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SF model:       k(t)~t ½ (first mover advantage)

Fitness model:     fitness  (η )  k(η,t)~tβ(η)
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Bianconi & Barabási, Physical Review Letters 2001; Europhys. Lett. 2001. 



Section 6.2 Bianconi-Barabasi Model 

4EVOLVING NETWORKS

THE BIANCONI-BARABÁSI
MODEL

SECTION 6.2

Some people have a knack for turning each random encounter into a 
lasting social link; some companies turn each consumer into a loyal part-
ner; some webpages turn visitors into addicts. A common feature of these 
successful nodes is some intrinsic property that propels them ahead of the 
pack. We will call this property fitness. 

Fitness is an individual’s gift to turn a random encounter into a last-
ing friendship; it is a company’s knack to acquire consumers relative to 
its competition; it is a webpage’s ability to bring us back on a daily basis 
despite the many other pages that compete for our attention. Fitness may 
have genetic roots in people, it may be related to innovativeness and man-
agement quality in companies and may depend on the content offered by 
a website. 

In the Barabási-Albert model we assumed that a node’s growth rate is 
determined solely by its degree. To incorporate the role of fitness we as-
sume that preferential attachment is driven by the product of a node’s fit-
ness, Ș, and its degree k. The resulting model, called the Bianconi-Barabási 
or the fitness model, consists of the following two steps [2, 3]:

• Growth 
In each timestep a new node j with m links and fitness Șj is added to 
the network, where Șj is a random number chosen from a fitness dis-
tribution ȡ�Ș�. Once assigned, a node’s fitness does not change.

• Preferential Attachment 
The probability that a link of a new node connects to node i is propor-
tional to the product of node i’s degree ki and its fitness Și,

In (6.1) the dependence of Ȇi on ki captures the fact that higher-de-
gree nodes have more visibility, hence we are more likely to link to them. 

EVOLVING NETWORKS

The movie shows a growing network in which 
each new node acquires a randomly chosen fit-
ness parameter at birth, indicated by the color 
of the node. Each new node chooses the nodes 
it links to following generalized preferential 
attachment (6.1), making a node’s growth rate 
proportional to its fitness. The node size is pro-
portional to its degree, illustrating that with 
time the nodes with the highest fitness turn 
into the largest hubs. Video courtesy of Dashun 
Wang.
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Section 6.2 Bianconi-Barabasi Model (Analytical)
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The dependence of Ȇi on Și implies that between two nodes with the same 
degree, the one with higher fitness is selected with a higher probability. 
Hence, (6.1) assures that even a relatively young node, with initially only a 
few links, can acquire links rapidly if it has larger fitness than the rest of 
the nodes.

DEGREE DYNAMICS

We can use the continuum theory to predict each node’s temporal evo-
lution. According to (6.1), the degree of node i changes at the rate

Let us assume that the time evolution of ki follows a power law with a 
fitness-dependent exponent ȕ(Și ) (Figure 6.2),

Inserting (6.3) into (6.2) we find that the dynamic exponent satisfies (AD-

VANCED TOPICS 6.A)

with

In the Barabási-Albert model we have ȕ = 1/2, hence the degree of each 
node increases as a square root of time. According to (6.4), in the Bian-
coni-Barabási model the dynamic exponent is proportional to the node’s 
fitness, Ș, hence each node has its own dynamic exponent. Consequently, 
a node with a higher fitness will increase its degree faster. Given suffi-
cient time, the fitter node will leave behind nodes with a smaller fitness 
(Figure 6.2). Facebook is a poster child of this phenomenon: a latecomer 

(a) In the Barabási-Albert model all nodes in-
crease their degree at the same rate, hence the 
earlier a node joins the network, the larger is 
its degree at any time. The figure shows the 
time dependent degree of nodes that arrived 
at different times (ti = 1,000, 3000, 5000), 
demonstrating that the later nodes are unable 
to pass the earlier nodes [4, 5].

(b) Same as in (a) but in a log-log plot, demon-
strating that each node follows the same 
growth law (5.7) with identical dynamical ex-
ponents�ȕ = 1/2.

(c) In the Bianconi-Barabási model nodes in-
crease their degree at a rate that is determined 
by their individual fitness. Hence a latecomer 
node with a higher fitness (purple symbols) 
can overcome the earlier nodes.

(d) Same as in (c) but on a log-log plot, demon-
strating that each node increases its degree 
following a power law with its own fitness-de-
pendent dynamical exponent ȕ, as predicted 
by (6.3) and (6.4).

In (a)-(d) each curve corresponds to average 
over independent runs using the same fitness 
sequence.

Figure 6.2

Competition in the Bianconi-Barabási Model
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The dependence of Ȇi on Și implies that between two nodes with the same 
degree, the one with higher fitness is selected with a higher probability. 
Hence, (6.1) assures that even a relatively young node, with initially only a 
few links, can acquire links rapidly if it has larger fitness than the rest of 
the nodes.
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ADVANCED TOPICS 6.A
ANALYTICAL SOLUTION OF THE 
BIANCONI-BARABÁSI MODEL

SECTION 6.8

The purpose of this section is to derive the degree distribution of the 
Bianconi-Barabási model [2, 15, 16,17]. We start by calculating 

                

over all possible realizations of the quenched fitnesses Ș. Since each node is 
born at a different time t0, we can write the sum over j as an integral over t0

By replacing kȘ(t, t0) with (6.3) and performing the integral over t0, we obtain

The dynamic exponent�ȕ�Ș� is bounded, i.e. 0<ȕ�Ș�<1, because a node can 
only increase its degree with time �ȕ�Ș�>0) and ki(t) cannot increase faster 
than t (ȕ(Ș)<1). Therefore in the limit tĺ∞ in (6.35) the term tȕ(n) can be ne-
glected compared to t, obtaining

where İ�= (1 − maxȘȕ(Ș)) > 0 and

Using (6.36) and the notation kȘ=kȘ(t, t0), we write the dynamic equation (6.2) 
as

which has a solution of the form (6.3), given that

EVOLVING NETWORKS
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Section 2

BA model:        k(t)~t ½

(first mover advantage)

BB model:      k(η,t)~tβ(η)

(fit-gets-richer)

β(η) =η/C    



Section 6.3 Measuring Fitness
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cating that high fitness nodes are rare. 

The shape of the obtained fitness distribution is somewhat unexpected, 
as one would be tempted to assume that on the web fitness varies widely: 
For example Google is far more attrative to Web surfers than my personal 
webpage. Yet the exponential form of ȡ�Ș� indicates that the fitness of Web 
documents is bounded, varying in a relativelly narrow range. Consequent-
ly, the observed large differences in the degree of two web documents is 
generated by the system’s dynamics: Growth and preferential attachment 
amplifies the small fitness differences, turning nodes with slightly higher 
fitness into much bigger nodes. 

To illustrate this amplification, consider two nodes that arrived at the 
same time, but have different fitnesses Ș2 > Ș1. According to (6.3) and (6.4), 
the relative difference between their degrees grows with time as

While the difference between Ș2 and Ș1 may be small, far into the future 
(large t) the relative difference between their degrees can become quite 
significant.

The Fitness of a Scientific Publication
In some networks the nodes follow a more complex dynamics than the 

one predicted by (6.3). To measure their fitness we must first account for 
their precise growth law. We illustrate this procedure by determining the 
fitness of a research publication, allowing us to predict its future impact. 

While most research papers acquire only a few citations, a small num-
ber of publications collect thousands and even tens of thousands of cita-
tions [10]. These impact differences mirror differences in the novelty and 
the relevance of various publications. In general, the probability that a re-
search paper i is cited at time t after publication is [11]

where the paper’s fitness Și accounts for the perceived novelty and impor-
tance of the reported discovery; ci is the cumulative number of citations 
acquired by paper i at time t after publication, accounting for the fact that 
well-cited papers are more likely to be cited than less-cited contributions 
(preferential attachment). The last term in (6.11) captures the fact that new 
ideas are integrated into subsequent work, hence the novelty of each pa-
per fades with time [11, 12]. Measurements indicate that this decay has the 
log-normal form

By solving the master equation behind (6.11) we obtain the time-dependent 
growth of a paper’s citations

(6.10)
k2 � k1
k1

� t
�2��1
C

The fitness distribution obtained by measur-
ing the time evolution of a large number of 
Web documents. The measurements indicate 
that each node’s degree has a power law time 
dependence, as predicted by (6.3). The slope of 
each curve is ȕ(Șj), which corresponds to the 
node’s fitness Și up to a multiplicative con-
stant according to (6.4). The plot shows the re-
sult of two measurements based on datasets 
recorded three months apart, demonstrating 
that the fitness distribution is time indepen-
dent. The dashed line suggests that the fitness 
distribution is well approximated by an expo-
nential. After [9].

Figure 6.4

The Fitness Distribution of the WWW
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Summary

The First Law:
Performance is about you, 

success is about us.



Summary

The Second Law:
Performance drives success.



Summary

The Third Law:
Performance is Bounded



Summary

The Fourth Law:
Success or recognition is 

unbounded.



The finger LawSummary

The Fifth Law:
Success breeds success.



The finger LawSummary

The Sixth Law:
Quality times previous success 

determines future success.

� 

Π(ki) ≅
ηi ki
η j k jj∑



• IMPACT 
FACTOR

• CITATION COUNT

ü IF does not predict future impact.

ü Favors established researchers
ü Lacks long-term predictive power.

1.67 Physica A                              
2.31 Physical Review E  
7.94 Physical Review Letters
19.35 Nature Physics  
31.03 Science  
38.6 Nature
44.98 Reviews of Modern Physics

Total citations c(t),  H-index, most cited paper c*



Yearly citation c(t) for 200 randomly selected papers 
published between 1960 and 1970 in the PR corpus. The  
color code corresponds to each papers’ publication year.

QUANTIFYING LONG-TERM
SCIENTIFIC IMPACT



Modeling Citation Dynamics
The probability that your paper i is cited: 

• Fitness: Intrinsic Novelty…………….

• Preferential Attachment  ……………

• Aging………………………………….
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MODELING CITATION DYNAMICS
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Wang, Song & Barabási. Science, 2013 



Fitness…….

Immediacy... 

Longevity….

µi

�i

�i

MODELING CITATION DYNAMICS

T ⇤ ⌘ exp (µ)

�i

�i
1     7     1
1     9     1
1     7     0.5
2     7     1

Wang, Song & Barabási. Science, 2013 



t̃ ⌘ (ln t� µi)/�i

c̃ ⌘ ln(1 + cti/m)/�i

c̃ = �
�
t̃
�

MODELING CITATION DYNAMICS

Bonner & Fisher, Linear magnetic chains with anisotropic coupling, Physical Review (1964)
Hohenberg & Kohn, Inhomogeneous electron gas, Physical Review (1964)
Bardakci et al. Intrinsically Broken U(6) ⊗ U(6) Symmetry for Strong Interactions, Physical Review Letters (1964)
Berglund & W.E. Spicer, Photoemission studies of copper and silver: Theory,  Physical Review (1964)

1.1  4.8  1.1
3.0  8.8  1.2
1.9  7.5  0.9
6.7  9.2  1.0



MODELING CITATION DYNAMICS

Wang, Song & Barabási. Science, 2013 



MODELING CITATION DYNAMICS

2     7      1

Wang, Song & Barabási. Science, 2013 

• Total Impact, c∞
The total number of citations a paper will ever acquire.

c∞ c1i = m
�
e�i�1

�

ü Total Impact depends only on a paper’s fitness. 



Venter et al.,         The sequence of the human genome.           Science, 2001

MODELING CITATION DYNAMICS



MODELING CITATION DYNAMICS

Venter et al.,         The sequence of the human genome.           Science, 2001 Cites (2013): 6,326 Total impact: 13,105



MODELING CITATION DYNAMICS

Venter et al.,         The sequence of the human genome.           Science, 2001

Barabási & Albert, Emergence of scaling in random networks. Science, 1999 

Cites (2013): 6,326 Total impact: 13,105



MODELING CITATION DYNAMICS

Venter et al.,         The sequence of the human genome.           Science, 2001

Barabási & Albert, Emergence of scaling in random networks. Science, 1999 

Cites (2013): 6,326 Total impact: 13,105



MODELING CITATION DYNAMICS

Venter et al.,         The sequence of the human genome.           Science, 2001

Barabási & Albert, Emergence of scaling in random networks. Science, 1999 

Cites (2013): 6,326 Total impact: 13,105



MODELING CITATION DYNAMICS

Venter et al.,         The sequence of the human genome.           Science, 2001

Barabási & Albert, Emergence of scaling in random networks. Science, 1999 

Cites (2013): 6,326 Total impact: 13,105



MODELING CITATION DYNAMICS

Cites (2013): 8,245 Total impact: 26,183

Venter et al.,         The sequence of the human genome.           Science, 2001

Barabási & Albert, Emergence of scaling in random networks. Science, 1999 

Cites (2013): 6,326 Total impact: 13,105



The finger LawSummary

The Sixth Law:
Quality times previous success 

determines future success.
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C10= cumulative citations10 years after publication

SummaryCAREERS IN SCIENCE

10 years!!!



The finger LawSummaryTHE PATH TO SUCCESS: PSYCHOLOGY

Ericsson, Prietula, & Cokely, The making of an expert. Harvard Business Review 85, 114 (2007).
Simonton. Creative productivity. Psychological Review 104, 66 (1997).  



C10= cumulative citations10 years after publication

SummaryCAREERS IN SCIENCE

T*=13 years!!!
N*=63



The finger Law

• Performance: Productivity • Impact: Success

SummaryCAREERS IN SCIENCE

Sinatra, Wang, Deville, Song  & Barabási. 2014 

ü Productivity improves until the largest hit
ü Higher the hit, stronger the effect

c∗10 ≤ 20

c∗10 ≥ 200

20 < c∗10 < 200

High Impact

Middle Impact

Low Impact

(

(
(

)

)

)



We can’t see 
success coming. 
Nor do we learn 

from it.  



SummaryAge and Discovery

“A person who has not made his great 
contribution to science before the age of thirty will 
never do so.”

-Albert Einstein 

http://www.soulphysics.org/2008/05/when-is-prime-age-of-discovery-in/

Physicist
Heisenberg
Dirac
Pauli
Fermi
Wigner
Einstein
Rutherford
Bohr
Bose
Compton
De Broglie
Feynman
Maxwell
Schrödinger
Planck

Age
24
24
25
25
25
26
28
28
30
31
31
31
34
39
42



C10= cumulative citations10 years after publication

SummaryCAREERS IN SCIENCE

T*=13 years!!!
N*=63
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CAREERS IN SCIENCE: the timing of peak impact is random

You never know when your hit comes!
It could be, with the same probability, the first or the last paper of your career.

Randomized Data



John B. Fenn
Chemistry Nobel, 2002

Frank G. Wilczek
Physics Nobel, 2004

The finger LawSummaryMODELING INDIVIDUAL CAREERS: You never know when the hit comes!



"All I have produced before the age of seventy is not worth taking into account. 
At seventy-three I have learned a little about the real structure of nature. 
When I am eighty I shall have made still more progress. 
At ninety, I shall penetrate the mystery of things. 
At one hundred I shall have reached a marvelous stage, and when I am one-hundred-ten, 
everything I do, whether it be a dot or a line, will be alive."



The finger LawSummary

Success can come at any time. 





P (p)P (E,N)

EXCELLENCE MODEL

Summary

• P(p) decuples from N and Q: 
ü Everyone has the same initial 

chance of making a discovery

• N and Q are coupled:
ü The more you publish, the higher the 

chance that you will make a major discovery

are published by scientists with a consistent rec-
ord of high impact. The R-model cannot account
for this behavior, predicting that hc10* idiverges
when hlog ðc10−* Þi→1:97 (Fig. 3D), a consequence
of the log-normal nature of P(c10) (section S4.1
and fig. S27).
Failures (a) and (b) prompt us to abandon our

hypothesis that research papers are all drawn
from the same impact distribution and hence
researchers have no distinguishable individual
impact, forcing us to explore more closely the rela-
tionship betweenproductivity, impact, and chance.

Q-model

Crucially, in the R-model, scientists with similar
productivity have indistinguishable impact. In
reality, impact varies greatly between scientists
(Fig. 3E), suggesting the existence of a hidden
parameter Qi that modulates impact, which has
a unique value for each scientist i.
The log-normal nature of P(c10) (Fig. 3A) (24)

indicates the presence of multiplicative processes,
prompting us to write the impact c10,ia of paper a
published by scientist i as

c10;ia ¼ Qipa ð1Þ

where pa is the potential impact of paper a in
the sequence of papers published by scientist i.

The parameter Qi captures the ability of scientist i
to take advantage of the available knowledge in a
way that enhances (Qi > 1) or diminishes (Qi < 1)
the potential impact of paper a. We take the value
of this parameter Qi to be constant throughout a
scientist’s career, a hypothesis we validate later
(Fig. 5 and section S4.9). The obtained model as-
sumes that each scientist randomly selects a
project with potential pa and improves on it with
a factor Qi that is unique to the scientist, resulting
in a paper of impact (Eq. 1). Truly high-impact
publications are therefore the result of a high
Qi scientist selecting by chance a high pa project;
any scientist, independently of her parameter Qi,
can publish low-impact papers by selecting a
low pa.
The stochastic process behind the model

(Eq. 1) is determined by the joint probability
P(p, Q, N), with unknown correlations between
p, Q, and N. The log-normal nature of P(c10) (Fig.
3A) allows us to measure P(p), finding that it
can also be fitted with a log-normal function
(Fig. 3F). Assuming that Q is also a log-normal
(confirmed later), we denote with p^ ¼ log p;
Q
^ ¼ logQ;N

^ ¼ logN , obtaining the trivariate
normal distribution Pðp̂; Q

^
; N

^ Þ ¼ N (m, S).
Using a maximum-likelihood approach (see
section S4.4), we estimate from the data the

mean m ≡ (mp,mQ,mN) = (0.92,0.93,3.34) and the
covariance matrix

X
≡

s2p sp;Q sp;N
sp;Q s2Q sQ;N
sp;N sQ;N s2N

0

@

1

A

¼
0:93
0:00
0:00

0:00
0:21
0:09

0:00
0:09
0:33

0

@

1

A ð2Þ

The matrix (Eq. 2) leads to two key predictions:
(i) sp,N = sp,Q ≃ 0 indicates that the paper

potential impact pa is independent of a scientist’s
productivity Ni and her hidden parameter Qi.
Therefore, scientists select the potential impact
of each paper randomly from a P(p) distribution
that is the same for all individuals, being inde-
pendent of Q and N, capturing a universal—that
is, scientist-independent—luck component behind
impact.
(ii) The nonzero sQ,N indicates that the hidden

parameter Q and productivity N do depend on
each other (section S4.4), but its small value
also shows that high Q is only slightly associated
with higher productivity.
The lack of correlations between p and (Q,N)

allows us to analytically calculate the dependence
of the highest-impact paper hlog c10*ion productivity

SCIENCE sciencemag.org 4 NOVEMBER 2016 • VOL 354 ISSUE 6312 aaf5239-3

Fig. 2. Patterns of
impact during a
scientific career.
(A) Dynamics of impact
captured by the yearly
average impact of
papers hc10(t)ifor
high, medium, and low
maximum impact sci-
entists, where t = 0
corresponds to the
year of a scientist’s
first publications. The
symbols correspond to
the data, whereas the
shaded area indicates
the 95% confidence
limit of careers where
the impact of the pub-
lications is randomly
permuted within each
career. (B) Average
impact hc10iof papers
published before and
after the highest-
impact paper c10$ of
high-, middle-, and low-impact scientists. The plot indicates that there are no
discernible changes in impact before or after a scientist’s highest-impact work.
(C) hc10$iand hc10ibefore and after a scientist’s most-cited paper. For each
group, we calculate the average impact of the most-cited paper, hc10$i, as well
as the average impact of all papers before and after the most-cited paper. We
also report the same measures obtained in publication sequences for which
the impact c10$ is fixed, whereas the impact of all other papers is randomly
permuted. (D) Distribution of the publication time t* of the highest-impact
paper for scientists’ careers (black circles) and for randomized-impact careers
(gray circles). The lack of differences between the two curves (P = 0.70 for the
Mann-Whitney U test between the two distributions) supports the random-
impact rule; that is, impact is random within a scientist’s sequence of pub-

lication. Note that the drop after 20 years is partly because we focus on
careers that span at least 20 years (see fig. S22). (E) Cumulative distribution
P(≥N*/N) for scientists with N ≃ 50, where N*/N denotes the order N of the
highest-impact paper in a scientist’s career, varying between 1/N and 1. The
cumulative distribution of N*/N is a straight line with slope 1, indicating
that N has the same probability to occur anywhere in the sequence of papers
published by a scientist. The flatness of P(N*/N) (all scientists, inset) sup-
ports the conclusion that the timing of the highest-impact paper is uniform.
The small differences between the three curves are due to different number
of publications N in the three groups of scientists [see fig. S24 for the plot
of P(≥N*/N) for other values of N and figs. S25 and S26 for the impact
autocorrelation throughout a scientific career].
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are published by scientists with a consistent rec-
ord of high impact. The R-model cannot account
for this behavior, predicting that hc10* idiverges
when hlog ðc10−* Þi→1:97 (Fig. 3D), a consequence
of the log-normal nature of P(c10) (section S4.1
and fig. S27).
Failures (a) and (b) prompt us to abandon our

hypothesis that research papers are all drawn
from the same impact distribution and hence
researchers have no distinguishable individual
impact, forcing us to explore more closely the rela-
tionship betweenproductivity, impact, and chance.

Q-model

Crucially, in the R-model, scientists with similar
productivity have indistinguishable impact. In
reality, impact varies greatly between scientists
(Fig. 3E), suggesting the existence of a hidden
parameter Qi that modulates impact, which has
a unique value for each scientist i.
The log-normal nature of P(c10) (Fig. 3A) (24)

indicates the presence of multiplicative processes,
prompting us to write the impact c10,ia of paper a
published by scientist i as

c10;ia ¼ Qipa ð1Þ

where pa is the potential impact of paper a in
the sequence of papers published by scientist i.

The parameter Qi captures the ability of scientist i
to take advantage of the available knowledge in a
way that enhances (Qi > 1) or diminishes (Qi < 1)
the potential impact of paper a. We take the value
of this parameter Qi to be constant throughout a
scientist’s career, a hypothesis we validate later
(Fig. 5 and section S4.9). The obtained model as-
sumes that each scientist randomly selects a
project with potential pa and improves on it with
a factor Qi that is unique to the scientist, resulting
in a paper of impact (Eq. 1). Truly high-impact
publications are therefore the result of a high
Qi scientist selecting by chance a high pa project;
any scientist, independently of her parameter Qi,
can publish low-impact papers by selecting a
low pa.
The stochastic process behind the model

(Eq. 1) is determined by the joint probability
P(p, Q, N), with unknown correlations between
p, Q, and N. The log-normal nature of P(c10) (Fig.
3A) allows us to measure P(p), finding that it
can also be fitted with a log-normal function
(Fig. 3F). Assuming that Q is also a log-normal
(confirmed later), we denote with p^ ¼ log p;
Q
^ ¼ logQ;N

^ ¼ logN , obtaining the trivariate
normal distribution Pðp̂; Q

^
; N

^ Þ ¼ N (m, S).
Using a maximum-likelihood approach (see
section S4.4), we estimate from the data the

mean m ≡ (mp,mQ,mN) = (0.92,0.93,3.34) and the
covariance matrix

X
≡

s2p sp;Q sp;N
sp;Q s2Q sQ;N
sp;N sQ;N s2N

0

@

1

A

¼
0:93
0:00
0:00

0:00
0:21
0:09

0:00
0:09
0:33

0

@

1

A ð2Þ

The matrix (Eq. 2) leads to two key predictions:
(i) sp,N = sp,Q ≃ 0 indicates that the paper

potential impact pa is independent of a scientist’s
productivity Ni and her hidden parameter Qi.
Therefore, scientists select the potential impact
of each paper randomly from a P(p) distribution
that is the same for all individuals, being inde-
pendent of Q and N, capturing a universal—that
is, scientist-independent—luck component behind
impact.
(ii) The nonzero sQ,N indicates that the hidden

parameter Q and productivity N do depend on
each other (section S4.4), but its small value
also shows that high Q is only slightly associated
with higher productivity.
The lack of correlations between p and (Q,N)

allows us to analytically calculate the dependence
of the highest-impact paper hlog c10*ion productivity
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Fig. 2. Patterns of
impact during a
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(A) Dynamics of impact
captured by the yearly
average impact of
papers hc10(t)ifor
high, medium, and low
maximum impact sci-
entists, where t = 0
corresponds to the
year of a scientist’s
first publications. The
symbols correspond to
the data, whereas the
shaded area indicates
the 95% confidence
limit of careers where
the impact of the pub-
lications is randomly
permuted within each
career. (B) Average
impact hc10iof papers
published before and
after the highest-
impact paper c10$ of
high-, middle-, and low-impact scientists. The plot indicates that there are no
discernible changes in impact before or after a scientist’s highest-impact work.
(C) hc10$iand hc10ibefore and after a scientist’s most-cited paper. For each
group, we calculate the average impact of the most-cited paper, hc10$i, as well
as the average impact of all papers before and after the most-cited paper. We
also report the same measures obtained in publication sequences for which
the impact c10$ is fixed, whereas the impact of all other papers is randomly
permuted. (D) Distribution of the publication time t* of the highest-impact
paper for scientists’ careers (black circles) and for randomized-impact careers
(gray circles). The lack of differences between the two curves (P = 0.70 for the
Mann-Whitney U test between the two distributions) supports the random-
impact rule; that is, impact is random within a scientist’s sequence of pub-

lication. Note that the drop after 20 years is partly because we focus on
careers that span at least 20 years (see fig. S22). (E) Cumulative distribution
P(≥N*/N) for scientists with N ≃ 50, where N*/N denotes the order N of the
highest-impact paper in a scientist’s career, varying between 1/N and 1. The
cumulative distribution of N*/N is a straight line with slope 1, indicating
that N has the same probability to occur anywhere in the sequence of papers
published by a scientist. The flatness of P(N*/N) (all scientists, inset) sup-
ports the conclusion that the timing of the highest-impact paper is uniform.
The small differences between the three curves are due to different number
of publications N in the three groups of scientists [see fig. S24 for the plot
of P(≥N*/N) for other values of N and figs. S25 and S26 for the impact
autocorrelation throughout a scientific career].
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are published by scientists with a consistent rec-
ord of high impact. The R-model cannot account
for this behavior, predicting that hc10* idiverges
when hlog ðc10−* Þi→1:97 (Fig. 3D), a consequence
of the log-normal nature of P(c10) (section S4.1
and fig. S27).
Failures (a) and (b) prompt us to abandon our

hypothesis that research papers are all drawn
from the same impact distribution and hence
researchers have no distinguishable individual
impact, forcing us to explore more closely the rela-
tionship betweenproductivity, impact, and chance.

Q-model

Crucially, in the R-model, scientists with similar
productivity have indistinguishable impact. In
reality, impact varies greatly between scientists
(Fig. 3E), suggesting the existence of a hidden
parameter Qi that modulates impact, which has
a unique value for each scientist i.
The log-normal nature of P(c10) (Fig. 3A) (24)

indicates the presence of multiplicative processes,
prompting us to write the impact c10,ia of paper a
published by scientist i as

c10;ia ¼ Qipa ð1Þ

where pa is the potential impact of paper a in
the sequence of papers published by scientist i.

The parameter Qi captures the ability of scientist i
to take advantage of the available knowledge in a
way that enhances (Qi > 1) or diminishes (Qi < 1)
the potential impact of paper a. We take the value
of this parameter Qi to be constant throughout a
scientist’s career, a hypothesis we validate later
(Fig. 5 and section S4.9). The obtained model as-
sumes that each scientist randomly selects a
project with potential pa and improves on it with
a factor Qi that is unique to the scientist, resulting
in a paper of impact (Eq. 1). Truly high-impact
publications are therefore the result of a high
Qi scientist selecting by chance a high pa project;
any scientist, independently of her parameter Qi,
can publish low-impact papers by selecting a
low pa.
The stochastic process behind the model

(Eq. 1) is determined by the joint probability
P(p, Q, N), with unknown correlations between
p, Q, and N. The log-normal nature of P(c10) (Fig.
3A) allows us to measure P(p), finding that it
can also be fitted with a log-normal function
(Fig. 3F). Assuming that Q is also a log-normal
(confirmed later), we denote with p^ ¼ log p;
Q
^ ¼ logQ;N

^ ¼ logN , obtaining the trivariate
normal distribution Pðp̂; Q

^
; N

^ Þ ¼ N (m, S).
Using a maximum-likelihood approach (see
section S4.4), we estimate from the data the

mean m ≡ (mp,mQ,mN) = (0.92,0.93,3.34) and the
covariance matrix

X
≡

s2p sp;Q sp;N
sp;Q s2Q sQ;N
sp;N sQ;N s2N

0

@

1

A

¼
0:93
0:00
0:00

0:00
0:21
0:09

0:00
0:09
0:33

0

@

1

A ð2Þ

The matrix (Eq. 2) leads to two key predictions:
(i) sp,N = sp,Q ≃ 0 indicates that the paper

potential impact pa is independent of a scientist’s
productivity Ni and her hidden parameter Qi.
Therefore, scientists select the potential impact
of each paper randomly from a P(p) distribution
that is the same for all individuals, being inde-
pendent of Q and N, capturing a universal—that
is, scientist-independent—luck component behind
impact.
(ii) The nonzero sQ,N indicates that the hidden

parameter Q and productivity N do depend on
each other (section S4.4), but its small value
also shows that high Q is only slightly associated
with higher productivity.
The lack of correlations between p and (Q,N)

allows us to analytically calculate the dependence
of the highest-impact paper hlog c10*ion productivity
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Fig. 2. Patterns of
impact during a
scientific career.
(A) Dynamics of impact
captured by the yearly
average impact of
papers hc10(t)ifor
high, medium, and low
maximum impact sci-
entists, where t = 0
corresponds to the
year of a scientist’s
first publications. The
symbols correspond to
the data, whereas the
shaded area indicates
the 95% confidence
limit of careers where
the impact of the pub-
lications is randomly
permuted within each
career. (B) Average
impact hc10iof papers
published before and
after the highest-
impact paper c10$ of
high-, middle-, and low-impact scientists. The plot indicates that there are no
discernible changes in impact before or after a scientist’s highest-impact work.
(C) hc10$iand hc10ibefore and after a scientist’s most-cited paper. For each
group, we calculate the average impact of the most-cited paper, hc10$i, as well
as the average impact of all papers before and after the most-cited paper. We
also report the same measures obtained in publication sequences for which
the impact c10$ is fixed, whereas the impact of all other papers is randomly
permuted. (D) Distribution of the publication time t* of the highest-impact
paper for scientists’ careers (black circles) and for randomized-impact careers
(gray circles). The lack of differences between the two curves (P = 0.70 for the
Mann-Whitney U test between the two distributions) supports the random-
impact rule; that is, impact is random within a scientist’s sequence of pub-

lication. Note that the drop after 20 years is partly because we focus on
careers that span at least 20 years (see fig. S22). (E) Cumulative distribution
P(≥N*/N) for scientists with N ≃ 50, where N*/N denotes the order N of the
highest-impact paper in a scientist’s career, varying between 1/N and 1. The
cumulative distribution of N*/N is a straight line with slope 1, indicating
that N has the same probability to occur anywhere in the sequence of papers
published by a scientist. The flatness of P(N*/N) (all scientists, inset) sup-
ports the conclusion that the timing of the highest-impact paper is uniform.
The small differences between the three curves are due to different number
of publications N in the three groups of scientists [see fig. S24 for the plot
of P(≥N*/N) for other values of N and figs. S25 and S26 for the impact
autocorrelation throughout a scientific career].
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are published by scientists with a consistent rec-
ord of high impact. The R-model cannot account
for this behavior, predicting that hc10* idiverges
when hlog ðc10−* Þi→1:97 (Fig. 3D), a consequence
of the log-normal nature of P(c10) (section S4.1
and fig. S27).
Failures (a) and (b) prompt us to abandon our

hypothesis that research papers are all drawn
from the same impact distribution and hence
researchers have no distinguishable individual
impact, forcing us to explore more closely the rela-
tionship betweenproductivity, impact, and chance.

Q-model

Crucially, in the R-model, scientists with similar
productivity have indistinguishable impact. In
reality, impact varies greatly between scientists
(Fig. 3E), suggesting the existence of a hidden
parameter Qi that modulates impact, which has
a unique value for each scientist i.
The log-normal nature of P(c10) (Fig. 3A) (24)

indicates the presence of multiplicative processes,
prompting us to write the impact c10,ia of paper a
published by scientist i as

c10;ia ¼ Qipa ð1Þ

where pa is the potential impact of paper a in
the sequence of papers published by scientist i.

The parameter Qi captures the ability of scientist i
to take advantage of the available knowledge in a
way that enhances (Qi > 1) or diminishes (Qi < 1)
the potential impact of paper a. We take the value
of this parameter Qi to be constant throughout a
scientist’s career, a hypothesis we validate later
(Fig. 5 and section S4.9). The obtained model as-
sumes that each scientist randomly selects a
project with potential pa and improves on it with
a factor Qi that is unique to the scientist, resulting
in a paper of impact (Eq. 1). Truly high-impact
publications are therefore the result of a high
Qi scientist selecting by chance a high pa project;
any scientist, independently of her parameter Qi,
can publish low-impact papers by selecting a
low pa.
The stochastic process behind the model

(Eq. 1) is determined by the joint probability
P(p, Q, N), with unknown correlations between
p, Q, and N. The log-normal nature of P(c10) (Fig.
3A) allows us to measure P(p), finding that it
can also be fitted with a log-normal function
(Fig. 3F). Assuming that Q is also a log-normal
(confirmed later), we denote with p^ ¼ log p;
Q
^ ¼ logQ;N

^ ¼ logN , obtaining the trivariate
normal distribution Pðp̂; Q

^
; N

^ Þ ¼ N (m, S).
Using a maximum-likelihood approach (see
section S4.4), we estimate from the data the

mean m ≡ (mp,mQ,mN) = (0.92,0.93,3.34) and the
covariance matrix

X
≡

s2p sp;Q sp;N
sp;Q s2Q sQ;N
sp;N sQ;N s2N

0

@

1

A

¼
0:93
0:00
0:00

0:00
0:21
0:09

0:00
0:09
0:33

0

@

1

A ð2Þ

The matrix (Eq. 2) leads to two key predictions:
(i) sp,N = sp,Q ≃ 0 indicates that the paper

potential impact pa is independent of a scientist’s
productivity Ni and her hidden parameter Qi.
Therefore, scientists select the potential impact
of each paper randomly from a P(p) distribution
that is the same for all individuals, being inde-
pendent of Q and N, capturing a universal—that
is, scientist-independent—luck component behind
impact.
(ii) The nonzero sQ,N indicates that the hidden

parameter Q and productivity N do depend on
each other (section S4.4), but its small value
also shows that high Q is only slightly associated
with higher productivity.
The lack of correlations between p and (Q,N)

allows us to analytically calculate the dependence
of the highest-impact paper hlog c10*ion productivity
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Fig. 2. Patterns of
impact during a
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(A) Dynamics of impact
captured by the yearly
average impact of
papers hc10(t)ifor
high, medium, and low
maximum impact sci-
entists, where t = 0
corresponds to the
year of a scientist’s
first publications. The
symbols correspond to
the data, whereas the
shaded area indicates
the 95% confidence
limit of careers where
the impact of the pub-
lications is randomly
permuted within each
career. (B) Average
impact hc10iof papers
published before and
after the highest-
impact paper c10$ of
high-, middle-, and low-impact scientists. The plot indicates that there are no
discernible changes in impact before or after a scientist’s highest-impact work.
(C) hc10$iand hc10ibefore and after a scientist’s most-cited paper. For each
group, we calculate the average impact of the most-cited paper, hc10$i, as well
as the average impact of all papers before and after the most-cited paper. We
also report the same measures obtained in publication sequences for which
the impact c10$ is fixed, whereas the impact of all other papers is randomly
permuted. (D) Distribution of the publication time t* of the highest-impact
paper for scientists’ careers (black circles) and for randomized-impact careers
(gray circles). The lack of differences between the two curves (P = 0.70 for the
Mann-Whitney U test between the two distributions) supports the random-
impact rule; that is, impact is random within a scientist’s sequence of pub-

lication. Note that the drop after 20 years is partly because we focus on
careers that span at least 20 years (see fig. S22). (E) Cumulative distribution
P(≥N*/N) for scientists with N ≃ 50, where N*/N denotes the order N of the
highest-impact paper in a scientist’s career, varying between 1/N and 1. The
cumulative distribution of N*/N is a straight line with slope 1, indicating
that N has the same probability to occur anywhere in the sequence of papers
published by a scientist. The flatness of P(N*/N) (all scientists, inset) sup-
ports the conclusion that the timing of the highest-impact paper is uniform.
The small differences between the three curves are due to different number
of publications N in the three groups of scientists [see fig. S24 for the plot
of P(≥N*/N) for other values of N and figs. S25 and S26 for the impact
autocorrelation throughout a scientific career].
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are published by scientists with a consistent rec-
ord of high impact. The R-model cannot account
for this behavior, predicting that hc10* idiverges
when hlog ðc10−* Þi→1:97 (Fig. 3D), a consequence
of the log-normal nature of P(c10) (section S4.1
and fig. S27).
Failures (a) and (b) prompt us to abandon our

hypothesis that research papers are all drawn
from the same impact distribution and hence
researchers have no distinguishable individual
impact, forcing us to explore more closely the rela-
tionship betweenproductivity, impact, and chance.

Q-model

Crucially, in the R-model, scientists with similar
productivity have indistinguishable impact. In
reality, impact varies greatly between scientists
(Fig. 3E), suggesting the existence of a hidden
parameter Qi that modulates impact, which has
a unique value for each scientist i.
The log-normal nature of P(c10) (Fig. 3A) (24)

indicates the presence of multiplicative processes,
prompting us to write the impact c10,ia of paper a
published by scientist i as

c10;ia ¼ Qipa ð1Þ

where pa is the potential impact of paper a in
the sequence of papers published by scientist i.

The parameter Qi captures the ability of scientist i
to take advantage of the available knowledge in a
way that enhances (Qi > 1) or diminishes (Qi < 1)
the potential impact of paper a. We take the value
of this parameter Qi to be constant throughout a
scientist’s career, a hypothesis we validate later
(Fig. 5 and section S4.9). The obtained model as-
sumes that each scientist randomly selects a
project with potential pa and improves on it with
a factor Qi that is unique to the scientist, resulting
in a paper of impact (Eq. 1). Truly high-impact
publications are therefore the result of a high
Qi scientist selecting by chance a high pa project;
any scientist, independently of her parameter Qi,
can publish low-impact papers by selecting a
low pa.
The stochastic process behind the model

(Eq. 1) is determined by the joint probability
P(p, Q, N), with unknown correlations between
p, Q, and N. The log-normal nature of P(c10) (Fig.
3A) allows us to measure P(p), finding that it
can also be fitted with a log-normal function
(Fig. 3F). Assuming that Q is also a log-normal
(confirmed later), we denote with p^ ¼ log p;
Q
^ ¼ logQ;N

^ ¼ logN , obtaining the trivariate
normal distribution Pðp̂; Q

^
; N

^ Þ ¼ N (m, S).
Using a maximum-likelihood approach (see
section S4.4), we estimate from the data the

mean m ≡ (mp,mQ,mN) = (0.92,0.93,3.34) and the
covariance matrix

X
≡

s2p sp;Q sp;N
sp;Q s2Q sQ;N
sp;N sQ;N s2N

0
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¼
0:93
0:00
0:00

0:00
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0:09

0:00
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The matrix (Eq. 2) leads to two key predictions:
(i) sp,N = sp,Q ≃ 0 indicates that the paper

potential impact pa is independent of a scientist’s
productivity Ni and her hidden parameter Qi.
Therefore, scientists select the potential impact
of each paper randomly from a P(p) distribution
that is the same for all individuals, being inde-
pendent of Q and N, capturing a universal—that
is, scientist-independent—luck component behind
impact.
(ii) The nonzero sQ,N indicates that the hidden

parameter Q and productivity N do depend on
each other (section S4.4), but its small value
also shows that high Q is only slightly associated
with higher productivity.
The lack of correlations between p and (Q,N)

allows us to analytically calculate the dependence
of the highest-impact paper hlog c10*ion productivity
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(A) Dynamics of impact
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average impact of
papers hc10(t)ifor
high, medium, and low
maximum impact sci-
entists, where t = 0
corresponds to the
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first publications. The
symbols correspond to
the data, whereas the
shaded area indicates
the 95% confidence
limit of careers where
the impact of the pub-
lications is randomly
permuted within each
career. (B) Average
impact hc10iof papers
published before and
after the highest-
impact paper c10$ of
high-, middle-, and low-impact scientists. The plot indicates that there are no
discernible changes in impact before or after a scientist’s highest-impact work.
(C) hc10$iand hc10ibefore and after a scientist’s most-cited paper. For each
group, we calculate the average impact of the most-cited paper, hc10$i, as well
as the average impact of all papers before and after the most-cited paper. We
also report the same measures obtained in publication sequences for which
the impact c10$ is fixed, whereas the impact of all other papers is randomly
permuted. (D) Distribution of the publication time t* of the highest-impact
paper for scientists’ careers (black circles) and for randomized-impact careers
(gray circles). The lack of differences between the two curves (P = 0.70 for the
Mann-Whitney U test between the two distributions) supports the random-
impact rule; that is, impact is random within a scientist’s sequence of pub-

lication. Note that the drop after 20 years is partly because we focus on
careers that span at least 20 years (see fig. S22). (E) Cumulative distribution
P(≥N*/N) for scientists with N ≃ 50, where N*/N denotes the order N of the
highest-impact paper in a scientist’s career, varying between 1/N and 1. The
cumulative distribution of N*/N is a straight line with slope 1, indicating
that N has the same probability to occur anywhere in the sequence of papers
published by a scientist. The flatness of P(N*/N) (all scientists, inset) sup-
ports the conclusion that the timing of the highest-impact paper is uniform.
The small differences between the three curves are due to different number
of publications N in the three groups of scientists [see fig. S24 for the plot
of P(≥N*/N) for other values of N and figs. S25 and S26 for the impact
autocorrelation throughout a scientific career].
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Sinatra, Wang, Deville, Song & Barabási. Science (2016) 

MODELING INDIVIDUAL CAREERS: Q-Model



EXCELLENCE MODEL

Summary

Sinatra, Wang, Deville, Song & Barabási. Science (2016) 

Idea

r

You

Q S

r  ✕ Q = S

How Does Innovation Happen? Q-Model

Success
Impact



Steve Jobs & Q-Model
EXCELLENCE MODEL

S = Q ✕ r

r=  10 Q=0.1 S=1

Great Idea,     Poor Execution

r=   0.1 Q=10 S=1

Poor Idea,       Great Execution

r=   10 Q=10 S=100

Great Idea,     Great Execution 
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SummaryINDIVIDUAL CAREERS: Careers have different impact

Sinatra, Wang, Deville, Song & Barabási. Science (2016) 
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are published by scientists with a consistent rec-
ord of high impact. The R-model cannot account
for this behavior, predicting that hc10* idiverges
when hlog ðc10−* Þi→1:97 (Fig. 3D), a consequence
of the log-normal nature of P(c10) (section S4.1
and fig. S27).
Failures (a) and (b) prompt us to abandon our

hypothesis that research papers are all drawn
from the same impact distribution and hence
researchers have no distinguishable individual
impact, forcing us to explore more closely the rela-
tionship betweenproductivity, impact, and chance.

Q-model

Crucially, in the R-model, scientists with similar
productivity have indistinguishable impact. In
reality, impact varies greatly between scientists
(Fig. 3E), suggesting the existence of a hidden
parameter Qi that modulates impact, which has
a unique value for each scientist i.
The log-normal nature of P(c10) (Fig. 3A) (24)

indicates the presence of multiplicative processes,
prompting us to write the impact c10,ia of paper a
published by scientist i as

c10;ia ¼ Qipa ð1Þ

where pa is the potential impact of paper a in
the sequence of papers published by scientist i.

The parameter Qi captures the ability of scientist i
to take advantage of the available knowledge in a
way that enhances (Qi > 1) or diminishes (Qi < 1)
the potential impact of paper a. We take the value
of this parameter Qi to be constant throughout a
scientist’s career, a hypothesis we validate later
(Fig. 5 and section S4.9). The obtained model as-
sumes that each scientist randomly selects a
project with potential pa and improves on it with
a factor Qi that is unique to the scientist, resulting
in a paper of impact (Eq. 1). Truly high-impact
publications are therefore the result of a high
Qi scientist selecting by chance a high pa project;
any scientist, independently of her parameter Qi,
can publish low-impact papers by selecting a
low pa.
The stochastic process behind the model

(Eq. 1) is determined by the joint probability
P(p, Q, N), with unknown correlations between
p, Q, and N. The log-normal nature of P(c10) (Fig.
3A) allows us to measure P(p), finding that it
can also be fitted with a log-normal function
(Fig. 3F). Assuming that Q is also a log-normal
(confirmed later), we denote with p^ ¼ log p;
Q
^ ¼ logQ;N

^ ¼ logN , obtaining the trivariate
normal distribution Pðp̂; Q

^
; N

^ Þ ¼ N (m, S).
Using a maximum-likelihood approach (see
section S4.4), we estimate from the data the

mean m ≡ (mp,mQ,mN) = (0.92,0.93,3.34) and the
covariance matrix

X
≡

s2p sp;Q sp;N
sp;Q s2Q sQ;N
sp;N sQ;N s2N

0

@

1

A

¼
0:93
0:00
0:00

0:00
0:21
0:09

0:00
0:09
0:33

0

@

1

A ð2Þ

The matrix (Eq. 2) leads to two key predictions:
(i) sp,N = sp,Q ≃ 0 indicates that the paper

potential impact pa is independent of a scientist’s
productivity Ni and her hidden parameter Qi.
Therefore, scientists select the potential impact
of each paper randomly from a P(p) distribution
that is the same for all individuals, being inde-
pendent of Q and N, capturing a universal—that
is, scientist-independent—luck component behind
impact.
(ii) The nonzero sQ,N indicates that the hidden

parameter Q and productivity N do depend on
each other (section S4.4), but its small value
also shows that high Q is only slightly associated
with higher productivity.
The lack of correlations between p and (Q,N)

allows us to analytically calculate the dependence
of the highest-impact paper hlog c10*ion productivity

SCIENCE sciencemag.org 4 NOVEMBER 2016 • VOL 354 ISSUE 6312 aaf5239-3

Fig. 2. Patterns of
impact during a
scientific career.
(A) Dynamics of impact
captured by the yearly
average impact of
papers hc10(t)ifor
high, medium, and low
maximum impact sci-
entists, where t = 0
corresponds to the
year of a scientist’s
first publications. The
symbols correspond to
the data, whereas the
shaded area indicates
the 95% confidence
limit of careers where
the impact of the pub-
lications is randomly
permuted within each
career. (B) Average
impact hc10iof papers
published before and
after the highest-
impact paper c10$ of
high-, middle-, and low-impact scientists. The plot indicates that there are no
discernible changes in impact before or after a scientist’s highest-impact work.
(C) hc10$iand hc10ibefore and after a scientist’s most-cited paper. For each
group, we calculate the average impact of the most-cited paper, hc10$i, as well
as the average impact of all papers before and after the most-cited paper. We
also report the same measures obtained in publication sequences for which
the impact c10$ is fixed, whereas the impact of all other papers is randomly
permuted. (D) Distribution of the publication time t* of the highest-impact
paper for scientists’ careers (black circles) and for randomized-impact careers
(gray circles). The lack of differences between the two curves (P = 0.70 for the
Mann-Whitney U test between the two distributions) supports the random-
impact rule; that is, impact is random within a scientist’s sequence of pub-

lication. Note that the drop after 20 years is partly because we focus on
careers that span at least 20 years (see fig. S22). (E) Cumulative distribution
P(≥N*/N) for scientists with N ≃ 50, where N*/N denotes the order N of the
highest-impact paper in a scientist’s career, varying between 1/N and 1. The
cumulative distribution of N*/N is a straight line with slope 1, indicating
that N has the same probability to occur anywhere in the sequence of papers
published by a scientist. The flatness of P(N*/N) (all scientists, inset) sup-
ports the conclusion that the timing of the highest-impact paper is uniform.
The small differences between the three curves are due to different number
of publications N in the three groups of scientists [see fig. S24 for the plot
of P(≥N*/N) for other values of N and figs. S25 and S26 for the impact
autocorrelation throughout a scientific career].
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C=p x Q



The Q factor does 
not change during 

our career.

Q is the best predictor of a Nobel prize
Citations. H-factor are less predictive.  Productivity is the worst predictor… 

S = Q ✕ r



Chapter 4 Excellence model
EXCELLENCE MODEL

Summary

Sinatra, Wang, Deville, Song & Barabási, Science 2016 

Q:
• Does not vary during a career
• Predicts citation dynamics
• Predicts the growth of the h-index during a career
• Best predictor of exceptional achievement (like a Nobel)

• Each scientist randomly selects a project p and improves on it with a factor Q
• High impact publications: a high S

i 
scientist selects by chance a high p project

• any scientist can publish low impact papers by selecting a low p.

MODELING INDIVIDUAL CAREERS: You never know when the hit comes!

C=p x Q
Impact   =   luck x Quality Factor



Excellence model
EXCELLENCE MODEL
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Q predicts the dynamics of the total 
number of citations during a career 

Q predicts the variation of the h-index 
during a career 

Citations and h-index grow during a career  à Q : time-independent predictor of impact.

MODELING INDIVIDUAL CAREERS: Q predicts the traditional impact indicators! 

Sinatra, Wang, Deville, Song & Barabási, Science 2016 
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ü Quality factor, Q is the best predictor of a Nobel prize
ü Productivity is the worst.
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EXCELLENCE MODEL

SummaryMODELING INDIVIDUAL CAREERS: Ranking Nobel Prize Winners

Sinatra, Wang, Deville, Song  & Barabási. 2014 
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Q-factor: Twitter Dynamics
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Follower Engagement: 
E=R/fα



r x Q x fα = R
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of a tweet:
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SummaryHOW DO WE ASSIGN CREDIT FOR SUCCESS?
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Giant Magnetoresistance of (001)Fel(001)Cr Magnetic Snperlattices

M. N. Baibich, t') J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff
Laboratoire de Physique des Solides, Uni Uersite Paris-Sud, F-91405 Orsay, France

P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas
Laboratoire Central de Recherches, Thomson CSF, B.P. 10, F-91401 Orsay, France

(Received 24 August 1988)

We have studied the magnetoresistance of (001)Fe/(001)Cr superlattices prepared by molecular-
beam epitaxy. A huge magnetoresistance is found in superlattices with thin Cr layers: For example,
with rc, =9 A, at T =4.2 K, the resistivity is lowered by almost a factor of 2 in a magnetic field of 2 T.
We ascribe this giant magnetoresistance to spin-dependent transmission of the conduction electrons be-
tween Fe layers through Cr layers.

PACS numbers: 75.50.Rr, 72. 15.Gd, 75.70.Cn

There is now considerable interest in the study of mul-
tilayers composed of magnetic and nonmagnetic metals
and great advances have been obtained in the under-
standing of their magnetic properties. ' Recently the
transport properties of magnetic multilayers and thin
films have been investigated and have revealed interest-
ing properties resulting from the interplay between elec-
tron transport and magnetic behavior. In this Letter
we present magnetoresistance measurements on
(001)Fe/(001)Cr superlattices prepared by molecular-
beam epitaxy (MBE). In superlattices with thin Cr lay-
ers, the magnetoresistance is very large (a reduction of
the resistivity by a factor of about 2 is observed in some
samples). This giant magnetoresistance raises exciting
questions and moreover is promising for applications.
The (001)Fe/(001) Cr bcc superlattices have been

grown by MBE on (001) GaAs substrates under the fol-
lowing conditions: The residual pressure of the MBE
chamber was 5&10 " Torr, the substrate temperature
was generally around 20'C, the deposition rate was
about 0.6 A/s for Fe and 1 A/s for Cr. This deposition
rate was obtained by use of specially designed evapora-
tion cells in which a crucible of molybdenum is heated
by electron bombardment. The individual layer thick-
nesses range from 9 to 90 A and the total number of bi-
layers is generally around 30. The growth of the super-
lattices and their characterization by reflection high-
energy electron diffraction, Auger-electron spectroscopy,
x-ray diffraction, and scanning-transmission-electron mi-
croscopy have been described elsewhere. Note that the
Cr (Fe) Auger line disappears during the growth of a Fe
(Cr) layer. This, as well as the main features of the
scanning-transmission-electron-microscopy cross sec-
tions, rules out a deep intermixing of Fe and Cr. How-
ever, the Auger effect, which averages the concentrations
over a depth of about 12 A, cannot probe the interface
roughness at the atomic scale. Surface extended x-ray-
absorption fine-structure experiments have been started
to probe this roughness more precisely.

The magnetic properties of the Fe/Cr superlattices
have been investigated by magnetization and torque mea-
surements. The magnetization is in the plane of the
layers and an antiferromagnetic (AF) coupling between
the adjacent Fe layers is found when the Cr thickness tc,
is smaller than about 30 k A signature of this AF in-
terlayer coupling is shown in Fig. 1: As the Cr thickness
decreases below 30 A, the hysteresis loop is progressively
tilted. For example, with tc, =9 /[t, a field Hq=2 T is
needed to overcome the antiferromagnetic coupling and
to saturate the magnetization at about the bulk Fe value.
When the applied field is decreased to zero, the AF cou-
pling brings the magnetization back to about zero. As
can be seen from the variation of the low-field slopes in
Fig. 1, the AF coupling steeply increases when tc, de-
creases from 30 to 9 /[t. The existence of such AF cou-
plings has already been found in Fe/Cr sandwiches by
the light-scattering and magneto-optical measurements

FIG. 1. Hysteresis loops at 4.2 K with an applied field along
[110] in the layer plane for several (001)Fe/(001)Cr superlat-
tices: [(Fe 60 A)/(Cr 60 A)]5, [(Fe 30 A)/(Cr 30 A)]&0, [(Fe
30 A)/(Cr 18 A)]30, [(Fe 30 A)/(Cr 12 A)]~o, [(Fe 30 A.)/(Cr
9 A)]4O, where the subscripts indicate the number of bilayers in
each sample. The number beside each curve represents the
thickness of the Cr layers.

2472 1988 The American Physical Society
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Generation of Nonclassical Motional States of a Trapped Atom

D.M. Meekhof, C. Monroe, B. E. King, W.M. Itano, and D. J. Wineland
Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80303-3328

(Received 11 October 1995)
We report the creation of thermal, Fock, coherent, and squeezed states of motion of a harmonically

bound 9Be1 ion. The last three states are coherently prepared from an ion which has been initially
laser cooled to the zero point of motion. The ion is trapped in the regime where the coupling between
its motional and internal states, due to applied (classical) radiation, can be described by a Jaynes-
Cummings-type interaction. With this coupling, the evolution of the internal atomic state provides a
signature of the number state distribution of the motion.

PACS numbers: 42.50.Vk, 32.80.Pj, 32.80.Qk

Nonclassical states of the harmonic oscillator associated
with a single mode of the radiation field (for example,
squeezed states) have been a subject of considerable
interest. One method for analyzing these states has been
through the dynamics of a single, two-level atom which
radiatively couples to the single mode radiation field.
This system, described by the Jaynes-Cummings model
(JCM) interaction [1,2], is important to the field of cavity
QED [3].
Nonclassical states of motion occur naturally on an

atomic scale, for example, for electrons in atoms and atoms
in molecules. On a macroscopic scale, the benefits of
nonclassical mechanical states, such as squeezed states, for
detection of gravitational waves have been appreciated for
some time [4], but so far these states have not been realized.
More recently, there has been interest in the generation
and detection of nonclassical states of motion for an atom
confined in a macroscopic, harmonic trap; for trapped ions,
see Refs. [5–16]. These states are of interest from the
standpoint of quantum measurement concepts and may
facilitate other measurements such as sensitive detection
[5,7,13] or quantum computation [17].
In this Letter we report the generation and detection of

thermal, Fock, coherent, and squeezed states of motion
of a single 9Be1 ion confined in an rf (Paul) trap. We
detect the state of atomic motion by observing the evo-
lution of the atom’s internal levels [6,11] (e.g., collapse
and revival) under the influence of a JCM-type interaction
realized with the application of external (classical) fields.
Under certain conditions, the interaction Hamiltonian is
formally equivalent to the JCM Hamiltonian of cavity
QED. Here, the harmonic motion of the atom replaces the
single mode of the radiation field. The coupling can be
realized by applying quasistatic fields [7], traveling-wave
fields [6,10,13,15], or standing-wave laser fields [8,9,12].
In each case the coupling HI ≠ 2m ? Esrd between in-
ternal and motional states is induced by the atom’s motion
through the spatially inhomogeneous electromagnetic field
Esrd, where m is the atomic dipole operator.
In the present experiment, we drive stimulated Raman

transitions between two hyperfine ground states by apply-

ing a pair of traveling-wave laser beams detuned from
an excited electronic state [18]. The resulting interaction
between these internal states jSl (denoted j #l and j "l)
and motional harmonic oscillator states jnl and jn0l in the
x direction is given by matrix elements

kS0, n0jHI jS, nl ≠ h̄VkS0, n0js1eihsa1ayd

1 s2e2ihsa1aydjS, nl (1)
in a frame which rotates at the difference frequency of the
laser beams. In this expression, s1 (s2) is the raising
(lowering) operator for the internal atomic state, ay (a) is
the harmonic oscillator raising (lowering) operator, and V
is the Raman coupling parameter [5,13,18]. The Lamb-
Dicke parameter is defined by h ; dk x0, where dk is
the wave-vector difference of the two Raman beams along
x, and x0 ≠

p
h̄y2mv is the spread of the jn ≠ 0l wave

function in the harmonic well of frequency v.
The order n0 2 n of the vibrational coupling is selected

by tuning the Raman beam difference frequency. For ex-
ample, by tuning to the first red sideband in the Raman
spectrum, we resonantly enhance the term which drives
transitions between states j #, nl and j ", n 2 1l. In the
Lamb-Dicke limit [dk

p
kx2l ø 1, x ≠ x0sa 1 ayd], the

exponentials in Eq. (1) can be expanded to lowest order,
resulting in the operator hsas1 1 ays2d, which corre-
sponds to the usual JCM operator. We can easily control
the strength and duration of the interaction by varying the
intensity and time the lasers are applied. By choosing other
laser tunings, we can select other operators such as the anti-
JCM operator hsays1 1 as2d at the first blue sideband
(which is not present in cavity QED) or the “two-phonon”
JCM operator sh2y2d sa2s1 1 ay2s2d at the second red
sideband. In this experiment, the higher-order terms in
the expansion of the exponential in Eq. (1) must also be
taken into account [19]. Reference [20] has explicitly dis-
cussed the consequences of these higher-order terms on the
trapped ion internal and motional state dynamics.
Additional differences from cavity-QED experiments

include the methods of state generation available (de-
scribed below) and the relatively small decoherence. In
all but the case of thermal states, we coherently prepare
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EXPERIMENTAL OBSERVATION OF ISOLATED LARGE TRANSVERSE ENERGY ELECTRONS 
WITH ASSOCIATED MISSING ENERGY AT x/s  = 540 GeV 

UA1 Collaboration, CERN, Geneva, Switzerland 
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We report the results of two searches made on data recorded at the CERN SPS Proton-Antiproton Collider: one for 
isolated large-E T electrons, the other for large-E T neutrinos using the technique of missing transverse energy. Both searches 
converge to the same events, which have the signature of a two-body decay of a particle of mass ~ 80 GeV/c 2 . The topology 
as well as the number of events fits well the hypothesis that they are produced by the process ~ + p ~ W e + X, with W e 
-~ e -+ + v; where W e is the Intermediate Vector Boson postulated by the unified theory of weak and electromagnetic inter- 
actions. 
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3 Institute for Network Science, Northeastern University, Boston, MA 02115, USA
4Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA

Credit Share: (0.9, 0.1)

Credit Share: (0.1, 0.9)



ASSIGNING CREDIT WHERE ITS DUE

Case A
2010 Nobel Prize in Chemistry

Case B
2010 Nobel Prize in Physics

Baba, Negishi, J. Am. Chem. Soc. 98, 6729 (1976)

Negishi, Okukado, King,Van Horn, Spiegel, J. Am. Chem. Soc. (1978)

Negishi, King, Okukado, J. Org. Chem. (1977)

Negishi, Vanhorn, J. Am. Chem. Soc. (1977)

Negishi, Vanhorn, J. Am. Chem. Soc. (1978)

Negishi, Valente. Kobayashi, J. Am. Chem. Soc. (1980)

Novoselov, Geim, Science, 306, 666 (2004)

Geim, Novoselov, Nature (2007)

Novoselov, Jiang, Schedin, Booth, Khotkevich, Morozov, Geim,
PNAS (2005)

Novoselov, Geim, Morozov, Jiang, Katsnelson, Grigorieva, Dubonos,
Firsov, Nature (2005)

Castro Neto, Guinea, Peres, Novoselov, Geim, Rev. Mod. Phys. (2009)

Ferrari, Meyer, Scardaci, Casiraghi, Lazzeri, Mauri,Piscanec. Jiang,
Novoselov, Roth,  Geim. Phys. Rev. Lett. (2006)

Credit share: (0.28, 0.72) Credit share: (0.5, 0.5)
Shen & Barabási. 2014 



Nobel laureates prediction (Physics & Chemistry)ASSIGNING CREDIT WHERE ITS DUE: Who Gets the Prize?

Shen & Barabási. 2014 

� Nobel Predicted
� Nobel mis-predicted



The finger LawSummary

The Seventh Law:
Credit is based on 

perception not performance. 

.



In art performance is 
inherently 

unmeasurable.

Recognition, value and 
success are 

determined by invisible 
influence networks.













May 19, 2017: 
Untitled  (Jean-Michel Basquiat)
$110.5 million



What happens when 
performance is inherently 

unmeasurable?

Value, recognition, and 
success are determined 
by influence networks.



The Eight Law:

When quality and performance 
are hard to measure, networks 

determine success.



o 1980 to 2016

o 140 Countries

o 463,632 Artists

o 444,495 Exhibits in 14,474 galleries

o 287,807 exhibits in 7,825 museums

o 117,756 auctions



Photo: Monica Almeida, NYT

Untitled, 2004

Mark Grotjahn (1968-)

o 1980 to 2016
o 140 Countries
o 463,632 Artists
o 444,495 Exhibits in 14,474 galleries
o 287,807 exhibits in 7,825 museums
o 117,756 auctions



Art Network
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Figure 4: The Evolution of Artists Exhibitions Prestige. (a) Empirical probability density
function of artists average exhibitions prestige during their first five exhibitions (”initial prestige”), for the 31,207
selected artists. Rich (poor) club artists are those whose initial prestige is in the top (bottom) 20%. The remaining
60% of artists are considered to be in the middle club. We also show artists exhibitions prestige (y-axis) along their
career (x-axis) for (b) five rich club artists, and (c) five poor club artists. To measure an artist’s career over time, we
convert his number of previous exhibitions into percentiles. Artists’ exhibitions prestige ⇡̄t are reported in percentiles
of the initial prestige distribution. (d) Number of rich and poor club artists whose final prestige is either high (green)
or low (orange).

17

a

Initial
Exhibits 

Final 
Exhibits 

Rich 
Club

Poor 
Club

b

c

6,242

Rich Club

6,242

d
5,380

1,465

65.5%

21.8%

1.7%

20.7%

Poor Club

Poor 
Club 

(N=6,242)

Rich 
Club 

(N=6,242)

MIddle 
Club 

(N=18,723)

Figure 4: The Evolution of Artists Exhibitions Prestige. (a) Empirical probability density
function of artists average exhibitions prestige during their first five exhibitions (”initial prestige”), for the 31,207
selected artists. Rich (poor) club artists are those whose initial prestige is in the top (bottom) 20%. The remaining
60% of artists are considered to be in the middle club. We also show artists exhibitions prestige (y-axis) along their
career (x-axis) for (b) five rich club artists, and (c) five poor club artists. To measure an artist’s career over time, we
convert his number of previous exhibitions into percentiles. Artists’ exhibitions prestige ⇡̄t are reported in percentiles
of the initial prestige distribution. (d) Number of rich and poor club artists whose final prestige is either high (green)
or low (orange).

17

Rich Club (Elite) Artists Poor Club Artists

o If you start high, end high. (No downward mobility at the top).
o If you start low, slow upward mobility—with limits.



o If you start high, end high. (No downward mobility at the top).
o If you start low, slow upward mobility—with limits.

Initial Exhibits Final Exhibits

Elite
(N= 4,062)

Third-tier
(N=2,2,64)

Elite
(N= 2,559)

Third-tier
(N=387)



Initial Exhibits Final Exhibits

Elite
(N= 4,062)

Third-tier
(N=2,2,64)

Elite
(N= 2,559)

Third-tier
(N=387)

Early Prestige and Success

Early Prestige Predicts:

• Primary Market Price

• Secondary Market Volume 

• Secondary Market Price

• Number of Exhibits

• International Interest
• Little downward mobility for those starting at the top

• Slow upward mobility for those starting at the bottom
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= 0.1

= 0.9

= 0.1
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⇡0= 0.9
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+ + +
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Figure 5: A Model of Artists Career. Using our selected sample of N=31,207 artists, we estimate and
report the memory e↵ect (3) (z-axis) by binning ⇡0 (x-axis) and m (y-axis) into deciles, for (a) 0.0 < m  0.1, (b),
0.5 < m  0.6 and (c) 0.9 < m  1. (d) We then show artists exhibitions prestige (y-axis) along their career (x-axis),
for rich club artists (red line), middle club artists (black line), and poor club artists (blue line). We also simulate
artists exhibitions prestige along their career using: (e) the memoryless model (1), and (f) the memory model (2)-(4).
In each simulation, we take the first five exhibitions as given to initialize the model (large dots). The sequence of
dates at which an artist’s exhibitions occur is matched to the one we observe in the data. To simulate the memory
model, we use the second order polynomial interpolation of µ[⇡0;m] in ⇡0 for each decile of m. Artists’ exhibitions
prestige (y-axis) are reported in percentiles of the initial prestige distribution.
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Memory (Reputation) in Career Trajectory 

Low Previous Prestige:
16 times more likely you move to a low prestige  institution

High Previous Prestige:
16 times more likely you move to an elite institution



Memory Model: Predicting Artist Careers



Predicting Future Careers in Art
a b

c d

Tim Vagg: Postcards from the Holy Land

Lasse Schmidt Hansen: For objects and 
the Infinite

a b

c d Meshac Gabba: Ensemble

Sergei Shutov: Composition







Summary

We are looking for 
postdocs in the lab. 

Send me an email if you 
are interested!


