
Science of Success

Albert-László Barabási
CENTER FOR COMPLEX NETWORKS RESEARCH

NORTHEASTERN UNIVERSITY
DEPARTMENT OF MEDICINE AND CCSB

HARVARD MEDICAL SCHOOL

CENTRAL EUROPEAN UNIVERSITY, BUDAPEST

www.BarabasiLab.com





Keith Shepherd's "Sunday Best”. http://baseballart.com/2010/07/shades-of-greatness-a-story-that-needed-to-be-told/

SOCIETY   Facebook: The Social Graph

Southampton, Network Science: Introduction July 15, 2011







Barabasi Lab



John Bardeen James Clerk Maxwell



1905
E = mc2

“miracle year“

1919
Eclipse proves 

general relativity

1922
Nobel Prize

1955
Heart failure

1915
general theory 

of relativity



Summary
“It is an interesting theory but to those who know our 

man in the street, it is not plausible.” 

“The true answer is democracy. The Declaration of 
Independence itself is outraged by the assertion that 

there is anything on earth, or in interstellar space that can 
be understood by only the chosen few.”

April1921, The New York Times
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Performance Success/Recognition

Performance is about you, success is about us.
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In 2014:
Google search: 27500000 hits

11,360 score points 
#1 & 2 in rankings 

2,811,439 Wikipedia visits 
61 wins & 8 losses  

Endorsements $21 Million
Winnings $14 Million 
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Summary

The First Law:
Performance is about you, 

success is about us.



Google search: 27,500,000 hits
11,360 score points 
#1 & 2 in rankings 

2,811,439 Wikipedia visits 
61 wins & 8 losses  Endorsements   $21 Million
Winnings   $13 Million 

Novak DjokovicPerformance Fame

Performance and Popularity
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Rank Tournament Value Number of Matches

V(t): Tournament value
n(t): Number of matches
Y(t): Number of active years

Δr(t)= r(t) – r’(t)
r(t): Rank of player
r’(t): Rank of best rival in tournament

H(Δr)={0 if Δr<0

1 if Δr≥0

Performance and Popularity
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Summary

The Second Law:
Performance drives success.
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FIG. 1: Distribution of fame in science. The distribution is
clearly better fitted by an exponential, P (F ) ∼ 0.26e

−0.001F

(curve, R
2 = 0.98), than by a power-law (straight line, R

2 =
0.82).
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FIG. 2: Fame of individual scientists (Google hits) versus
achievement (number of papers posted in the /cond-mat e-
archive). The data (◦) is better fitted by an almost linear
relation, F ∼ cA (straight line), than by the exponential de-
pendence found in [1].

0.82 for a power-law), leave little doubt as to which is the
better fit.

Next, we consider the relation between fame and
achievement in science. As a simple-minded measure of
achievement we take the total number of publications by
an author on the cond-mat board, perhaps thus paying
too much heed to the popular dictum “publish or per-
ish.” (The cond-mat board has been active since 1991.)
Our findings are summarized in Fig. 2. The wide scat-
ter of data points resembles that found for ace pilots by
the UCLA team, but our best fit indicates a power-law
(almost linear) increase of fame with achievement, rather
than the exponential dependence found there. Indeed, we
find R2 = 0.513 for a power-law fit, vs. 0.328 for an ex-
ponential: quite the reverse from [1], which (for 393 ace
pilots) cites R2 = 0.72 for the exponential, vs. 0.48 for the
linear fit. Our findings suggest the linear relation:

F (A) ∼ cAξ; ξ = 0.97 ± 0.04 ≈ 1. (5)

If Eqs. (4), (5) are right (with ξ = 1), it follows that
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FIG. 3: Distribution of achievement in science, as measured
by the number of papers posted by each author on the web
archive http://arxviv.org/archive/cond-mat. The data (◦) is
better fitted by an exponential, P (A) = 0.25e

−0.031A (curve,
R

2 = 0.90), than by a power-law (straight line, R
2 = 0.76).

achievement in science is distributed exponentially:

P (A) ∼ e−νA; ν = cη. (6)

Indeed, independent measurements of the probability
distribution of achievement do support this prediction
(Fig. 3). Moreover, the value found from a best fit
for ν = 0.031 ± 0.004 is consistent with c = 25 ± 1,
η = 0.00102 ± 0.00006, and cη = 0.0255 ± 0.0025 found
from the two previous plots. We note that the observed
exponential decay of the probability of achievement in sci-
ence is the only feature that seems to be shared with the
fame-achievement question in the case of ace pilots.

What could be the reason for the different fame vs. merit
patterns found for scientists and ace pilots? One likely dif-
ference is in the set of people who author webpages that
refer to ace pilots as opposed to those who write webpages
about scientists. In [1] the authors explained their results
using a “rich-get-richer” scheme [3], whereby individuals
that are already popular attract people to generate new
webpages at a rate proportional to their current popular-
ity. Implicit in this mechanism is the assumption that
there is an inexhaustible (or at least very large) pool of
people that may author webpages on a popular subject.
Such an assumption might perhaps be justified for a sub-
ject that enjoys wide notoriety within the public at large
— in other words, for truly famous subjects. We maintain
that, for whatever reason, scientists are simply not known
to the general public, thereby curtailing the option of a
rich-get-richer growth. Instead, it is mostly scientist that
write webpages about other scientists in their own disci-
pline. In fact, a simple explanation to the linear increase
of fame (number of Google hits) and achievement (number
of papers published) in science is that scientists get cited
on other scientists’ webpages in relation to their published
work. If each published work typically generates citations
in c webpages, it follows that A publications would con-
nect a scientist with F = cA webpages, on average.

It is also worth noting that it is not merely the rela-
tion between fame and merit that is different for scientists
and ace pilots, but also the distribution of fame itself. This

How Famous is a Scientist? — Famous to Those Who Know Us. 
James P. Bagrow,Hernan D. Rozenfeld,Erik M. Bollt,and Daniel ben-Avraham1 
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How Famous is a Scientist? — Famous to Those Who Know Us.

James P. Bagrow,1 Hernán D. Rozenfeld,1 Erik M. Bollt,2, 1 and Daniel ben-Avraham1

1Department of Physics, Clarkson University, Potsdam NY 13699-5820
2Department of Math and Computer Science, Clarkson University, Potsdam, NY 13699-5805

(Dated: February 2, 2008)

Following a recent idea, to measure fame by the number of Google hits found in a search on the
WWW, we study the relation between fame (Google hits) and merit (number of papers posted on
an electronic archive) for a random group of scientists in condensed matter and statistical physics.
Our findings show that fame and merit in science are linearly related, and that the probability
distribution for a certain level of fame falls off exponentially. This is in sharp contrast with the
original findings about WW II ace pilots, for which fame is exponentially related to merit (number
of downed planes), and the probability of fame decays in power-law fashion. Other groups in our
study show similar patterns of fame as for ace pilots.

PACS numbers: 01.75.+m, 02.50.-r, 87.23.Ge, 89.75.Hc

The concept of fame is socially and economically im-
portant to many people, and the organizations to which
they belong. However, it is not a well defined concept,
since each person has their own idea of what it means to
be famous, including perhaps: recognizable to the “com-
mon” person on the street (but how do we define the com-
mon person?), being on television, appearing frequently in
newspapers and in other media. Recently, researchers at
UCLA, Simkin and Roychowdhury [1] performed an em-
pirical study in which they catalogued the fame of World
War I pilot “Aces.” For reasons of specificity in measure-
ment, they chose an interesting definition of fame: the
number of hits a search for a person’s name garners in
the Google search engine. In this view, our fame is taken
to be how well linked we are in what has quickly become
a most popular medium — the World Wide Web — and
is related to the number of webpages that mention us, as
measured by the PageRank system that is behind Google’s
popular search engine. This is an ingenious idea, in that it
provides an inexpensive measurement of social impact, by
enlisting powerful computer resources, freely available to
all, to perform what would otherwise be an expensive so-
cial study. However, we mention that in practice even this
measurement is hard to make completely precise without
a great deal of effort, due to difficulty in separating coinci-
dences in popular names (doubling and tripling a person’s
fame), and also possibly missing a person’s full fame due
to too restrictive a search. Nonetheless, in this study, it is
precisely this Google-hits measure that we adapt, as care-
fully specified below.

The purpose of this communication is to explore
whether there is a difference between relative fame and
achievement (merit) in science, as compared to the find-
ings for ace pilots. In the UCLA study of fighter pilots [1],
a pilot’s achievement was measured by how many enemy
planes the pilot had downed; was he an ace? It was found
that fame increases exponentially with achievement, while
the distribution of fame falls off algebraically, nearly as
(fame)−2. A model mechanism behind these findings was
presented, describing the social context of fame within a
random graph. We have catalogued similar measurements
of fame and achievement for scientists working in the area

of condensed matter or statistical physics. We find dra-
matically different behavior, with fame increasing linearly
with achievement, and its probability falling off exponen-
tially. A simple argument to account for these facts sug-
gests that in difference to ace pilots, that enjoy public
renown, scientist are well known mostly within their own
community and do not truly reach real fame. Preliminary
studies of other groups of people reveal similar fame pat-
terns as for ace pilots.

We begin with a brief summary of the findings in [1].
The distribution of fame F (as measured by Google hits)
falls off roughly as an inverse square,

P (F ) ∼ F−γ ; γ ≈ 2, (1)

while it rises exponentially with achievement A (number
of downed planes),

F (A) ∼ eβA. (2)

The two relations imply that achievement ought to be ex-
ponentially distributed:

P (A) ∼ e−αA; α = β(γ − 1) ≈ β. (3)

This is indeed confirmed from independent measurements.
Our findings for scientists — researchers in the area

of condensed matter and statistical physics — are
dramatically different. We have examined a list of
449 researchers, drawn randomly from among those
who post articles on the web-based electronic board
http://www.arxiv.org/archive/cond-mat. As a measure of
fame, we used the UCLA Google-hit criterion, with search
lexicon: “Author’s name” AND “condensed matter” OR
“statistical physics” OR “statistical mechanics”. The dis-
tribution of fame, as measured by the number of hits,
decays exponentially, rather than in power-law fashion
(Fig. 1):

P (F ) ∼ e−ηF ; η = 0.00102± 0.00006. (4)

The figure results, as well as the computed correlation for
the two possibilities (R2 = 0.977 for the exponential, vs.



Manfred von Richthofen

“I have not gone to war to collect cheese 
and eggs, but for another purpose,” 

The Red Baron

Only 24 hours of training
Six kills within the first month
“Bloody April”: 21 planes in April 1917
80 planes in total

WWI ace pilot



•subject of more than thirty books
•his own 1917 autobiography
•Hollywood, graphic novels, 
•comic books, documentaries
•even - Red baron pizza
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Theory of Aces: Fame by chance or merit? 
 
M.V. Simkin and V.P. Roychowdhury 
Department of Electrical Engineering, University of California, Los Angeles, CA 90095-1594 
 
Abstract.  We study empirically how fame of WWI fighter-pilot aces, measured in numbers of web pages 
mentioning them, is related to their achievement or merit, measured in numbers of opponent aircraft destroyed. 
We find that on the average fame grows exponentially with achievement; to be precise, there is a strong 
correlation (~0.7) between achievement and the logarithm of fame.  At the same time, the number of individuals 
achieving a particular level of merit decreases exponentially with the magnitude of the level, leading to a 
power-law distribution of fame. A stochastic model that can explain the exponential growth of fame with merit 
is also proposed.  

 
 
An objective measure of achievement is difficult to 
define.  As a result, the question of how fame is 
related to merit is ill posed.   Fortunately, there is at 
least one case where an unquestionable measure of 
achievement does exist. This is the case of fighter-
pilots, for whom achievement can be measured as a 
number of opponent aircraft destroyed. The website 
[1] contains names of all WWI fighter-pilot aces1 
together with the number of victories each of them 
had achieved.  
 These days there is an easily assessable 
index to fame:  the number of web pages (as found 
using Google) that mention the person in question 
[2].  In the future we will refer to it as the number of 
Google hits. This approach is similar to measuring 
the impact of scientific papers in numbers of 
citations [3] and the importance of web pages in 
numbers of incoming hyperlinks [4].   
Unfortunately, it is not enough to paste a name into 
Google search window and record the number of 
search results, because many aces have namesakes. 
For this reason search results were filtered to contain 
words like pilot or ace2.  In many cases this method 
did not remove all of the namesakes and Google 
search results had to be visually inspected to 
complete the filtering. As it would be very time 
consuming to repeat this procedure for all 1,849 
registered aces, the study was limited to include only 
German aces (392 total). 
 
 
                                                 
1 An ace is a fighter pilot who achieved five or more victories. 
2 The complete list of used filter words is: flying, pilot, ace, 
flieger, Jasta, Fokker, and WWI. 
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Figure 1.  A scatter plot3 of fame versus achievement 
for 392 German WWI aces. The correlation 
coefficient of 0.72 suggests that %5272.0 2 ≅ of the 
variation in fame is explained by the variation in 
achievement. The straight line is the fit using Eq.2 
with 074.0≅β . 

                                                 
3 There are many aces with identical values of both achievement 
and fame. Therefore for display purposes random numbers 
between zero and one were added to every value of achievement 
and fame. This way the scatter plot represents the true density of 
the data points. 
 
 
 

 2 
Figure 1 is the result of this crusade. The correlation 
coefficient between achievement and the logarithm 
of fame is 0.72. In contrast the correlation between 
achievement and fame (without logarithm) is only 
0.48. The significance of the correlation coefficient, 
r, is that r2 is the fraction of variance in the data 
which is accounted for by linear regression. This 
means that about half ( %5272.0 2 ≅ ) of difference 
in fame is determined by difference in achievement.  
 For a dozen of aces, achievement was not 
limited to the amount of won fights. For example, 
Max Immelmann is more known for his aerobatic 
maneuvers and Rudolf Stark for his books. 
Unfortunately, several aces acquired additional 
“fame” for less esteemed “achievements”. This 
implies that the true correlation between 
achievement and fame is more than the above-
mentioned value of 0.72.  
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Figure 2.  Number of Google hits versus number of 
books for 33 German WWI aces, who have at least 
one book written about them. The correlation 
coefficient of 0.985 suggests that %97985.0 2 ≅ of 
the variation in book-fame is explained by the 
variation in Google-fame. The data on the numbers 
of books were provided by F. Olynyk. 

 

While fame is not perfectly correlated with 
achievement – different measures of fame do 
perfectly correlate between themselves. Some 33 
German WWI aces were famous enough to have 
books written about them. Figure 2 shows the scatter 
plot of book-fame versus Google-fame. The 
correlation coefficient of 0.985 suggests that 

%97985.0 2 ≅ of the variation in number of Google-
hits is explained by the variation in number of books.  
 The frequency distributions of achievement 
and fame are shown in Figures 3 and 4 
correspondingly. One can see that achievement is 
distributed exponentially and that fame has a power-
law tail. 
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Figure 3.  The distribution of achievement (number 
of victories) obtained using a sample of 392 German 
WWI aces. The straight line is the fit using Eq.1 
with 083.0≅α . 

The distribution of achievement (number 
of victories) obtained using a sample of 
392 German WWI aces. The straight line 
is the fit using Eq.1 withα ≅ 0.083. 

A scatter plot of fame versus achievement 
for 392 German WWI aces. The correlation 
coefficient of 0.72 suggests that 0.72 2 ≅ 52% of 
the variation in fame is explained by the variation 
in achievement. The straight line is the fit using 
Eq.2 with β ≅0.074. 
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Figure 4. The distribution of fame (number of 
Google hits) computed using a sample of 392 
German WWI aces. The straight line is the fit 

( ) γ−∝ FFp with 9.1≅γ . 

 
 When the distribution of achievement, A, is 
exponential, 

( ) ( )AAp ×−= αα exp ,   (1) 
and fame, F, grows exponentially with achievement, 

( ) ( )AAF ×= βexp ,    (2) 
then fame is distributed according to a power law. 
Clearly, elimination of A from Eq. (1) using Eq. (2): 

( ) ( )FFA ln1
β

= ; 
F

dFdA
×

=
β

 

leads to: 

( ) γ

β
α −= FFp ; 

β
αγ += 1 .  (3) 

Substituting the values 083.0≅α and 074.0≅β , 
obtained from the least-square fits of the data (see 
Figs. 1 and 3 into Eq.(3) we get 1.2≅γ which is 
quite close to 9.1≅γ obtained by fitting the actual 
distribution of fame (see Fig.4. 
 Exponential growth of fame with 
achievement leads to its unfair distribution. With 80 
confirmed victories Manfred von Richthofen is the 
top-scoring ace of the WWI. With 4,720 Google 
hits4 he is also the most famous. The total amount of 
                                                 
4 The data used in the paper were collected around May 2003. 
Today’s numbers of Google hits are different.  

opponent aircraft destroyed by German aces in 
WWI is 5050. At the same time there are 17,674 
Google hits for all of the German aces. This means 
that Manfred von Richthofen accumulated 

%27
674,17
720,4 ≅  of fame, while being personally 

responsible for shooting down only %6.1
5050

80 ≅ of 

opponent aircraft. On the opposite side 60 lowest 
scoring aces (with 5 victories each) together shot 

down 300 aircraft, or   %9.5
5050
300 ≅  of all aircraft 

destroyed. However, together they got only 463 

Google hits, or %6.2
674,17

463 ≅ of fame. 

  A simple stochastic model can explain why 
fame grows exponentially with achievement.  It is 
convenient to describe the dynamics of fame in terms 
of memes [5] (we use this word in the sense of a 
piece of information, which can pass from one mind 
to another). We define the fame of X as the number 
of people who know X, or, in other words, the 
number of memes about X. In practice we can’t 
count the number of memes, but we can count the 
number of webpages. It is natural to assume that the 
number of webpages, mentioning X, is proportional 
to the number of memes. 
 The rate of encountering memes about X is 
obviously proportional to the current number of such 
memes in the meme pool.  We will assume that when 
someone meets a meme about X, the probability that 
it will replicate into his mind is proportional to X’s 
achievement (which thus plays the role of meme’s 
Darwinian fitness). The rate of the spread of a meme 
about someone with achievement A is thus: 

As ν=  .     (5) 
Here ν is an unknown independent of A coefficient, 
which comprises the effects of all factors other than 
achievement on meme spread. The expectation value 
of the number of memes obeys the following 
evolution equation: 

FAFs
dt
Fd

ν==  .   (6) 

If at time 0 there was only one copy of the meme the 
solution of Eq. (5) is  

( ) ( )AttF ×= νexp ,    (7) 

                                                                                        
 

The distribution of fame (number 
of Google hits) computed using a 
sample of 392 German WWI 
aces. The straight line is the fit 
p(F)∝F−γ withγ ≅1.9.
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have on twitter with the number of citations they have for
their peer-reviewed work. This analysis has identified clear
outliers, or Kardashians, within the scientific community. I
propose a new metric, which I call the ‘Kardashian Index’,
which allows a simple quantification of the over, or under,
performance of a scientist on social media.

Methods
In this preliminary proof-of-concept study, I selected
research scientists and recorded their number of followers.
I did not devise a clever way of doing this randomly (after
all this is just a bit of fun) but tried to pick a randomish
selection of 40 scientists. I used Web of Knowledge to get
citation metrics on these individuals. Obviously, there are
caveats, as I may not have found them all if they have a
common name or they have changed address, but I did my
best. I tried to pick only individuals who have been on
Twitter for some time and I deliberately overlooked people
who were on BIG genome papers such as the first human
genomes as this over-inflated the citation scores. I also
captured whether the scientists were men or women. I had
intended to collect more data but it took a long time and I
therefore decided 40 would be enough to make a point.
Please don’t take this as representative of my normal
research rigor.
I took the number of Twitter followers as a measure of

‘celebrity’ while the number of citations was taken as a
measure of ‘scientific value’ (we can argue about that
another time). The data gathered are shown in Figure 1.

Results
While aware that the analysis is flawed and lacks statistical
rigor, it is a relief to see that there is some kind of positive
trend in scientific value when compared with celebrity. The
trend can be described by Equation 1:

F ¼ 43:3C0:32

Where F is the number of twitter followers and C is the
number of citations.
As a typical number of followers can now be calculated

using this formula, I propose that the Kardashian Index
(K-index) can be calculated as follows in Equation 2:

K−index ¼
F að Þ

F cð Þ

Where F(a) is the actual number of twitter followers of
researcher X and F(c) is the number researcher X should
have given their citations. Hence a high K-index is a
warning to the community that researcher X may have
built their public profile on shaky foundations, while a very
low K-index suggests that a scientist is being undervalued.
Here, I propose that those people whose K-index is greater
than 5 can be considered ‘Science Kardashians’; these
individuals are highlighted in Figure 1.

Discussion
In an age dominated by the cult of celebrity we, as scientists,
need to protect ourselves from mindlessly lauding shallow
popularity and take an informed and critical view of the
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Total citations plotted against number of Twitter followers for a sample of researcher-twitterers 

Kardashians

Figure 1 Twitter followers versus number of scientific citations for a sort-of-random sample of researcher tweeters. Red crosses
represent female tweeters and blue crosses represent male tweeters. The black trendline describes the best fit to the data. Those individuals with
a highly overinflated number of followers (when compared with the number predicted by the trendline) are highlighted by the area
labeled Kardashians.

Hall Genome Biology 2014, 15:424 Page 2 of 3
http://genomebiology.com/2014/15/1/424

N. Hall, Genome biology 15.7 (2014): 424.



Summary

The Second Law:
Performance drives success.
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Summary

The Third Law:
Performance is Bounded
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Image 3.4a
Anatomy of a binomial and a Poisson degree distribution.

The exact form of the degree distribution of a random network is the 
binomial distribution (left). For N  » ‹k›, the binomial can be well approx-
imated by a Poisson distribution (right). As both distributions describe 
the same quantity, they have the same properties, which are expressed in 
terms of different parameters: the binomial distribution uses p and N as 
its fundamental parameters, while the Poisson distribution has only one 
parameter, ‹k›.

Image 3.4b
Degree distribution is independent of the network size.

The degree distribution of a random network with average degree ‹k› = 50 
and sizes N = 102 , 103 , 104. For N = 102 the degree distribution deviates 
significantly from the Poisson prediction (8), as the condition for the 
Poisson approximation, N » ‹k›, is not satisfied. Hence for small networks 
one needs to use the exact binomial form of Eq. (7) (dotted line). For N = 
103 and larger networks the degree distribution becomes indistinguishable 
from the Poisson prediction, (8), shown as a continuous line, illustrating 
that for large N the degree distribution is independent of the network size. 
In the figure we averaged over 1,000 independently generated random 
networks to decrease the noise in the degree distribution.

54 | NETWORK SCIENCE



everyone who plays these games. And yet even the men within that elite
group fall into a normal distribution on the component skills of golf.[21]

Now we turn to an undisputed measure of excellence in golf: tourna-
ment victories.[22] For the sample, I wanted to define a set of golfers who had
completed their careers and had demonstrated that they were capable of play-
ing at a high level on the pro tour. I settled upon all golfers who had made
the cut (survived to the last two rounds) of the men’s PGA Championship at
least once from 1970 to 1989, and who had completed their careers by the
end of 2001. A total of 361 golfers met these criteria. How many tourna-
ments had they won? 

98 • HUMAN ACCOMPLISHMENT

The component skills of golf form bell curves

even among professionals

Source: Author’s analysis, Professional Golf Association statistics for exempt PGA players,
1991–2000.

50 60 70

Percentage of Greens Hit in Regulation

27.5 28 28.5 29 29.5 30 30.5

Average Putts per Round

235 245 255 265 275 285 295 305
Driving Distance in Yards

50 60 70 80
Percentage of Fairways Hit

Murray , Human Accomplishment: The Pursuit of Excellence in the Arts and Sciences.

Woods:
• between 2004 and 2006, 

averaging 303.24 yards
• 70.30 percent of greens in 

regulation between 2004 and 
2009.





Why consider performances only at the Olympics?

1. Data cover more than a century of sport performances since 
the first edition of the Olympics dates back to 1896.

2. Olympic data provide a regular view of the history of sport 
performances because the Games have been always 
organized every four years

3. Olympic medalists’ performances truly reflect the best 
achievements that could be obtained in a given historic 
moment

F. Radicchi, Universality, Limits and Predictability of Gold-Medal Performances at the Olympic Games. PloS ONE 7, e40335 (2012)



Relative change in performance

towards a limiting performance value

Comparison between the performances of gold-, silver-, bronze-medalists, etc..
but only for specialities where the conditions are the same: for example, 100 

meters, height jump, long jump, ...

for performance we mean: time, length, height, distance, .....

F. Radicchi, Universality, Limits and Predictability of Gold-Medal Performances at the Olympic Games. PloS ONE 7, e40335 (2012)



Relative changes in performance are normally distributed

gold-medalists 
male 

400 meters sprint

F. Radicchi, Universality, Limits and Predictability of Gold-Medal Performances at the Olympic Games. PloS ONE 7, e40335 (2012)

We believe that the statistics are less accurate because the analysis
is based on 19 editions instead of 26 since women started to run
the 100 meters sprint only in Amsterdam 1928, while men already
in Athens 1896. In particular, the lack of sufficient data provides
high statistical significance also for the unrealistic p?~0 seconds.
We expect, however, that the future addition of more data point
will suppress this effect. Despite these problems, our analysis still
produces meaningful estimates of the upper bound of the
asymptotic time: at 5% significance level, the asymptotic value is
expected to be lower than 10.31 seconds, while at 50%
significance level, p̂p? should be lower than 10.17 seconds. Also,
our best estimates of the limiting performance values are probably
not as accurate for this specialty (or other short distances) because
there is not enough reliable performance data regarding the first
editions of the Games (automatic time was introduced in Mexico
City 1968). The removal of data points for male 100 meters sprint
before Amsterdam 1928 (and in general of a few data points from
the entire time serie) leads also to the impossibility to determine
the best estimate of the asymptotic time as a global maximum of
statistical significance (see Fig. S3). For 100 meters sprint, we have

performed therefore an additional analysis in which we aggregated
together the results of gold, silver and bronze medalists and
obtained slightly different estimates for the limiting performance
values [p̂p?~8:80 seconds for men (Fig. S4) and p̂p?~9:64 seconds
for women (Fig. S5, S6)].

In general, our approach produces good results for specialties
with a sufficiently long tradition in the Games. This is basically
the case of all male specialties in athletics. Data about female
performances typically provide less accurate results, but still, in
the majority of the cases, the predictions of the asymptotic
performance values are reasonable. We summarize in Table 1
the results obtained for some specialties, while we refer to the
Supporting Information for a systematic analysis of all of them. It
should be noted that there are also a few cases in which things
do not work perfectly. In women 800 meters, for example,
statistical significance does not exhibit any peak value (Support-
ing Information S1). There are also a few specialties in which the
best estimate of the limiting performance value does not
correspond to the global maximum of statistical significance
(Supporting Information S1). In these cases, statistical signifi-

Figure 1. Performances of male gold medalists in 400 meters sprint. a. Best estimate of the asymptotic performance value. For each value of
p? lower than the actual Olympic record, we evaluate the goodness of the fit of performance improvements with a normal distribution. p̂p? is
determined as the value of the asymptotic time p? that maximizes the statistical significance (p-value). For men 400 meters sprint, our best estimate
is p̂p?~41:62 seconds, where we find that relative performance improvements are normally distributed with a confidence of 98%. For this value of
p?, the best empirical estimates of the average value and standard deviation are respectively m̂m~0:06 and ŝs~0:19. b. The cumulative distribution
function of the z-scores obtained for p?~p̂p? (red curve) is compared with the standard normal cumulative distribution (black curve). c. Normal
sample quantile are plotted against normal theoretical quantiles [51]. The dashed line corresponds to the theoretically expected behavior in case of a
perfect agreement between sample and theoretical distributions. d. z-scores of relative performance improvements between consecutive editions of
the Games.
doi:10.1371/journal.pone.0040335.g001
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p?, the best empirical estimates of the average value and standard deviation are respectively m̂m~0:06 and ŝs~0:19. b. The cumulative distribution
function of the z-scores obtained for p?~p̂p? (red curve) is compared with the standard normal cumulative distribution (black curve). c. Normal
sample quantile are plotted against normal theoretical quantiles [51]. The dashed line corresponds to the theoretically expected behavior in case of a
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the Games.
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We can make predictions 

cance is a non monotonic function of the p? and more maxima
are present. Still the peak value that appears more plausible can
be used as an estimate of p̂p?. Finally, there are three specialties
in athletics in which a clear peak in statistical significance is
visible only by excluding performance data of Sidney 2000, but
this exclusion is fully justified by the fact that the top athletes of
the moment did not take part in the competition (Supporting
Information S1). For example, about the men 200 meters sprint
of Sidney 2000, the web site sports-reference.com reports: ‘‘This
race was expected to be between the Americans Maurice Greene
and Michael Johnson. Greene was the best in the world at 100
meters and Johnson at 400 meters, and their race in the middle
distance was highly anticipated. But neither qualified for the
team at the Olympic Trials, succumbing to minor injuries,
although they both made the team in their better events.’’

The good accuracy of our best estimates of the limiting
performance values is supported also by the power-law relation
between these quantities and the length of the running events in
athletics (see Fig. 3a). As already observed by Katz and Katz,
world record times (pwr) and running distances (‘) are related by
the power-law relation pwr*‘a [21]. Katz and Katz studied the
relation between world record performances and running
distances in various epochs, and found that the power-law

exponent value a is always slightly larger than 1.1 but decreases
for more recent epochs. For example, they measured a^1:14 in
1925, and a^1:12 in 1995. On the basis of our measurements, we
claim that the asymptotic value of the exponent will be exactly
a?~1:1, when limiting performance values, and thus definitive
world records, will be reached in all specialties of athletics.

A final application of our findings is the prediction of future
performances at the Olympics. The performance value of the gold
medalist in London 2012, for example, can be estimated as
p2012~ p2008{p̂p?ð Þ 1{jð Þzp̂p?, where j is a random variate
extracted from the normal distribution N j; m̂m,ŝsð Þ with mean value
m̂m and standard deviation ŝs. Similar equations can be written also
to predict performance values of the other editions after London
2012. For each future edition of the Games, we can draw a
distribution of performance values (see Fig. 3b). The distribution is
normal for the edition of 2012, but diverges from normality as
time grows. In particular, while the expected performance value
decreases exponentially towards the asymptotic performance value
as time increases, the standard deviation initially grows as we move
further in future until predictions become again more accurate
because of the boundary effect of p̂p? (see Fig. 3c).

By simply looking at the performances expected at the next
edition of the Games in London 2012, we can ask what is the

Figure 2. Statistical properties of performance improvements in athletics. In the main panels we show the determination of the best
estimate p̂p? of the asymptotic performance value, while in the insets we provide a graphical comparison between the sample cumulative
distributions (red line) and the standard normal cumulative distribution (black line). a and b. We report the results obtained by the analysis of the
performances of male athletes in marathon (p̂p?~5,771:44 seconds, p-value ~0:58) and female athletes in long jump (p̂p?~8:12 meters, p-value
~0:34). c and d. We show the outcome of our method for performances of men and women in 100 meters sprint (respectively, p̂p?~8:28 seconds
and p-value ~0:64, p̂p?~9:72 seconds and p-value ~0:97).
doi:10.1371/journal.pone.0040335.g002
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and predictions were actually very good 

table published on July 12th, 2012. London Olympics started on July 27th, 2012

9.63
12.92
43.94
1650
7681
5.97
80.59
10.75
49.55
7.12
47.52
52.12
58.46
871

53.00
58.33
65.47
494

WR

WR=493



By 2054, women will run faster than men?

Atkinson M, Hay SI, Stephens P, Hunter C, Bignell G (2004) Momentous sprint at the 2156 Olympics ? Nature 431: 525–526.

Linear regression



HOW DO  WE DECIDE 
WHEN 

WE CAN’T DECIDE?



Famous for its fairness - Me0culous 

• Performers are invited from all over the world
• Once arrived in Brussels, whi8led down from 85 

to 12 finalists
• The same concerto, composed specifically for the 

compeAAon
• A random draw determines their performance 

order
• Everyone has exactly one week to pracAce



Glejser and Heyndel, Journal of Cultural Economics, 2001

Between 1952 and 1991, for over 40 years, 
11 winners in total in piano. Which day did they perform in? 

Order Count

Day 1 0

Day 2 2

Day 3 2

Day 4 2

Day 5 4

Day6 1

• those who performed during the first 
systematically ranked almost three positions 
below those who performed on the fifth day

• .those who performed second tended to be 
ranked one position higher than the opening 
act. 

• men were systematically ranked about two 
positions higher than women.

• Taken together, a female performer who 
opens the finals will be ranked about 6 
positions lower than a male performer with 
identical talent who performed second on 
day five or six.





(46) and the authenticity that this modality specifically commu-
nicates through expressive behavior (47).
The current research uses a two-pronged approach: (i) the

experimental design offers high test power and tight control over
variables of interest, allowing for better substantiated conclu-
sions, and (ii) the use of field data with real decision processes
and outcomes addresses external validity and relevance for a
broad range of contexts that involve performance evaluation.
Given the questionable reliability of expert ratings based on
audio-only information, and the recent works demonstrating the
substantial role of visual information (8, 22, 24), it may be that
a visual dominance would emerge above and beyond the impact
of auditory information.
In this set of experiments, participant responses were used to

extrapolate the evaluation processes of the original expert judges
and determine which cues—visual or auditory—were most in-
fluential for their decisions in arriving at the real-time results of
live music competitions. Given different versions of competition
performances, 1,164 participants in total were asked to identify
the actual competition winners. These choices were then com-
pared against the established outcomes, previously decided by
panels of expert judges (SI Text). As a domain in which sound is
central to what experts and novices alike value about performance,
music offers a strong test of the impact of visual information on
the judgment of performance.

Results
Experiment 1: Core Beliefs About Music. Suppose that you have the
chance to win cash bonuses if you can guess who won a live music
competition. You may choose the type of recording you think
would give you the best chance at winning the prize. You can
select sound recordings, video recordings, or recordings with
both video and sound. Which recordings do you choose? In ex-
periment 1, participants were asked to make exactly that decision
and bet their study earnings on their choices.
As expected, 58.5% chose the sound recordings, significantly

more so than the 14.2% who chose video recordings, χ2(1, n =
77) = 28.89, P < 0.001. Despite a “tax” levied on selecting the
recordings with both video and sound, 27.4% still chose those
recordings, a significantly larger proportion than those who
chose the video recordings, χ2(1, n = 44) = 4.46, P = 0.035. People
have the intuition that sound is a more revealing channel of in-
formation in the domain of music and that recordings with both

visual and auditory output offer additional and more relevant
information that better approximates the conditions under which
the original expert decisions were made (SI Text).

Experiments 2 –5. In experiments 2–5, the top three finalists in
each of 10 prestigious international classical music competitions
were presented to participants. Given such difficult decisions (SI
Text), untrained participants should fare no better than chance
(33%) in identifying the winners of these competitions. In fact,
even expert interrater agreement tends to be moderate, hovering
at an average of 67%; consensus is notoriously absent (48).
Novice participants. In experiment 2, novice participants were
presented with both video-only and sound-only versions of 6-s
clips of the top performances from international competitions.
Although 83.3% of participants reported that the sound mattered
most for their evaluation of music performance, these same par-
ticipants were significantly more likely to identify the winners
when they were presented with only the visual components of the
performances, t1(105) = 12.07, P < 0.001; Cohen’s d = 1.18 (Fig.
1). The item analysis indicated that the effect held across all 10
competitions, t2(9) = 4.37, P = 0.002. Indeed, with silent video-
only recordings, participants were significantly above chance
(52.5%), t(105) = 10.90, P < 0.001. With sound-only recordings,
they were significantly below chance (25.5%) at identifying the
winners, t(105) = −5.23, P < 0.001.
As seen in experiment 1, participants believed that recordings

with both video and sound would allow them to best approximate
the original expert judgments. Is it the case that more informa-
tion necessarily leads to better judgment? Experiment 3 tested
judgment when more information was available, and presented
participants with video-only, sound-only, or video-plus-sound ver-
sions of the performance clips included in experiment 2. Partici-
pants performed below chance with sound-only recordings (28.8%),
t(66) = −2.09, P = 0.040, and at chance with video-plus-sound
recordings (35.4%), t(67) = 0.94, P = not significant (n.s.). How-
ever, with silent video-only recordings, 46.4% of novices were able
to identify the winners, t(49) = 4.04, P < 0.001.
These findings suggest that novices are able to approximate

expert judgments, originally made after hours of live perfor-
mances, with brief, silent video recordings. However, when novices
were also given the sound of the performances through the video-
plus-sound recordings, they did no better than picking a winner at
random (SI Text). As surprising as these findings are, they may be
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Fig. 1. A comparison of the reported importance of sound vs. visuals for evaluation (Left), with the % novices identifying actual competition outcomes when
given sound-only vs. video-only stimuli (Right), in experiment 2 (n = 106).
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(46) and the authenticity that this modality specifically commu-
nicates through expressive behavior (47).
The current research uses a two-pronged approach: (i) the

experimental design offers high test power and tight control over
variables of interest, allowing for better substantiated conclu-
sions, and (ii) the use of field data with real decision processes
and outcomes addresses external validity and relevance for a
broad range of contexts that involve performance evaluation.
Given the questionable reliability of expert ratings based on
audio-only information, and the recent works demonstrating the
substantial role of visual information (8, 22, 24), it may be that
a visual dominance would emerge above and beyond the impact
of auditory information.
In this set of experiments, participant responses were used to

extrapolate the evaluation processes of the original expert judges
and determine which cues—visual or auditory—were most in-
fluential for their decisions in arriving at the real-time results of
live music competitions. Given different versions of competition
performances, 1,164 participants in total were asked to identify
the actual competition winners. These choices were then com-
pared against the established outcomes, previously decided by
panels of expert judges (SI Text). As a domain in which sound is
central to what experts and novices alike value about performance,
music offers a strong test of the impact of visual information on
the judgment of performance.

Results
Experiment 1: Core Beliefs About Music. Suppose that you have the
chance to win cash bonuses if you can guess who won a live music
competition. You may choose the type of recording you think
would give you the best chance at winning the prize. You can
select sound recordings, video recordings, or recordings with
both video and sound. Which recordings do you choose? In ex-
periment 1, participants were asked to make exactly that decision
and bet their study earnings on their choices.
As expected, 58.5% chose the sound recordings, significantly

more so than the 14.2% who chose video recordings, χ2(1, n =
77) = 28.89, P < 0.001. Despite a “tax” levied on selecting the
recordings with both video and sound, 27.4% still chose those
recordings, a significantly larger proportion than those who
chose the video recordings, χ2(1, n = 44) = 4.46, P = 0.035. People
have the intuition that sound is a more revealing channel of in-
formation in the domain of music and that recordings with both

visual and auditory output offer additional and more relevant
information that better approximates the conditions under which
the original expert decisions were made (SI Text).

Experiments 2 –5. In experiments 2–5, the top three finalists in
each of 10 prestigious international classical music competitions
were presented to participants. Given such difficult decisions (SI
Text), untrained participants should fare no better than chance
(33%) in identifying the winners of these competitions. In fact,
even expert interrater agreement tends to be moderate, hovering
at an average of 67%; consensus is notoriously absent (48).
Novice participants. In experiment 2, novice participants were
presented with both video-only and sound-only versions of 6-s
clips of the top performances from international competitions.
Although 83.3% of participants reported that the sound mattered
most for their evaluation of music performance, these same par-
ticipants were significantly more likely to identify the winners
when they were presented with only the visual components of the
performances, t1(105) = 12.07, P < 0.001; Cohen’s d = 1.18 (Fig.
1). The item analysis indicated that the effect held across all 10
competitions, t2(9) = 4.37, P = 0.002. Indeed, with silent video-
only recordings, participants were significantly above chance
(52.5%), t(105) = 10.90, P < 0.001. With sound-only recordings,
they were significantly below chance (25.5%) at identifying the
winners, t(105) = −5.23, P < 0.001.
As seen in experiment 1, participants believed that recordings

with both video and sound would allow them to best approximate
the original expert judgments. Is it the case that more informa-
tion necessarily leads to better judgment? Experiment 3 tested
judgment when more information was available, and presented
participants with video-only, sound-only, or video-plus-sound ver-
sions of the performance clips included in experiment 2. Partici-
pants performed below chance with sound-only recordings (28.8%),
t(66) = −2.09, P = 0.040, and at chance with video-plus-sound
recordings (35.4%), t(67) = 0.94, P = not significant (n.s.). How-
ever, with silent video-only recordings, 46.4% of novices were able
to identify the winners, t(49) = 4.04, P < 0.001.
These findings suggest that novices are able to approximate

expert judgments, originally made after hours of live perfor-
mances, with brief, silent video recordings. However, when novices
were also given the sound of the performances through the video-
plus-sound recordings, they did no better than picking a winner at
random (SI Text). As surprising as these findings are, they may be
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Fig. 1. A comparison of the reported importance of sound vs. visuals for evaluation (Left), with the % novices identifying actual competition outcomes when
given sound-only vs. video-only stimuli (Right), in experiment 2 (n = 106).
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Novices



due to novices’ lack of music training, which forces them to rely
on visual cues.
Expert participants. Using the same sets of competition clips and
paralleling the design in experiments 2 and 3, experiments 4 and
5 explored whether the dominance of visual cues remains in
domain experts. Professional musicians have the knowledge and
training to discern the quality of performance through sound;
they should be able to outperform novices in identifying the
actual winners. Although the assumed superior judgment of
experts is dependent on domain and context (49, 50), these
musicians had participated in and judged competitions and are
familiar with how professional judgment is determined.
In experiment 4, 96.3% of domain-expert participants reported

that the sound mattered more for their evaluations, χ2(1, n =
27) = 23.15, P < 0.001. Despite musicians’ training to use and value
sound in their evaluations, only 20.5% of experts identified the
winners when they heard sound-only versions of the recordings,
t(34) = −6.11, P < 0.001. However, 46.6% did so upon viewing
silent video clips, t(34) = 4.05, P < 0.001. Those with video-only
stimuli performed significantly better, compared with those who
heard sound-only stimuli, t1(34) = 5.89, P < 0.001; Cohen’s d =
1.01 (Fig. S1). An item analysis indicates that this effect held
across all 10 competitions, t2(9) = 3.74, P = 0.005.
In experiment 5, 82.3% of professional musicians cited sound

as the most important information for judgment, χ2(2, n = 96) =
103.56, P < 0.001. However, when provided sound, only 25.7% of
experts were able to identify the actual winners (Fig. 2), a rate
worse than chance, t(29) = −3.34, P = 0.002. With video-only
stimuli, musicians performed significantly better than chance
(47.0%) at identifying the actual winners, t(32) = 3.40, P = 0.002.
Experts were significantly better with video-only stimuli than
with sound-only stimuli, t1(61) = 4.48, P < 0.001; Cohen’s d =
1.20. An item analysis indicates that these effects were robust
across all 10 competitions, t2(9) = −2.36, P = 0.04.
In the third condition in this experiment, when provided with

stimuli with both video and sound, experts were again at chance
(SI Text) at 29.5%, t(39) = −1.43, P = n.s. They were not sig-
nificantly better than those who received sound-only stimuli, t
(48) = 1.33, P = n.s. Those who received video-only stimuli, even
compared with those who received both video and sound, were
still significantly more likely to approach the actual outcomes, t
(71) = 3.72, P < 0.001.
Experts were not significantly different from novices in their

judgments of music performance. Novices and experts are simi-
larly below chance with sound recordings and at chance with
recordings with both video and sound. Novices and experts also
paralleled each other in their use of different cues to arrive at the

competition outcomes made by the original judges, with no sig-
nificant differences through the sound-only recordings, t(95) =
0.85, P = n.s.; the video-plus-sound recordings, t(106) = 1.68,
P = n.s.; nor the video-only recordings, t(81) = −0.12, P = n.s.
In supplemental tests of the primacy of visual cues, additional

studies featuring the same between-subjects design as experi-
ments 3 and 5 replicate the findings outlined in this paper with
3-s and 1-s recordings. The at-chance findings with sound-only
and video-plus-sound recordings remain even with longer time
intervals ranging up to 60-s recordings. These results suggest that
the findings outlined in the current experiments remain mean-
ingful for more extended periods of evaluation.
These results demonstrate how visual information, the in-

formation generally deemed as peripheral in the domain of
music, can be overweighted when such inclination is neither
valued nor recognized. Ironically, this tendency results in our
neglect of the most relevant information: the sound of music.
What then are novices and experts paying attention to when
making their judgments? The next two experiments examine the
mechanisms that account for the primacy of visual cues and our
dependence on visual information. The studies explore the types
of visual information that are used in judgment and how motion,
emotion, and apparent motivation contribute to professional
inferences about the quality of music performance (SI Text).

Experiments 6 and 7: Mechanism. Movement and gesture are ele-
ments of performance that are primarily visual. Experiment 6
examined whether motion impacts the professional judgment of
music performance. In this study, recordings were distilled to their
most basic representation as outlines of motion (Fig. S2). After
seeing these 6-s silent clips of the three finalists, participants were
asked to identify the actual winners. Participants were significantly
better than chance (48.8%) at identifying the outcomes, t(88) =
6.49, P < 0.001. Viewing brief motion alone allowed an approxi-
mation of professional judgment made after hours of live per-
formance with both visual and auditory information.
The importance of dynamic visual information to professional

judgment was further established through two supplementary
experiments (SI Text). Although demographic cues such as race
and sex have been associated with various capabilities (51, 52),
such as the quality of musicianship (8)—and although the many
advantages of physical attractiveness have been documented (53),
from hiring (54) to income (55)—these static visual cues did not
significantly impact professional judgment in these competitions.
Visual information may be powerful through its associations

with expressive behavior (16, 56) and through its emotional im-
pact. Professional musicians may value novelty (57), involvement
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Fig. 2. The % professional musicians identifying actual competition outcomes given sound-only, video-only, or video-plus-sound stimuli, in experiment 5
(n = 103). Thirty-three percent indicates an identification rate at chance.
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Fig. S1. A comparison of the reported importance of sound versus visuals for evaluation (Left), with the % identifying actual outcomes when given sound-
only versus video-only stimuli (Right), in experiment 4 (n = 35). Using a within-subjects design, this study tested the impact of visual information on professional
musicians.

Fig. S2. Sample outline figure used in experiment 6, isolating visual information to basic motion alone. The outlines are the detected regions/silhouettes of
movement. After receiving silent performance excerpts of the musicians as rendered in the above example, participants were asked to identify the winners of
each competition.
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of the standardized scores in the first round, presented in the left-hand column of
Table 2, should be considered to examine hypotheses 1 and 2. Overall, appearing first
or last did not provide explanatory power in addition to a linear order effect. As with
the end-of-sequence and step-by-step judgments of Eurovision artists, figure skaters
who appeared later were judged as better. Performers! scores did not show a home
advantage, or benefits from being judged by a jury member with the same national-
ity. Dummy variables were significant for all participating countries (p< .05).

The right-hand side of Table 2 shows the results of a linear regression predicting
standardized scores in the second round, from variables specific to the first round.
They confirmed that the random draw for serial position in the first round predicted
who received better scores in the second round.

In both cases, adding dummy variables for the second, third, next to last and sec-
ond to last serial positions, showed no additional significant effects, and did not af-
fect the reported pattern of results. Neither did adding dummy variables for each
contest, or adjusting serial position by dividing it by the number of candidates in
each year!s competition. Separate partial models predicted scores obtained in the first
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Fig. 2. Mean standardized scores (A) and number of observations (B) by randomized serial position in the
first round, for figure skating contests.

Table 2
Estimates of standardized scores in the first and second round of World and European Figure Skating
Contests

Predictor variables First round (R2 = .56) Second round (R2 = .47)

B se b t B se b t

Serial position .02 .00 .20 7.61*** .02 .00 .12 3.58***
First !.05 .12 !.01 !.40 .18 .18 .03 1.02
Last .00 .12 .00 .03 .24 .17 .04 1.44
Juror from own country !.03 .05 !.02 !.59 .05 .07 .02 .68
Home advantage .07 .12 .01 .57 .13 .16 .03 .87

Note: All dummy variables for the country represented by the performer are significant (p< .05).
*p< .05, **p< .001, ***p< .001.

W. Bruine de Bruin / Acta Psychologica 118 (2005) 245–260 255
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(http://www.kolumbus.fi/jarpen; http://www.songcontest.nl/Years). Fans and profes-
sionals have suggested a higher probability of winning for songs performed near the
beginning or the end, countries that share culture with more national juries, the host,
and songs performed in English (see http://www.kolumbus.fi/jarpen; Haan et al.,
2003; Walraven & Willems, 2000; Yair, 1995). However, none of these analyses spe-
cifically compared serial position effects in Eurovision editions using end-of-sequence
procedures with those observed in Eurovision editions using step-by-step procedures.

2.2. Results

2.2.1. Serial position effects on standardized scores (Hypotheses 1 and 2)
Because the scoring system has been changed over the years, participants! final

scores were standardized within each contest. Unlike official jury members, televot-
ers were never enforced to watch the entire Eurovision program (a concern raised by
Walraven & Willems, 2000). Because lay judges who tuned in late may have been
hesitant to vote for the songs that they missed, songs that were performed later in
the sequence may have received more votes. A meta-analysis (see Rosenthal &
DiMatteo, 2000) across the 1998–2003 competitions that included televoting identi-
fied the overall correlation between standardized scores and serial position, the
z-value corresponding to the correlation, and the 95% confidence interval of that
z-value. These meta-analysis statistics showed that standardized scores increased
with serial position (r = .23, z = .23, 95% c.i. for z = .04, .42). Subsequent analyses
excluded contests that used televoting from the set that used end-of-sequence proce-
dures. The remaining data included 19 end-of-sequence and 22 step-by-step compe-
titions used by formal national juries. The first set had an average of 15.5 (s.d. = 2.9)
participants, and the latter 21.0 (s.d. = 2.3), showing a significant difference,
t(39) = 6.86, p < .001.

Fig. 1 shows mean standardized scores for the different serial positions, across
Eurovision Song Contests using end-of-sequence and those using step-by-step proce-
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Fig. 1. Mean standardized scores (A) and number of observations (B) by randomized serial position, in
Eurovision Song Contests using end-of-sequence and step-by-step procedures.
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2.2. Results

2.2.1. Serial position effects on standardized scores (Hypotheses 1 and 2)
Because the scoring system has been changed over the years, participants! final

scores were standardized within each contest. Unlike official jury members, televot-
ers were never enforced to watch the entire Eurovision program (a concern raised by
Walraven & Willems, 2000). Because lay judges who tuned in late may have been
hesitant to vote for the songs that they missed, songs that were performed later in
the sequence may have received more votes. A meta-analysis (see Rosenthal &
DiMatteo, 2000) across the 1998–2003 competitions that included televoting identi-
fied the overall correlation between standardized scores and serial position, the
z-value corresponding to the correlation, and the 95% confidence interval of that
z-value. These meta-analysis statistics showed that standardized scores increased
with serial position (r = .23, z = .23, 95% c.i. for z = .04, .42). Subsequent analyses
excluded contests that used televoting from the set that used end-of-sequence proce-
dures. The remaining data included 19 end-of-sequence and 22 step-by-step compe-
titions used by formal national juries. The first set had an average of 15.5 (s.d. = 2.9)
participants, and the latter 21.0 (s.d. = 2.3), showing a significant difference,
t(39) = 6.86, p < .001.

Fig. 1 shows mean standardized scores for the different serial positions, across
Eurovision Song Contests using end-of-sequence and those using step-by-step proce-
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Fig. 1. Mean standardized scores (A) and number of observations (B) by randomized serial position, in
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See the Excel sheet!

Week day Date Presented Pass No Pass

29/06 to 03/07 33 21 12

Monday 6-Jul 15 4 11
Tuesday 7-Jul 15 4 11
Wednesday 8-Jul 15 5 10
Thursday 9-Jul 15 4 11
Friday 10-Jul 9 5 4

Monday 13-Jul 15 6 9
Tuesday 14-Jul 15 9 6
Wednesday 15-Jul 15 4 11
Thursday 16-Jul 15 5 10
Friday 17-Jul 8 4 4

Monday 20-Jul 17 6 11
Tuesday 21-Jul 14 5 9
Wednesday 22-Jul 15 5 10
Thursday 23-Jul 15 7 8
Friday 24-Jul 12 5 7

Monday 27-Jul 13 9 4
Tuesday 28-Jul 15 3 12
Wednesday 29-Jul 15 7 8
Thursday 30-Jul 15 9 6
Friday 31-Jul 9 7 2

Thursday 3-Sep 14 5 9
Friday 4-Sep 8 2 6

Monday 7-Sep 14 4 10
Tuesday 8-Sep 14 7 7
Wednesday 9-Sep 14 6 8
Thursday 10-Sep 14 7 7
Friday 11-Sep 6 4 2

TOTAL 394 169 225

Lunes 40%
Martes 38%
Miércoles 37%
Jueves 42%
Viernes 53%

% de aprobados por día de la semana 

EXAM 1. 
GENERAL CULTURE

Week day Date Presented Pass No Pass

29/06 to 03/07 33 21 12

Monday 6-Jul 15 4 11
Tuesday 7-Jul 15 4 11
Wednesday 8-Jul 15 5 10
Thursday 9-Jul 15 4 11
Friday 10-Jul 9 5 4

Monday 13-Jul 15 6 9
Tuesday 14-Jul 15 9 6
Wednesday 15-Jul 15 4 11
Thursday 16-Jul 15 5 10
Friday 17-Jul 8 4 4

Monday 20-Jul 17 6 11
Tuesday 21-Jul 14 5 9
Wednesday 22-Jul 15 5 10
Thursday 23-Jul 15 7 8
Friday 24-Jul 12 5 7

Monday 27-Jul 13 9 4
Tuesday 28-Jul 15 3 12
Wednesday 29-Jul 15 7 8
Thursday 30-Jul 15 9 6
Friday 31-Jul 9 7 2

Thursday 3-Sep 14 5 9
Friday 4-Sep 8 2 6

Monday 7-Sep 14 4 10
Tuesday 8-Sep 14 7 7
Wednesday 9-Sep 14 6 8
Thursday 10-Sep 14 7 7
Friday 11-Sep 6 4 2

TOTAL 394 169 225

Lunes 40%
Martes 38%
Miércoles 37%
Jueves 42%
Viernes 53%

% de aprobados por día de la semana 

EXAM 1. 
GENERAL CULTURE

Week day Date Presented Pass No Pass

T, F 17, 18 Sep 19 13 6

Monday 21-Sep 12 9 3
Tuesday 22-Sep 12 7 5
Wednesday 23-Sep 12 7 5
Thursday 24-Sep 12 6 6
Friday 25-Sep 7 5 2

Monday 28-Sep 4 1 3
Tuesday 29-Sep 9 6 3
Wednesday 30-Sep 5 2 3
Thursday 1-Oct 9 5 4
Friday 2-Oct 5 3 2

Monday 5-Oct 9 5 4
Tuesday 6-Oct 9 2 7
Wednesday 7-Oct 5 4 1
Thursday 8-Oct 9 6 3
Friday 9-Oct 5 4 1

Monday 12-Oct Fiesta
Tuesday 13-Oct 9 8 1
Wednesday 14-Oct 5 4 1
Thursday 15-Oct 10 6 4

TOTAL 167 103 64

Monday 52%
Tuesday 59%
Wednesday 65%
Thursday 60%
Friday 70%

EXAM 2 
LANGUAGES

% Pass per week day

Week day Date Presented Pass No Pass

Tuesday 3-Nov 4 3 1
Wednesday 4-Nov 3 3 0
Thursday 5-Nov 4 2 2
Friday 6-Nov 2 1 1

Monday 9-Nov Fiesta
Tuesday 10-Nov 4 2 2
Wednesday 11-Nov 3 2 1
Thursday 12-Nov 4 2 2
Friday 13-Nov 3 2 1

Monday 16-Nov 5 1 4
Tuesday 17-Nov 4 3 1
Wednesday 18-Nov 3 2 1
Thursday 19-Nov 4 4 0
Friday 20-Nov 2 2 0

Monday 23-Nov 2 0 2
Tuesday 24-Nov 5 4 1
Wednesday 25-Nov 3 3 0
Thursday 26-Nov 5 4 1
Friday 27-Nov 3 2 1

Monday 30-Nov 5 4 1
Tuesday 1-Dec 5 5 0
Wednesday 2-Dec 5 2 3
Thursday 3-Dec 5 5 0
Friday 4-Dec 3 2 1

Monday 7-Dec 5 5 0
Tuesday 8-Dec Fiesta
Wednesday 9-Dec 3 3 0
Thursday 10-Dec 6 5 1
Friday 11-Dec 3 3 0

TOTAL 103 76 27

Monday 50%
Tuesday 76%
Wednesday 79%
Thursday 77%
Friday 75%

EXAM 3. 
HISTORY, LAW, CULTURE, ECONOMY

% Pass per week day

Week day Date Presented Pass No Pass

Tuesday 3-Nov 4 3 1
Wednesday 4-Nov 3 3 0
Thursday 5-Nov 4 2 2
Friday 6-Nov 2 1 1

Monday 9-Nov Fiesta
Tuesday 10-Nov 4 2 2
Wednesday 11-Nov 3 2 1
Thursday 12-Nov 4 2 2
Friday 13-Nov 3 2 1

Monday 16-Nov 5 1 4
Tuesday 17-Nov 4 3 1
Wednesday 18-Nov 3 2 1
Thursday 19-Nov 4 4 0
Friday 20-Nov 2 2 0

Monday 23-Nov 2 0 2
Tuesday 24-Nov 5 4 1
Wednesday 25-Nov 3 3 0
Thursday 26-Nov 5 4 1
Friday 27-Nov 3 2 1

Monday 30-Nov 5 4 1
Tuesday 1-Dec 5 5 0
Wednesday 2-Dec 5 2 3
Thursday 3-Dec 5 5 0
Friday 4-Dec 3 2 1

Monday 7-Dec 5 5 0
Tuesday 8-Dec Fiesta
Wednesday 9-Dec 3 3 0
Thursday 10-Dec 6 5 1
Friday 11-Dec 3 3 0

TOTAL 103 76 27

Monday 50%
Tuesday 76%
Wednesday 79%
Thursday 77%
Friday 75%

EXAM 3. 
HISTORY, LAW, CULTURE, ECONOMY

% Pass per week day

Week day Date Presented Pass No Pass

T, F 17, 18 Sep 19 13 6

Monday 21-Sep 12 9 3
Tuesday 22-Sep 12 7 5
Wednesday 23-Sep 12 7 5
Thursday 24-Sep 12 6 6
Friday 25-Sep 7 5 2

Monday 28-Sep 4 1 3
Tuesday 29-Sep 9 6 3
Wednesday 30-Sep 5 2 3
Thursday 1-Oct 9 5 4
Friday 2-Oct 5 3 2

Monday 5-Oct 9 5 4
Tuesday 6-Oct 9 2 7
Wednesday 7-Oct 5 4 1
Thursday 8-Oct 9 6 3
Friday 9-Oct 5 4 1

Monday 12-Oct Fiesta
Tuesday 13-Oct 9 8 1
Wednesday 14-Oct 5 4 1
Thursday 15-Oct 10 6 4

TOTAL 167 103 64

Monday 52%
Tuesday 59%
Wednesday 65%
Thursday 60%
Friday 70%

EXAM 2 
LANGUAGES

% Pass per week day

Source: Brian Uzzi

https://www.dropbox.com/s/hrkpepbczqmreh7/UZZI-Diplomats%20Exam.xls?dl=0


Summary

The Third Law:
Performance is Bounded
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80/20 RULE

Vilfredo Federico Damaso Pareto (1848 – 1923), Italian economist, poli/cal scien/st and 
philosopher, who had important contribu/ons to our understanding of income distribu/on and to the analysis of 
individuals choices. A number of fundamental principles are named a<er him, like Pareto efficiency, Pareto distribu/on 
(another name for a power-law distribu/on), the Pareto principle (or 80/20 law).



Nodes: WWW documents 
Links:   URL links

Over 3 billion documents

ROBOT: collects all URL’s 
found in a document and 
follows them recursively

Expected

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).

WORLD WIDE WEB

Network Science: Scale-Free Property



Summary

The Fourth Law:
Success or recognition is 

unbounded.



THE SCALE-FREE PROPERTY 10

Poisson vs. Power-law Distributions
Figure 4.4

(d)

(b)(a)

(c)

(a) Comparing a Poisson function with a 
power-law function (ਠ= 2.1) on a linear plot. 
Both distributions have ࢭk10  =ࢮ.

(b) The same curves as in (a), but shown on a 
log-log plot, allowing us to inspect the dif-
ference between the two functions in the 
high-k regime. 

(c) A random network with ࢭk3 =ࢮ and N = 50, 
illustrating that most nodes have compara-
ble degree k ࢭݍkࢮ. 

(d) A scale-free network with ਠ=2.1 and ࢭkࢮ= 
3, illustrating that numerous small-degree 
nodes coexist with a few highly connected 
hubs.

The Largest Hub

All real networks are finite. The size of the WWW is estimated to be N ݍ 
1012 nodes; the size of the social network is the Earth’s population, about N 
-These numbers are huge, but finite. Other networks pale in com .109 × �7ݍ
parison: The genetic network in a human cell has approximately 20,000 
genes while the metabolic network of the E. Coli bacteria has only about a 
thousand metabolites. This prompts us to ask: How does the network size 
affect the size of its hubs? To answer this we calculate the expected maxi-
mum degree, kmax, called the natural cutoff of the degree distribution pk. It 
represents the expected size of the largest hub in a network.

It  is instructive to perform the calculation first for the exponential dis-
tribution 

For a  network with minimum degree kmin, the normalization  condition                    

provides C = ਨeਨkmin. To calculate kmax we assume that in a network of N 
nodes we expect at most one node in the (kmax, ∞) regime (ADVANCED TOPICS 
3.B). In other words the probability to observe a node whose degree exceeds 
kmax is 1/N:

(4.16)

(4.15)∫ =
∞ p k dk( ) 1
kmin

∫ =
∞ p k dk N( ) 1 .
kmax
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p(k) = Ce��k .

The difference between a power law and an exponential distribution



Network Science: Scale-Free Property

THE SCALE FREE PROPERTY HUBS12

(a) The degrees of a random network follow a 
Poisson distribution, rather similar to the Bell 
curve. Therefore most nodes have comparable 
degrees and nodes with a large number of links 
are absent. 

(b) A random network looks a bit like the na-
tional highway network in which nodes are cit-
ies and links are the major highways connect-
ing them. There are no cities with hundreds of 
highways and no city is disconnected from the 
highway system. 

(c) In a network with a power-law degree dis-
tribution most nodes have only a few links. 
These numerous small nodes are held togeth-
er by a few highly connected hubs. 

(d)  A scale-free network looks like the air-traf-
fic network, whose nodes are airports and 
links are the direct flights between them. Most 
airports are tiny, with only a few flights. Yet, 
we have a few very large airports, like Chicago 
or Los Angeles, that act as major hubs, con-
necting many smaller airports to each other. 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities. On the air-
plane network, however, we can reach most 
destinations via a single hub, like Chicago. 
After [4].

Figure 4.6
Random vs. Scale-free Networks
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WHAT DO YOUTUBE VIDEOS REALLY LOOK LIKE THEN?

Cheng, Dale, Liu Quality of Service (2008)

Power law



COMPANIES

US Firm Sizes

Axtell, Science, 7 September 2001



a.  Words in Moby Dick
b.  Scientific citations
c.  Website hits
d.  Bestselling books
e.  Telephone calls received
f.  Earthquake magnitudes

g.  Moon crater diameters
h.  Solar flare intensity
i.  War intensity
j.  Individual wealth
k.  Family name frequency
l.  City population

…AND ACROSS A WIDE RANGE OF TOPICS

Newman, Contemporary Physics (2005)



Summary

The Fourth Law:
Success or recognition is 

unbounded.



Informal Rewards on Wikipedia

Slides by Arnout van de Rĳ



Distribution of productivity on Wikipedia

Slides by Arnout van de Rij



Distribution of informal rewards on Wikipedia

Slides by Arnout van de Rij



• H1 (Inequality): Distribution of productivity and awards 
exhibits extreme variance.

Slides by Arnout van de Rij



Strategy: Field Experiment

• From 1% most produc9ve Wikipedia editors (by # edits in 30 days prior)
• Eliminate editors with administra9ve privileges
• Eliminate past recipients of barnstars
• Randomly sample 200 editors
• Randomly assign 100 barnstars
• Measure # edits
• Measure addi9onal barnstars received

Slides by Arnout van de Rij



Experimental Design

Experimental condition Control condition

Random assignment

1% most productive Wikipedia editors

Slides by Arnout van de Rij



Test of H1: Produc0vity

Ranksum
test:
p = .001Slides by Arnout van de Rij



• H1 (Inequality): Distribution of productivity and awards 
exhibits extreme variance.

• H2 (Motivation): Receiving an award increases productivity.

Slides by Arnout van de Rij



Test of H2: Awards

χ2 test:
p = .006

Slides by Arnout van de Rĳ



Wikipedia.org

Control Experiment Test

Treatment 0 awards 1 award
3rd-party awards after 30 days 0.17 0.28 Rank-sum: p = 0.008

3rd-party awards after 90 days 0.55 0.68 Rank-sum: p = 0.048

N 313 208

Slides by Arnout van de Rij



• H1 (Inequality): Distribution of productivity 
and awards exhibits extreme variance.

• H2 (Motivation): Receiving an award 
increases productivity.

• H3 (Reinforcement): Receiving an award 
increases the likelihood of future awards.

Slides by Arnout van de Rij



Arnout van de Rijt, 2012 



Arnout van de Rijt, 2012 



The finger LawSummary

The Fifth Law:
Success breeds success.



Barabási & Albert, Science 286, 509 (1999)

P(k) ~k-3

(1) Networks continuously expand by the 
addition of new nodes

WWW :  addition of new documents

GROWTH:  
add a new node with m links
PREFERENTIAL ATTACHMENT: 
the probability that a node connects to a node 
with k links is proportional to k.

(2) New nodes prefer to link to highly 
connected nodes.

WWW :  linking to well known sites

Network Science: Evolving Network Models 

Origin of SF networks: Growth and preferential attachment
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The finger LawSummary

Barabási & Albert, Science 286, 509 (1999)

For unto every one that hath shall 
be given, and he shall have 
abundance...
—Matthew 25:29, King James 
Version.

https://en.wikipedia.org/wiki/Gospel_of_Matthew
https://en.wikisource.org/wiki/Bible_(King_James)/Matthew
https://en.wikipedia.org/wiki/King_James_Version


Details Kickstarter Experiment

• Sampled only projects with no prior funding 
and funding goal amount <= $5000 

• Projects matched on goal amount across 
conditions

• N = 200 (100 in each condition)

• Treatment: Donation of 1% of goal amount

Slides by Arnout van de Rij



Kickstarter.com
Control Experiment Test

Round 1

Treatment $0 $6.77

3rd-party donations 1.11 2.49 Sign-rank: p = 0.000

3rd-party dollars $50.35 $75.50 Sign-rank: p = 0.000

N 100 100

Round 2

Treatment $0 $24.52

3rd-party donations 1.32 5.65 Sign-rank: p = 0.001

3rd-party dollars $102.65 $293.65 Sign-rank: p = 0.003

N 31 31

Random donations marked the selected projects for success.  

Slides by Arnout van de Rij



How many kicks does it take to kickstart something?



Repeat Donations

• Average benefit of treatment: Round 1 Round 2
• Average cost of treatment: $   6.77 $   24.52
• # of Donations 1 4

Dollars raised in experiment $ 75.50 $ 293.65
Dollars raised in control $ 50.35 - $ 102.65
Difference $ 25.15 $ 191.00

Round 2. The treatment in round 2 involved the donation of either 1% by one donor or a total of 
4% by four donors of a funding goal up to $5,000. No donations were made to projects in the 
control condition. 

Slides by Arnout van de Rij



Marginal Returns:

First donor raises the likelihood of additional donors to 4.3.
Three subsequent donors: 1.7 more donors apiece. 

Return of the first investment ($24.52): $191.00 Return on 
three subsequent investments: $89.57. 



The finger LawSummary

The Fifth Law:
Success breeds success.


