
IL NUOVO CIMENTO Vol. ?, N. ? ?

High Energy Density Science with X-ray Free-Electron Lasers

J. S. Wark(1)

(1) Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford,
OX1 3PU, United Kingdom

Summary. — Extreme states of matter with high temperatures and pressures can
be created by irradiating matter with either intense X-Rays emitted by X-Ray free-
electron-lasers (FELs), and by heating and/or compression with optical lasers and
then using the FEL X-Rays as a probe. We provide here a very basic introduction to
this burgeoning field, highlighting a few specific experiments, and signposting some
directions for future exploration.

1. – Introduction

By convention the term ‘High Energy Density’ (HED) has come to be used to denote
those regions of the phase diagram of matter with energy densities in excess of order
1011 Jm−3 [1], which equates to a little over 0.6 eV Å−3. From this latter measure we
immediately see that part of this research field is concerned with matter at ion densities
similar to those found in solids (with each atom occupying a few cubic Å) but heated to
temperatures in the multi-eV region. Recalling that room temperature equates to 1/40th

eV, and 1 eV is equivalent to of order 11,000 K, we note we will be dealing with dense
plasmas with conditions (in terms of densities and temperatures) comparable to those
found as we travel towards the centre of the sun, giant planet or other dense astrophysical
object.

As well as increasing the internal energy of an object by heating, HED conditions can
also be achieved by compression. For example, a typical cold metal needs to be subject
to a pressure of several million atmospheres (Mbar) to have its volume halved. As 1
Mbar is approximately 1011 Nm−2 during such compression the work performed per unit
volume, P∆V/V must thus itself be of order 1011 Jm−3 – our original definition of the
onset of the borders HED science (HEDS).

Generally speaking, therefore, we will be concerned with matter of order solid density
or greater, that has either been heated or compressed (or both), engendering high energy
density. Whilst clearly such energy densities can also be given to matter with far low
densities than those of solids, by heating them to even greater temperatures, for reasons
that will be explained below those sorts of conditions have not yet attracted as much
interest to those in the HEDS community using free electron lasers.
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These notes – designed as an extremely basic introduction for non-specialists in the
field – are thus divided roughly into two halves: the first outlining the physics and
interest in solid density matter heated to high temperatures, and the second to matter
subjected to high compressions. In each case we will consider the basic physics of interest,
the motivation for studying such systems, and the revolutionary impact that x-ray free-
electron-lasers (FELs) are having in these burgeoning areas of science. As we explore
matter in these two regimes, it will be useful on occasion to refer to Fig. 1 where we
plot some features of the phase diagram of aluminium (as an example) as a function of
temperature and pressure.

X-Ray free electron lasers (FELs) are used in this field in two main ways. Firstly, the
energy within a typical 100-fsec pulse (of order a few mJ) is such that when the FEL out-
put is focussed down to a small spot (of order a micron in diameter), the intensities are in
the region of 1017Wcm−2, and the electrons within a solid can be heated, at least in the
case of softer x-rays, to temperatures of order a few hundred eV before the ions have time
to significantly move. This constitutes the warm dense matter (WDM) and dense plasma
region shown in Fig.1. We consider what can be learnt from such an experiment in section
3. Secondly, systems can be compressed and heated by optical lasers, where an intense
optical pulse ablates plasma away from the surface of a target, and the resultant pressure
pulse launched into the bulk of the material is such that the pressures reached can, in prin-
ciple, exceed those generated by static techniques (though FEL experiments themselves
have yet to attain that goal). As we shall find in section 5, at pressures in the region a

Fig. 1.: Regions of the phase diagram of alu-
minium (Z = 13). To the bottom right of the
line µ = 0 the plasma is Fermi degenerate, and
to the bottom right of the line Γ = 1 it is
strongly coupled (as defined by the ion-ion cou-
pling parameter).

couple of Mbar or below, the ma-
terial remains solid, and the advan-
tage of the FEL is that it can be
used to obtain a diffraction pattern
from the compressed crystal on a
timescale that is shorter than even
the fastest phonon period. We will
consider such experiments in sub-
sections 5

.
2 and 5

.
3, where the high

quality diffraction patterns now ob-
tained have provided novel insight
into how materials deform as they
are rapidly compressed, and have
demonstrated that complex phase
transformations in the solid state
can take place on the nanosecond
timescales of the optical laser com-
pression pulses. As the transient
pressures induced by laser compres-
sion increase, the heating induced
by the shock can melt the sample,
entering the dense plasma regime.
We discuss such experiments in sec-
tion 6. Finally, in section 7, we muse upon future directions, given improvements in both
the parameters of the FELs, and of the optical lasers coupled to them.
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2. – Dense Plasmas

As noted in the introduction, HEDS encompasses both dense plasmas and highly
compressed solids. To take dense plasmas first, we have already noted that they are of
interest as they are so prevalent throughout the universe – it is an oft-quoted figure that
more than 99 % of all visible matter in the universe is in the plasma state, given that
nearly everything we can see in the night sky is in this form. However, they are also of
interest from a purely theoretical point of view, in that they are very difficult to model
compared with a so-called classical plasma (the top left hand region of Fig.1). This
difficulty arises because they are often strongly-coupled, where the coupling parameter is
taken to be a measure of the typical Coulomb energy to the typical thermal energy (a
fraction which is small for a classical plasma).

In order to see this, we must first appreciate how we model a classical plasma. As
we subject heat to a solid it melts, and then vaporises. If we supply yet further heat,
the energy is sufficient to remove electrons from the atoms, resulting in a plasma of
interacting positive ions and electrons. As noted above, a so-called classical plasma is
weakly-coupled: we assume that the thermal energy greatly exceeds the coulomb energy,
and to zeroth order we can treat the system as an ideal gas, only slightly perturbed by the
coulomb interactions. That the plasmas of interest are not classical is such an important
point that it is worth emphasising the important physics that pertains in the classical
case, so as to gain insight into what knowledge we are losing in the dense-plasma case.
Consider a hot, sparse plasma of protons and electrons both at a temperature T , which is
overall neutral such that the mean electron density equals the mean ion density, n0. Into
this plasma we introduce a positive test charge, Q. Electrons will be attracted to the test
charge (flying past it because they have high thermal energies), but at a distance r from
the test charge there will be, on average, a few more electrons than the average number
n0, and this excess number density we denote n+e (r). By similar reasoning there will be
a deficit of protons of the same extent, and thus a distance r from the test charge there
will be an excess charge density of ρ(r) = −2en+e (r). This excess charge density gives
rise to a potential, φ(r), and the electrons have potential energy −eφ(r). We assume
that the electrons are obeying Boltzmann statistics, so the excess number density with
this energy scales as n0(exp[eφ(r)/kBT ] − 1) ≈ n0eφ(r)/kBT , where we have used our
original assumption that the system is weakly coupled (i.e. eφ is small compared with
kBT ). The above argument leads us to conclude that around the test charge we have a
charge density given by

ρ(r) = −2n0e
2φ(r)

kBT
.(1)

However, we know that Poisson’s equation must also be obeyed: that is to say
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where

λD =

√(
ε0kBT

n0e2

)
,(4)

and A is a constant. Clearly at the origin the potential must simply be that due to the
original test charge, Q, which fixes the constant, yielding the final solution

φ(r) =
Q

4πε0r
exp

(
−
√

2r

λD

)
.(5)

The length, λD, is known as the Debye length, and is the typical length over which the
potential due to the test charge is screened. Note that throughout this derivation we
have been assuming we are dealing with the average fields due to a large number of
electrons attracted to the test charge (which allowed us to use spherical symmetry to
solve the problem) – we have not been considering the fields due to individual electrons
and protons. Clearly for us to be able to use such an approach, there must be a large
number of electrons involved in the shielding: that is to say within a sphere of radius λD,
we must have many electrons. This dimensionless number is called the plasma parameter:
the number of electrons within a Debye sphere, ND is

ND = n0
4π

3
λ3D .(6)

It is difficult to over-stress the importance of the plasma parameter in plasma physics.
A classical plasma (often called a ‘good’ plasma), is where ND >> 1, which of course
is necessary for our whole approach of assuming spherical symmetry to be valid. Fur-
thermore, although beyond the scope of these notes, we find that such plasmas are also
‘collisionless’: this does not mean that collisions between electrons and ions do not take
place, but that the electrons have such high energies that in a single encounter with an
ion they usually only undergo a small angle deflection, and thus need many small angle
scattering events before, on average, they are deviated in angle by π/2. Indeed, we find
that a typical collision time is of order ND multiplied by the plasma period.

Thus ND >> 1 is the bedrock of classical plasma physics. However, a moment’s
thought shows that this assumption does not work for the high density (and high energy
density) plasmas we are discussing here. This is because the plasma parameter is also a
measure of the coupling parameter. To see this we assume that each electron occupies
a volume 4πr3/3, so that r is characteristic of the mean distance between particles, and
then we find

ND = n0
4π

3
λ3D =

1

r3

(
4πr3ε0kBT

3e2

)3/2

=

(
4πε0rkBT

3e2

)3/2

≈ Γ3/2 ,(7)

so that ND is the ratio of the thermal energy to the Coulomb energy (raised to the power
of 3/2).

Hence we find that dense plasmas, with high Coulomb coupling, have ND of order
unity or less than one, and we are not in position where we can use the inverse of the
plasma parameter as an expansion parameter: thinking of the system as ideal gas-like,
with coulombic interactions as being perturbations is not a valid approach. We need to
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treat the thermal and potential energies on an equal footing, and this is what makes the
physics of dense plasmas so difficult, and what we need to bear in mind in the sections
to follow.

3. – Isochoric Heating and Ionisation Potential Depression

As discussed in the introduction, the simplest experiments using FELs to create dense
plasmas involve focussing the FEL beam down to a small spot, and within the 100-fsec
pulse heating the region to temperatures of a few hundred eV. It is by this means that
a series of experiments have been performed to measure ionisation potentials of ions in
dense plasmas.

Ions embedded in a dense plasma have lower ionisation potentials than the equivalent
free ions. This phenomenon is known as ionisation potential depression (IPD). Such an
effect is already present in the solid state – we know that in a metal the top of the Fermi
sea in the conduction band (what a plasma physicist would think of as the start of the
continuum) lies lower in energy than the final bound state in a free neutral atom. This
effect influences not just the binding energies of the outermost bound electrons, but will
also reduce the energy required to excite an electron from the K-shell (n = 1) to a state
where it is free (which defines the K-edge). For example, an isolated aluminium ion
which is triply ionised (so that it has 10 bound electrons) in free space would have a
K-edge at 1607 eV (the energy difference for the transition 1s22s22p6 → 1s12s22p6 + e,
where the free electron is at rest in the continuum). However, in the dense metal the
n = 3 and higher states form conduction bands, and the actual energy of the K-edge is
at 1560 eV, some 47 eV lower.

The question then arises as to where the continuum starts for ions in dense plasmas,
and how does it vary with temperature and pressure? In the low density, hot, classical
plasma regime it is assumed that the field around an ion decays exponentially according
to equation (5), and this charge screening then dictates where the continuum starts. At
higher densities a simpler temperature-independent approach which is often used, and
which attempts to take into account the fact that an electron will not be bound if it
starts to interact with the neighbouring ion, is the ion-sphere (IS) average atom model.
In this model one defines a radius, R0 of on overall-neutral sphere containing an ion of
charge z∗, such that 4πR3

0/3 = z∗/ne = 1/ni, and then we determine the IPD to be
CISz

∗e2/(4πε0R0). where the constant CIS is taken to be 9/5. [2]
With the dense IPD being temperature independent, and the classical result not so,

various theories have been devised to interpolate between the two. The best known of
these is the Stewart-Pyatt (SP) model [4], which although a simple classical (rather than
quantum) model more than half a century old – or perhaps because of this – has been used
in almost all of the atomic-kinetics calculations and codes used over the past few decades.
Despite the IPD value being important in dense plasmas, as it will affect the degree of
ionisation, the equation of state, the opacity etc. of the plasma, accurate measurements
of it have been highly elusive, owing to the major experimental difficulty, which has
dogged the field for many years, of being unable to create plasmas under sufficiently
uniform conditions of temperature and density that measurements of phenomena such
as IPD can be carried out with any degree of confidence. It is in this respect that X-Ray
FELs have provided a step change in our capabilities. Typically, the absorption depths
of solid matter to X-Rays is in the region of microns, and with 1012 photons in a typical
pulse, when focussed to micron scale spots, the electrons within a target can be heated
to of order 100 - 200 eV by the end of the 100-fsec pulse. On this timescale there is
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Fig. 2.: Figure from [3]. Spectrally resolved K-α emission as a function of the X-ray FEL
excitation photon energy. The colour coding (bar on right) refers to the emission intensity
on a logarithmic scale. Roman numerals (top) indicate the charge state of the emission peak:
red, for states with a single K-shell hole; blue, for states with a double K-shell hole. Peaks
around the resonance line (dashed white line, indicating where the FEL photon energy equals
the emitted photon energy) correspond to emission from resonantly-pumped KL transitions.
Open circles, K edges for the various charge states calculated according to a modified version of
the Stewart-Pyatt model.

essentially no hydrodynamic motion, and thus the overall ion density is known exactly,
and the electron density can be deduced from the dominant ion stage produced. The
lack of motion is due to the fact that it will take several picoseconds for the electrons to
transfer their energy to the ions, but even if that transfer were instantaneous, a 100-eV
ion of Al can only move about 2-nm within the x-ray pulse length (the speed of sound is

of order
√
kBT/M ≈ 18, 800 ms−1, so in 100-fsec only a layer 2-nm thick on the surface of

a target rarefies owing to expansion into the vacuum). The heating of the target during
the pulse, therefore, can be safely assumed to take place at one overall density.

The experiment to perform IPD measurements with LCLS was deceptively sim-
ple [3, 5, 6]. The output from LCLS was focussed onto a 1-µm thick Al foil. The
foil was heated, and gave off x-rays as described below. The photon energy of the FEL
was varied between about 1460 and 1830 eV, and at each photon energy a series of shots
taken (with fresh Al foil each time), to build up the x-ray spectrum (recorded by Bragg
diffraction from a crystal onto a CCD) as a function of FEL photon energy which is
shown in Fig. 2. In this experiment the X-Ray laser acts both as a heating pump, and
as a probe. The incident FEL excites electrons from the K-shell of the ions into the
conduction band (if the photon energy of the FEL is greater than the K-edge of the ion
of interest). The vacancies in the K-shell are filled in two ways. The dominant pathway
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is via Auger decay: an electron in n = 2 fills the hole in n = 1, and simultaneously a
second n = 2 electron is ejected into the continuum - the transition is radiation-less. The
original electron ejected into the continuum and that via Auger decay both rapidly ther-
malise with the other free electrons as they further collisionally ionise the system on the

Fig. 3.: Figure from [7] The reduction
in the ionization potential of Mg, Al
and Si in the different materials is plot-
ted as a function of the ionic charge
state and is compared with the pre-
dictions of analytical models (EK and
SP – see text), assuming a plasma ion-
ization equal to the charge state. The
data sets for each different active ma-
terial are slightly shifted horizontally
for clarity.

timescale of a couple of femtoseconds.
Whilst Auger decay is the common way the
K-shell hole is filled, in 3% of cases (for alu-
minium) a photon is emitted when the n = 2
electron decays to n = 1. This is a K-α pho-
ton, and it is by recording these photons that
the conditions within the solid plasma are
diagnosed. As the target is heated through-
out the pulse, higher and higher ionisation
stages are produced. In the case of alu-
minium, this results in fewer electrons in the
L-shell. As the L-shell population is reduced,
there is less screening of both the n = 1 and
other n = 2 electrons, with the result that
for higher charge states the K-α photon en-
ergy shifts to higher energies for each charge
state, and the K-edge of each charge state
also gets larger and larger. Indeed, depend-
ing on what energy the FEL has been tuned
to, it is possible for the K-edge of a particular
charge state to be higher in energy than the
FEL photon energy. In this case, to first or-
der, no more electrons can be photo-ionized
from the K-shell, and so K-α photons from
these higher charge states are not seen.

The above description goes a long way to
explaining the experimental data shown in Fig. 2. If we look at the spectrum at a partic-
ular FEL energy we only see K-α emission from those charge states with K-edges below
the FEL photon energy. Alternatively, we can pick a particular charge state, and see
at what FEL photon energy K-α emission from that charge state commences. Where it
should commence according to the oft-used SP model is shown by the open circles in 2 –
that is to say that the IPD is much greater than predicted for these conditions. Further
analysis of the data for Al [5] showed that the IPD was actually in better agreement
with an even older model due to Ecker and Kröll [8] (the EK model), though the authors
of [5] were careful to note that no classical model was likely to capture all the pertinent
physics. Indeed, further studies for Mg, Al, and Si in both elements and compounds
have found more complex behaviour [7], as shown in Fig. 3 which are in good agree-
ment with ab initio density functional theory calculations [9]. This work has aroused
considerable interest, with many groups now attempting to calculate the degree of IPD
in dense plasmas. A further impetus for the work has been provided by independent
measurements on hotter dense plasmas, which indicate a lower degree of IPD than in the
FEL experiments [10]. Interestingly, the DFT calculations hint that the IPD decreases
as the temperature increases, but these calculations cannot yet attain the temperatures
required to resolve the differences.

In closing this section it is also worth noting that the data shown in Fig. 2 are
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extremely rich, and have also yielded information on resonance phenomenon [11] (where
the k-α transitions are resonantly pumped) and on the rate of collisional ionisation within
the plasma [12], though such topics are omitted here for the sake of brevity.

4. – Compression of Matter by Laser Ablation

In the previous section we considered a solid heated within 100-fsec by the FEL itself.
We now consider creating HED states of matter with a few-nanosecond optical laser,
and then subsequently probing these states with the FEL. Matter can be compressed
statically by placing samples between two diamond anvils and applying pressure [13].
However, the pressure achievable by such means has its limits, set eventually by the
ultimate strength of diamond. Whilst great advances have been made using miniature
spherical nanodiamonds [14], the vast majority of work in this area is still limited to a
couple of Mbar at best. On the other hand, with sufficient laser energy, Gbar pressures
can be achieve with lasers (although those alongside FELs at present are limited also to
a few Mbar).

A detailed quantitative model of how laser light at high intensities is absorbed by
matter and produces pressure is beyond the scope of this elementary paper. However,
a simple model that provides qualitative understanding (and even decent order of mag-
nitude estimates) can be constructed as follows. First, we note that a plasma has a
refractive index, µ, to light of frequency ω, given by

µ =

√
1−

ω2
p

ω2
,(8)

where ωp =
√
ne2/(ε0me) is the plasma frequency. Thus light can only propagate up to a

certain electron density, nc, which we call the critical density, given by nc = ε0meω
2/e2.

A high power laser produces a plasma on the surface of the target which expands into
the vacuum. The laser light deposits energy up to the critical surface, producing a
hot plasma to that point. Energy must be thermally transported down from the critical
surface to the target to keep ablating material. We assume a stead state situation ensues,
by assuming that the flow velocity of the material at the critical surface is equal to the
sound speed – it is Mach 1. That is to say vc ≈

√
(P/ρc). All the pieces are now in place

to construct our simple model. We equate a fraction, α, of the laser intensity I to flow
down the temperature gradient to sustain the ablative flow, and give rise to the rate of
outflow of energy at the critical surface. That is to say,

αI ≈ ρcv3c = ρc

(
P

ρc

)3/2

,(9)

where

ρc ≈ 2mpnc ≈
2mpmeε0ω

2

e2
.(10)

From equations (9) and (10) we find

P =

(
8π2mpmeε0c

2

e2

)1/3

(αI/λ)2/3 .(11)
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For example, for light of wavelength 1-µm, an irradiance of 1013Wcm−2, and assuming
α = 0.5, the above equation gives a pressure estimate of 2 Mbar, which is surprisingly
close to the experimental result, given the crudeness of the model.

5. – Shock Compression

As the plasma ablates from the surface, from Newton’s third law a pressure pulse is
launched into the underlying material. As a general rule, the speed of sound increases
as a function of compression such that a compression wave in a material launched by
laser ablation will steepen up into a shock wave, comprising a discontinuity in density
and pressure. This steepening occurs as the more compressed material is travelling faster
than the less compressed material. Shock compression of matter is extremely interesting
in its own right. One aspect of a shock is that the conditions behind the shock front
must obey the Rankine-Hugoniot relations, which follow simply from the conservation of
mass, momentum, and energy across the shock front.

Consider a shock travelling at velocity Us through a medium with ambient conditions
of a pressure P0 and density ρ0 and energy density E0. Within the material behind the
shock the particles move with a velocity up and the density, pressure and energy density
are ρ1, P1, and E1 respectively. Conservation of mass dictates that

ρ0Us = ρ1(Us − up) ,(12)

whilst conservation of momentum implies that

P1 − P0 = ρ0Usup ,(13)

and finally, conservation of energy leads to

E1 − E0 =
1

2
(P1 − P0)

(
1

ρ0
− 1

ρ1

)
.(14)

It should be noted that, assuming we know the ambient conditions, these three equations
have five unknowns: P1, ρ1, E1, Us and up. Therefore a measure of any two of them gives
full information on the thermodynamic conditions (in terms of E1, P1 and ρ1) behind
the shock. The locus of points reached by shock compression is known as the Hugoniot.
It is shown schematically in PV space in Fig. 4. Note the Hugoniot lies above the cold
compresson curve, as the system is heated during the shock.

5
.
1. Pressure measurements. – The method used to deduce the pressure in the target

is VISAR (velocity interferometer system for any reflector) [15]. In this system, the
rear surface of the target is used as one of the reflecting surfaces in a laser-illuminated
interferometer. The input laser beam is split, and a part delayed by a few nsec before
being combined with an undelayed part of the original beam. Light reflected from the
target experiences a Doppler shift as the surface moves as the compression wave breaks
out, and this light is constantly being re-combined with the light whose frequency is
determined by the conditions some short time τ earlier, where τ is the delay time.
The VISAR system has some specific optical properties, which can be ascertained from
reference [15], which overcome the problems of poor fringe contrast often encountered
with reflection from diffusely scattering surfaces. The fringes are recorded on an optical
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streak camera, and the shift in the fringes as a function of time allows a measurement of
the rear surface velocity of the target.

5
.
2. Shock studies with X-ray FELs - Deformation. – When a crystalline solid is sub-

jected to a shock by planar impact, huge shear stresses are induced, as the total strains
(elastic plus plastic) applied to the material are fully one dimensional. This inevitably
leads to some fundamental questions: how quickly can a solid material ‘flow’ to relieve
these enormous shear stresses, and what are the conditions within the material on ex-
tremely short timescales? Before the advent of FELs attempts to answer these questions
relied on multi-million atom molecular dynamics simulations. In the work of Bringa

Fig. 4.: Hugoniot, isentrope and 0 K isotherm of
Al from initial specific volume of crystal to spe-
cific volumes near 150 GPa pressures (McMahan
1976). Reprinted with permission from Nellis
(1997), Copyright 1997, VCH Publishers. taken
from [16]

and co-workers [17], it was pre-
dicted that if a face-centred-cubic
crystal such as copper was com-
pressed sufficiently rapidly (on a
timescale shorter than tens of fem-
toseconds), the ultimate elastic
compressive strength of the mate-
rial could be reached – that is to
say at the atomic level the cubic
lattice would compress in one di-
mension only up to a point given by
the ultimate strength of the mate-
rial, which corresponds to an enor-
mous elastic compression of order
17%. [18]. The rapid compression
would not give sufficient time for
pre-existing defects to relieve the
high stresses and strains, with the
plastic strain being relieved at a
rate determined by Orowan’s equa-
tion, which states that the rate of
plastic strain is given by

dεp
dt

= N |b|v ,(15)

where N is the number of mobile dislocations, b their burgers vector, and v their velocity.
Thus at very high strain rates the material would reach ultimate compressive strength,
before the lattice failed by copious rapid generation of defects, and at the lattice level
moving from having the unit cell compressed in one dimension, to be reduced in all three.

The experiment which demonstrated this was performed at LCLS [19], and is shown
in schematic form in Fig. 5. Thin (1-µm) layers of copper were deposited on Si wafers.
A compression wave, with peak pressure close to 1 Mbar, was launched in them by a
roughly Gaussian 180-psec laser pulse. X-rays of energy 8 keV were diffracted from the
shocked region, and could be timed w.r.t. the shock pulse to better than a psec, and
then successive shots taken with the delays changed by 10 to 20 psec. The copper targets
were fibre textured – that is to say normal to the target they had sub-µm grains that
were preferentially oriented ±3◦ along the [111] direction, but random azimuthally about
it. Diffraction then took place from the [11̄1] planes. The data, alongside the simulated
diffraction signal [20], is shown in Fig. 6.
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Fig. 5.: Schematic diagram of the experiment to measure the ultimate compressive strength of
copper. The output of a 180-psec laser pulse focussed to a 200-µm spot launches a pressure wave
into 1-µm thick fibre-textured copper. During the compression the 8 keV 100-fsec x-rays from
LCLS are diffracted from the sample, forming Debye-Scherrer rings on the detector, allowing
the deformation of the lattice to be recorded. Figure taken from [19].

The unshocked material scatters x-rays close to 39.5◦, and diminishes in intensity as
the wave traverses the sample. Early in time a new peak occurs at around 40.25◦, which
corresponds to 1-D elastic compression of about 17%, as predicted. On a timescale of
about 60-psec, again in good agreement with original predictions, diffraction at higher
angles occurs, consistent with the lattice relaxing in all three dimensions, but with a
lower strain in each.

5
.
3. Shock studies with X-ray FELs - Phase Transitions. – As well as studying how

materials deform under rapid compression, the question arises as to whether complex
new phases be formed on the nanosecond timescale of these compression experiments?
The short answer is yes – but with caveats that we need to consider. The most complex
polymorphic shock-induced phase transition yet recorded via dynamic diffraction has
been in the study of shock-compressed scandium. [21] In this experiment the Sc was
shocked by laser-ablation (via a kapton overlay) to pressures in excess of 80 GPa. The
diffraction data is shown in Fig. 7.

At 51.1 GPa a complex host-guest (HG) structure was observed. HG phases are
remarkable states of crystalline matter, which can be thought of as one crystalline phase
(the host) having periodic holes drilled through it, along which are strung 1-D chains
of atoms (the guest) with a lattice-spacing completely incommensurate with that of the
host. Since their initial discovery it has been noted that many materials could potentially
have such structures within their phase diagram – for example aluminium is predicted
to exhibit such behaviour at pressures of 3200 GPa. [22]

We note that the plot of the Hugoniot on the right hand side of Fig.7 has been
obtained by deducing the density from X-ray diffraction, and the pressure using VISAR.
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Fig. 6.: Experimental diffraction data from the experiment depicted in Fig. 5 resulting from the
azimuthal integration around the Debye-Scherrer ring. The diffraction profiles are divided into
three regions to illustrate the characteristic lattice response: region I, the unstrained lattice; re-
gion II, the elastically compressed lattice; and region III, the lattice exhibiting three-dimensional
relaxation. a.u., arbitrary units. (B) Simulated diffraction data resulting from the calculated
strain profiles, showing good agreement with experiment. (C) The modelled time-dependent
normal elastic strain and (D) transverse plastic strain profiles versus sample depth using the
code described in [20].

As noted in section 5, knowing these two quantities allows us to deduce the other three.
It can be seen that the fractional experimental errors in the density measurement are
smaller than those of the pressure. This is due to a relatively poor quality of uniformity
of illumination of the drive laser, and a priority for future optical lasers sited alongside
x-ray FELs will be to improve significantly the beam spatial profiles.

The phase diagram and transition pressures deduced in this work are close to those
seen in static experiments. However, we note that there exist ‘sluggish’ transitions which
can have significantly enthalpy barriers between phases, and given these ultrafast exper-
iments are still very much in their infancy it remains to be seen how the phase diagram
as mapped out by dynamic compression fully relates to the equilibrium diagram in many
cases.

6. – X-Ray Thomson Scattering

Thus far we have considered the shock compression of matter to regimes where the
sample remains solid. At higher pressures (or with x-ray heating), it can attain the
plasma state. Under these conditions diffraction can still be undertaken - monitor-
ing the x-ray scattering as a function of angle, but now the atoms are not on a crys-
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Fig. 7.: Reproduced from [21]. A two-phase (62%:38% uncompressed- hcp:disordered-HG)
Rietveld fit to the diffraction profile obtained at 51.1 GPa (λ=1.4089 Å), with the most intense
HG peaks indexed. The calculated peak positions of the best-fitting uncompressed-hcp and
HG unit cells are shown by upper and lower tick marks beneath the profile. The inset shows
an uncompressed-hcp/ordered-HG fit to to the same profile. The additional (2001) guest-only
peak, and the intensity mismatches caused by the intensities of the (2201) and (3101) guest-only
peaks, are highlighted with arrows.

tal lattice, the diffracted x-rays provide a pattern corresponding more like that of a

Fig. 8.: Radial distribution functions
g(r) (in the hypernetted-chain approx-
imation) for a one-component plasma.
taken from [23].

liquid. The diffracted x-rays now provide in-
formation on the pair distribution function,
g(r). If a given particle is taken to be at
the origin O, and if ρ = N/V is the average
number density of particles, then the local
time-averaged density at a distance r from
O is ρg(r). The pair distribution function is
a function of the degree of coupling within
the plasma. As an example, Fig. 8 shows
how g(r) varies as we change the coupling
parameter, Γ. Close to the ideal gas classi-
cal plasma (small coupling) the probability
of finding particles close to a test particle
is uniform. Coupling changes this, leading
to the observation of shells of probability as
found in a liquid. Eventually, at very high
coupling, a solid would be formed.

The pair distribution factor can be mea-
sured by scattering, just like Bragg scatter-
ing from a solid. It is of great importance,

because it is related to the internal energy of the system. Care must be taken in con-
sidering the structure factor of the system, as it is often defined differently for a plasma
than for a solid. A plasma physicist defines the structure factor, S(k) as

S(k) = 1 +
1

N
<

N∑
i 6=j=1

eik·(ri−rj) > ,(16)
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(whereas the 1 on the right hand side is ignored by crystallographers, as then the square
of structure factor is directly related to the intensity of scattered x-rays). The structure
factor and pair distribution function are related by a Fourier transform

g(r)− 1 =
1

N − 1

∑
k

eik·r[S(k)− 1] .(17)

It is beyond the level of these notes, and we refer the reader to a standard text on plasma
physics, but the important point to note is that S(k) is related to the internal energy of
the system

Eint

N
=

3

2
kBT +

1

2V

∑
k6=0

Uk[S(k)− 1] where Uk =
Z2e2

ε0k2
,(18)

which in turn, via the virial theorem, is related to the pressure

P

P ideal
= 1 +

1

3

Eint − Eideal
int

NkBT
,(19)

where P ideal = NkBT . Hence if we could measure the structure over a significant range
of k-space, we could in principle obtain information about the pressure and energy in the
plasma.

Thus the experiments that can be performed with FELs comprise creating such
strongly coupled plasmas by optical shock compression, and then elastically scattering
the FEL pulse from them, measuring the diffraction pattern as a function of angle. An
example of such data is shown in Fig. 9, where the x-rays from LCLS are scattered from
a thin foil of aluminium. The Bragg peaks of the uncompressed and compressed solid are
visible at the lowest pressures, and then as the material undergoes melting at high pres-
sures, liquid diffraction features are seen that provide information on the first maximum
of the g(r) function, and are compared with DFT simulations. A point of importance
to note is that only the first peak in g(r) is being recorded, and thus measurements are
not yet extending so far in reciprocal space as to fully enable comparisons with predic-
tions of the behaviour of the higher order peaks, and allow an accurate determination of
internal energy and pressure. Clearly probing with high energy x-ray laser pulses would
be advantageous.

The elastically scattered x-rays as a function of angle that we have considered above
give us information about the structure of the material: this is the same regime of Bragg
scattering from a crystal. However, collective oscillations also take place in the plasma,
from which x-rays can inelastically scatter. If electrons are displaced from the ions in
a cold system then they will oscillate at the plasma frequency, which is determined by
the electron density: ωp =

√
ne2/ε0me. For a cold plasma we see that such waves are

non-dispersive: there is no dependence at all on k−vector. However, we note equation
(4) implies that a typical thermal electron, with velocity vth =

√
kBT , will travel roughly

a Debye length within a plasma period, so we might expect the frequency of such waves
in a warm plasma to be altered when our typical electron has time to travel from a
peak to a trough within the wave during one oscillation. Indeed this is the case, and
a perusal of any standard plasma textbook will show that in a classical plasma this
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leads to modification of the frequency of plasma waves in a warm plasma, known as the
Bohm-Gross relation:

ω2 = ω2
p + 3k2v2th .(20)

Fig. 9.: Bragg diffraction from an alu-
minium sample at various shock pressures
as the pressure is raised from ambient, to a
shock compressed solid, and finally to the
liquid state, along with the inferred densi-
ties. The figure is taken from [24]

Thus x-rays incident on a plasma can
also undergo inelastic scattering, where they
gain or lose a quantum of the plasma en-
ergy, but now we need to monitor the en-
ergy of the scattered x-ray at a given angle,
not just the fact that is has been scattered
(as with elastic scattering). As the energy
of the plasma wave, given by equation (20),
now has terms that depend both on density
and temperature, in principle both can be
extracted from the change in x-ray energy.
Care must be taken, however, as the deriva-
tion of the above dispersion relation is only
strictly valid in the classical regime. Fur-
thermore, the above simplified picture does
not take into account damping of the plasma
waves, either via collisionless or collisional
damping. In practice, as we are consider-
ing non-ideal plasmas, data must be com-
pared with more sophisticated simulations,
such as those based on ab initio density func-
tional theory models (see for example the
work within [25]).

As an example of this inelastic scatter-
ing, Fig. 10 shows ineleastic scattering, once
more from shock compressed aluminium.
The x-rays incident on the samples have an
energy of 8 keV, and the scattered x-rays
are collected by a high-efficiency Bragg crys-
tal spectrometer. X-rays lose energy to plas-
mons in the system, which gives rise to the
less intense peaks at lower energy, with the
larger shift consistent with a compression
of the aluminum from 2.7 g cm−3 to 6.3 g
cm−3. The shift is energy is dominated by
the density, (i.e. the ωp term in equation
(20)), with temperature information being
derived from the elastic peak amplitude, and

consistency with the plasma shift with a result of 1.75± 0.5 eV.

6
.
1. Quasi-Isentropic Compression. – No review of the field would be complete without

mentioning that there is a growing interest in using laser ablation not just to shock-
compress samples, but to compress them quasi-isentropically. The study of materials
subjected to shock compression is of interest in its own right. However, in one respect
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applying a shock in order to compress matter has a serious deficiency, the origin of which
can be traced back to equation (14), in conjunction with a study of Fig. 4. We see
that the total energy imparted to the material by a shock is the area of the triangle
in the figure, whereas the energy required simply to compress the material is closer
to the cold curve shown. The difference between the two (the straight line connecting
P0, ρ0 and P1, ρ1 is known as the Rayleigh line) represents the thermal energy imparted
to the material by the shock process and is shown by the hatched area: a shock is a
highly entropic event that generates significant heat. So much so, that when plotted in
temperature-pressure space the Hugoniot of a typical metal quickly rises above the melt
curve, such that most metals melt upon shock compression somewhere between 0.5 and 3

Fig. 10.: X-ray scattering spectra from
laser-compressed and solid-density alu-
minium - see text for details. The figure
is taken from [24].

Mbar (depending upon the particular
metal). This is clearly disadvantageous if
we wish to study solids at ultra-high pres-
sures, which we wish to do in order to ex-
plore the phase diagram of matter into hith-
erto unexplored regions that may be of rel-
evance to the conditions deep within the in-
teriors of the plethora of exoplanets that are
now being discovered on an almost daily ba-
sis. Temperature rises due to compression
along an isentrope are considerably lower
than those along a shock. Indeed, it can be
shown by a simple argument that for most
solids compression along an isentrope will re-
sult in the material staying solid, by always
being below the melt line. The tenet of this
argument runs as follows. The Grüneisen
parameter is defined as

γ =

(
∂ lnT

∂ ln ρ

)
S

≡
(
∂ ln θD
∂ ln ρ

)
S

,(21)

where θD is the Debye temperature of the solid:

θD ≈
h̄c

akB
∝ cρ1/3 ,(22)

where c is the speed of sound, and a the lattice spacing. The far right hand side of
equation (21) follows as clearly T/θD is constant along an isentrope, as the number of
ways that the various modes in crystal are populated cannot change along such a path.

An over-simplified but useful model of melting is given by the Lindemann criterion,
which assumes that this phase transition occurs when the lattice vibrations reach an
amplitude that is a certain fraction of the lattice spacing – usually taken to be about 0.1.
According to the Debye model, for an rms displacement x of an atom from its equilibrium
position

M < x2 > ω2
D ≈ kT ,(23)
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where h̄ωD = kBθD. From the Lindemann criterion we deduce that the melt temperature,
Tm ∝ a2θ2D, which in turn from equation (22) implies

Tm ∝ θ2Dρ−2/3 ,(24)

from which we deduce

d lnTm
d ln ρ

= 2

(
γ − 1

3

)
.(25)

From this it follows that if γ > 2/3 then the melt temperature increases with compression
more quickly than the temperature along an isentrope, and thus we should be able to
keep the material solid if we keep close to the isentrope. Interesting, most materials
have a γ far higher than this value, providing scope for the creation of solid matter at
ultra-high density.

The question that now arises is how do we compress along an isentrope, rather than
a shock? The response is we must compress slowly, but how slowly? This question has
been addressed by Higginbotham and co-workers [26]. If the shock were purely elastic,
it would be sufficient if each part of the target were compressed on the timescale of a
few phonon periods (still very fast), though care must be taken as any ramp wave tends
to steepen to a shock. However, plasticity is at work to relieve the shear stress, and
the authors of [26] note that the pertinent timescale to be on an isentrope is a ramp
that is long compared with the natural rise time of a shock for the same pressure. It is
known that the relationship between the strain rate and peak stress across a shock front
obeys a fourth power law (ε̇p ∝ σ4

max), referred to as the Swegle-Grady relation, (though
this is still far from being fully understood [27]). The pertinent timescales are a few to
ten nanoseconds in most cases, and on larger laser systems than those yet put alongside
extant FELs, diamond has been ramp-compressed to 50 Mbar [28], and using laser-based
nanosecond x-ray sources it is known that good diffraction signals can be obtained from
materials close to 12 Mbar [29] – that is to say it is known that good diffraction can be
obtained using dynamic compression at these high pressures.

7. – Future Prospects and Challenges

Whilst it is not possible to do justice to all of the significant advances being made
in the field of HED science using X-Ray FELs, we have tried to provide a simplified
overview of some of the main types of experiments, and important results achieved to
date. As we have seen, FELs have been used to isochorically heat matter, and obtain
hitherto inaccessible information on the ionisation thresholds in solid density plasmas.
The bright x-ray sources, shorter in duration than even the fastest phonon period, mean
that diffraction patterns (elastic scattering) can be obtained from both high pressure
solids and plasmas under shock compression induced by optical laser-ablation techniques.
Complex phases in the solid-state have been observed on these nano-second timescales,
and both elastic and inelastic scattering from dense plasmas is starting to provide useful
information on their structure and equation of state.

To a large extent further advances in this field will depend heavily on improvements
in both the FELs and the optical lasers used for compression. An extension of photon
energy (say to 25 keV, as envisaged at the European XFEL), will be welcome as diffraction
with higher momentum transfer will allow higher order peaks in the liquid/plasma pair
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distribution function to be measured (necessary for any detailed information related to
pressure and internal energy), and will also provide far better confidence in the inferences
made about crystal structure, by increasing the number of Bragg peaks.

An optical laser with a high repetition rate (10 Hz) and 100-J per pulse energy is
planned at XFEL [31], which, as can be seen from equation (11), will increase the pres-
sures created in the targets over those given in examples within this paper. Furthermore,
with sophisticated pulse shaping such a facility should allow tailored isentropic compres-
sion of the targets. In the case of such isentropic compression, a remaining significant
challenge is the development of techniques to measure the temperature of the material,
to provide full thermodynamic information across the phase diagram. One suggestion is
to use the Debye-Waller effect – i.e. the ratio of the intensities between higher order and
lower order diffraction peaks. For a reflection associated with reciprocal lattice vector
G, and Debye temperature θD, the intensity at temperature T scales as

IG(T ) ∝ exp(−A|G|2T/θ2D) .(26)

Interestingly, along an isentrope, the higher order reflections should actually get brighter
in most cases (if γ > 2/3) for exactly the same reason why we found that the isentrope
generally lies below the melt curve. An atom displaced from its equilibrium position,
when compressed along an isentrope, not only reduces the magnitude of its rms displace-
ment, but this also decreases as a fraction of the lattice spacing, thus reducing the phase
mismatch for higher order peaks (i.e. |G|2T/θ2D reduces upon isentropic compression if
γ > 2/3 [30]). However, effective use of equation (26) will need to find methods both to
infer the Debye temperature (which itself changes upon compression via γ, which itself
is not truly constant), and to disentangle intensity effects related to texture (i.e. the
geometric distribution of grain orientations within the sample).

8. – Summary

The advent of high brightness x-ray free electron lasers is already having significant
impact in the field of High Energy Density Science. They have exquisite properties both
as pumps – being able to create truly isochorically heating matter – and as a probes (via
both elastic and inelastic scattering). When combined with high power optical lasers,
many states of HED matter can be diagnosed with a degree of precision that has hitherto
proven elusive. As the number of FEL user facilities around the world grows over the next
few years, with extended x-ray energy ranges and improved optical laser systems along
side them, the prospects for significant further advances in this field appear promising.
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