-Sample, Known Sky Position

@ Assume the sky position Q of the GW is known, and time-shift
the data streams appropriately.

@ Work in the frequency domain. Consider one sample of
whitened data from each of D detectors (o = \/(N/2)S):

o FH(Q)or F(Q)/o m
ab F;(Q)/O’g F2>< (Q)/O’z |: th :| no
. = . . h =+ .
. . . x .
——
dp FB_(Q)/UD Fp()/op unknown np
N—_——
measured known (for each Q) noise

@ Burst search: treat h, , h, as free parameters to be fit to the
data.
o linear
e over-constrained (allows consistency tests)
@ sky-position dependent
o repeat for each time-frequency data sample
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Detection: the likelihood ratio

@ Switch to matrix notation, where elements correspond to
different detectors.

d = [F.Fi]h+n
= Fh+n

@ Detection question: Is d inconsistent with h = 07?
Construct the likelihood ratio:

p(dh)

L = 2lo
9 b(d|0)

@ Importance: Can show thresholding on L is the optimal
strategy for detecting known h.
e Highest detection probability for fixed false alarm rate
(“Neyman-Pearson” criterion).
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Gaussian noise case

@ Need to known statistical properties of n.

@ Assume noise is not correlated between detectors
(realistic).
e Assume noise is Gaussian (unrealistic).

@ So probability of measuring data d in the absence of a GW
(h=0)is
p(d|0) ~ exp {—;de}

@ And probability of measuring data d given a GW h is

p(d|h) ~ exp {—;(d —Fh)7(d - Fh)}
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Matched filter

@ Likelihood ratio becomes

L = d'Fh+ (Fh)'™d - (Fh)"(Fh)
— —
matched filter independent of data

(ignored in matched filtering)

@ Typical matched filtering search procedure:

e Construct template bank spanning all h.

e Matched filter with each template separately for each
detector.

o “Detection” if filter SNR > threshold in each detector.
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Life without templates: Waveform Reconstruction

@ Burst search: Define best-fit waveform h as that which

maximizes L:
oL

Oi%h:ﬁ

@ Simple linear problem. Solution for any d is:
h=Fyd=(F'F)"'F'd

where Fy,} is the Moore-Penrose inverse.

@ Bayesians: We've assumed a flat (improper) prior on h.
@ (F'F) tends to be singular, requiring regularisation.
@ Number of free parameters ~ number of data points . ..

More on these later.
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Example: Supernova injection
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Bayesian Waveform Reconstruction: GW150914

B. P. Abbott et al., PRL 116, 061102 (2016)
I I I I

H — Numerical relativity _
Reconstructed (wavelet)

[ Reconstructed (template)
I I

0.30 0.35 0.40 0.45

@ Fit by BayesWave pipeline, which includes priors on
amplitude, clustering, etc. [Cornish & Littenberg (2015)].

@ Match with best-fit template: 94% (SNR=24).
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Maximum likelihood detection statistic

@ How significant is the
d, reconstructed GW?
A Threshold on the
maximum likelihood:

Emi = 2L(h) = d"FFy,.d

FFy» is simply a 2D
“._projection operator.

-dz

: - e Many similar likelihood
statistics have been
proposed and used.
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Time-Frequency Analysis: Multiple Pixels

frequency (Hz)

time (sec)

A generic GW burst will be spread over multiple data samples.
Standard approach: threshold and cluster. E.g.:

@ Zero-out most (e.g. 99%) of the lowest-value pixels.

@ Group together remaining pixels which share an edge or corner
(next-nearest neighbors).

@ Sum energy (likelihood) over all pixels in a given cluster.
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Time-Frequency Analysis: Clustering
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A generic GW burst will be spread over multiple data samples.
Standard approach: threshold and cluster. E.g.:

@ Zero-out most (e.g. 99%) of the lowest-value pixels.

@ Group together remaining pixels which share an edge or corner
(next-nearest neighbors).

@ Sum energy (likelihood) over all pixels in a given cluster.
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Time-Frequency Analysis: Clustering
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Bayesian Interpretation

Signal prior: colored Gaussian random process with unimodal
time-frequency shape, uniform in size and shape [Was, PhD
Thesis, 2011].
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Sensitivity: Excess power vs. matched filter

@ In Gaussian noise with a fixed time-frequency region of N
pixels the maximum likelihood is non-central chi-squared
distributed [Anderson et al. 2001, Sutton et al. 2010]:

2Em ~ X5n(0°)
mean [2Ey] = p2 +4N
st.dev. [2EML] = (8N)%
Here p? is the expected SNR of a matched filter:

p> =2 (Fh)"(Fh).

pixels

@ Matched filter (N — 2) more sensitive by amplitude factor
o N'/4 (volume factor oc N3/4).
e N ~ 100 for low-mass binary mergers.
e N ~ 1 for high-mass binary mergers.
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Example: IMBBH Searches
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Sky Localisation Accuracy
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Unknown Sky Position

Typically we don’t know the incident sky direction Q of the GW a
priori.
@ Coherent analysis depends on 2 through antenna

responses F1(Q), F*(Q) and through arrival time delay
between detectors.

@ Standard approach: Repeat analysis over a grid of Q
covering the entire sky. Gives likelihood map E(Q2).
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Sky Localisation Accuracy

Klimenko et al., 1101.5408 predictions for 90% containment
regions for advanced detector networks.

@ test signals: mix of white-noise bursts and sine-Gaussians
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Background Glitch Rejection
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Real detector noise isn’t Gaussian or stationary.

HAGCR triggers
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The “Null Stream”

@ Residual data with signal h
removed should be
d; Gaussian. Can reject
non-Gaussian glitches by
looking at the null energy
[Wen and Schutz (2005)]:

Ewn = d7 (1-FFy})d
& D
> d, projection

® Eyun ~ X%N(D,Q) in
Gaussian noise.

@ Analogous to x? test for
inspirals [Allen (2005)].
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Advanced Glitch Rejection

Instead of assuming Gaussian noise, re-derive optimal statistic
using a quantitative model for glitches. E.g.:

@ Locally Optimum Detectors [Creighton 1999, Allen et al.
2002].

@ Maximum likelihood analysis using Middleton glitch model
[Principe & Pinto 2009, 2017].

@ Bayesian model selection with a similar glitch model
[Littenberg et al. (2016)]
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Example: Bayes Factors for Signal vs. Gltich

[Littenberg et al. (2016)]
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@ We have powerful techniques for detecting and studying
GW bursts that don’t rely on detailed knowledge of the
waveform.

o detection

e background rejection

e waveform reconstruction

e source localization on the sky

@ Full exploitation relies crucially on having a network of
detectors at several sites (at least 3).

@ More work is still needed! In particular:

e Searches are still limited by non-Gaussian backgrounds.

e Searches (esp. Bayesian analyses) are computationally
expensive.

e How will we interpret eventual detections without reference
models?
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reconstruction, sky localisation]
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© Creighton (1999) Phys. Rev. D60 021101 [glitch robustness]
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@ Allen et al. (2002) Phys. Rev. D 65, 122002 [glitch robustness]
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Reading List (continued)

@ Klimenko et al. (2008) Class. Quant. Grav. 25:114029 [coherent
WaveBurst]

@ Searle et al. (2008) Class. Quant. Grav. 25 114038 [Bayesian
formulation]
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robustness]
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