
Inversion of Earthquake 

Rupture Process：Theory and 

Applications 

 

  

Yun-tai CHEN①② *  Yong ZHANG①②   Li-sheng XU②  
①School of the Earth and Space Sciences, Peking University, Beijing 100871 
②Institute of Geophysics, China Earthquake Administration, Beijing 100081 

*Correspondent author; e-mail: chenyt@cea-igp.ac.cn 



1.  An Overview 

Inversion of Earthquake 

Rupture Process：Theory and 

Applications 

 



 

1.1  Inversion of the moment tensor 

1.2  Retrieval of the source time 

       function 

1.3  Construction of the slip distribution  

       based on the ASTFs 

1.4  Construction of the slip distribution 

       based on the waveform data 

 

 

1.  An Overview 



The pioneering works of rupture process 

inversion can be referred to Olson and Apsel 

(1982), Kikuchi and Kanamori (1982), and 

Hartzell and Heaton (1983), Das and Kostrov 

(1990). 



The techniques were further developed by following 

researchers (e.g., Ji et al., 2002). An alternative method is 

to invert the apparent source time functions (ASTFs), 

which should have been obtained by deconvolving the 

Green’s function (sometimes empirical Green’s function of 

a small shock) from the mainshock seismograms (Mori 

and Hartzell, 1990; Chen and Xu, 2000). In principle, the 

seismogram inversion and the ASTF inversion are equally 

effective to estimate the rupture model (Zhang et al., 2010). 



The fault slip model can be also determined by 

inverting geodetic deformation data. Compared with 

the seismic data inversion, geodetic inversion of the co-

seismic deformation data has fewer unknown 

parameters and thus has a higher stability. Meanwhile, 

the disadvantage is that it cannot constrain the 

temporal evolution of slip accumulation. Combination 

of the seismic and geodetic data can synthesize their 

advantages and results in a better resolution power at 

different depths.  



In the past 20 years, joint inversion of seismic 

and geodetic data has been the powerful tool to 

study the earthquake source process and its 

physics. All seismic and geodetic datasets, e.g., 

strong motion data, broad band data at local, 

regional and teleseismic distances, high-

rate/campaign GNSS (Global Navigation 

Satellite System) data, InSAR (Interferometric 

Synthetic Aperture Radar) data, and leveling 

data, have been used and inverted for that 

purpose (e.g., Delouis et al., 2002; Zhang et al., 

2012).  



The joint inversion much expands the 

frequency band of source inversions, and 

provides better estimates of source parameters, 

such as magnitude, source dimension and 

duration, rupture velocity and rupture 

direction, etc. 
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     ,, ,i ij k jku t G t M t r r

 observed displacement  ,iu tr

 jkM t moment tensor function 

 , ,ij kG tr  Green’s function   

As the linear dimension of an earthquake source 

is small compared with the wavelength of interest, 

the displacement at the field point r caused by the 

earthquake at the origin of the coordinate system 

can be written as (Aki and Richards, 1980) 



Green’s function 



     ,, ,i ij k jku G M  r r

By means of the transformation to 

frequency domain, the above displacement 

can be transformed into 

angular frequency ω 



Inversion of the moment tensor can be 

conducted in time domain as well as in 

frequency domain. In any of the domains, the 

inversion equation can be written as 
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       0u t M S t P t I t  

 scalar seismic moment 
0M

 S t  normalized far-field STF 

 P t  response of the path 
 I t  response of the instrument 

In general, the instrument-recorded 

displacement of an earthquake can be 

expressed as 



       0u M S P I   

By Fourier transformation, we have 

       0u M S P I       

By analog to the above expression, we have the 

following one for a second event with the same 

focal mechanism, which may be real event or 

synthetic one 



 

 
 0

0

u M
S

u M







 

   P P  

  1S  

If the second event has the same source location 

and is recorded at the same station by the same 

instrument, and if the second is so small that its 

source time function can be approximated with 

a Dirac δ-function, then we have the following  

   I I  

Since  



The above equation indicates that the source 

time function of a larger earthquake can be 

retrieved by means of a smaller one.  

 The smaller one can often be found, which 

may be an aftershock, or a pre-shock. 

 The synthetic earthquake can be 

adopted as the real earthquake can not 

be found.  
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1.3  Construction of the slip 

       distribution based on the 

       ASTFs 



J-th sub-fault Whole fault plane 

A fault can be divided into many sub-faults 



 
 0M t

D t
A



In general, the slip on a fault plane is a 

function of time. If the area of the fault plane 

is assumed constant, the slip will only depend 

on the scalar moment as  

0 ( )M t

A



area of the fault plane 

scalar moment as a function of time 

 rigidity of the material 



 
 j

j

j

M t
D t

A


For any of the sub-faults, we have 

j represents any of the sub-faults 



A fault can be divided into numerous sub-faults 



   
1

J

i j j ij

j

S t w s t 


 

iS

The observed STF at any of the stations has the 

following relation with the STFs of all the sub-

faults   

0

j

j

M
w

M


observed STF at the station i 

js STF of the sub-fault j 

ij difference of arrival time at the station i 

between the first and the j-th sub-fault 



   j j jm t w s t

 
0

j jw m t dt


 

Let 

( )jm t weighted far-field STF of the j-th sub-fault. 

Apparently,  

Since 

 
0

1js t dt


 



   
1

J

i j ij

j

S t m t 


 

Therefore,  

And the slip rate of the j-th sub-fault can be written as 

   0
j j

j

M
D t m t

A


The slip or slip-rate of the j-th sub-fault will be 

determined if the  function of the moment rate 

of the sub-fault is given. 

Dj 
 

. . 



     
1

J

i ij j

j

S t t m t 


  

j

ij

i

r

v
 

rj is the distance between the j-th subfault and the 

reference point on the fault plane and vi is the 

apparent velocity, which depends on the wave 

velocity and propagation direction and he location 

of the j-th sub-fault. 

To get the moment-rate function, we write the right 

hand side of the above equation as 



S KM

S    data vector, consisting of the observed STFs 

M  the unkown vector made up of the weighted 

      STFs or moment-rate functions of all the sub- 

      faults  

K   coefficient matrix determined by the time  

      delay associated with the wave propagation. 

In matrix form 





  0jm t 

Note: K is a sparse matrix consisting of zeros 

or ones as the following  

1
( )

0

ij

ij

ij

t
t

t


 




  



In inersion，a non-negative constraint is usually 

imposed to get a physically meaningful result. 
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1.4  Construction of the slip 

       distribution based on the 

       waveform data 



     ,

1

, , , ; ,0
K

n pq k np q k

k

u t M t G t 


 x x

For a finite fault, the n-component of the  seismic  

displacement  at the station x can be expressed as 

( , )nu x t

( , )pq kM t

, ( , ; ,0)np q kG x t 



The n-component of displacement at 

the station x 

The moment tensor of the sub-fault 

k at location   


Green’s function 

convolution 



If the components of the moment tensor have the 

same time history, then  

       ,

1

, , ; ,0
K

n pq k k np q k

k

u t M s t G t 


    x x

( )ks t The source time function of the k- subfault 



For a double-couple source, we have 

            0=pq k k p k q k q k p kM M e e ξ ξ ξ ξ ξ ξ

0 ( )kM 

( )p qe

( )p qv

scalar seismic moment of the k-th 

sub-fault 

component of the slip vector 

components of the normal vector 



              ,

1

ˆ, , ; ,0
K

n k p k q k q k p k np q k

k

u t s t e e G t 


    
 x ξ ξ ξ ξ x ξ

In this case,  

     0
ˆ

k k ks t M s t ξ

where  



1.4.1  case of the unchangeable 

       focal mechanisms 



If  all the sub-faults have the same focal 

mechanism, the slip  vectors and normal vectors 

will be unchangeable for all the sub-faults, then  

     
1

ˆ, ,
K

n k nk

k

u t s t G t


 x x

     ,, , ; ,0nk p q q p np q kG t e e G t   x x ξ

where 



In matrix form, the above equation is 

ˆu Gs

On the left is a vector of observation data, the 

first item on the right is the matrix of Green’s 

function, and the second is a vector of 

unknowns, consisting of the moment rate 

functions of sub-faults. 



1.4.2  Case of the changeable rakes 



If the rake of each sub-fault is allowed to be 

changeable, one may always decompose the slip 

vector into two components perpendicular to 

each other in an orthogonal source Cartesian 

coordinate system (x, y, z), in which x and y 

indicate two orthogonal slip directions on fault 

plane, and z indicates normal direction of the 

fault plane. 



         , ,

1

, , ,
K

n knx z kx kny z ky

k

u t G t s t G t s t


   x x x

In this case,  

0x y ze   

1z 

   0
ˆ

kx x k ks t e M s t

   0
ˆ

ky y k ks t e M s t

Since  



 
ˆ

ˆ

x

x y

y

 
  

 

s
u G G

s

Accordingly, the matrix equation can be changed as 



In order to mitigate the impact caused by the 

errors in observation and Green’s functions 

and to obtain physically acceptable solution, 

we introduce constraints such as the 

minimization of scalar seismic moment and 

the smoothness in time and space.  



Taking into account the above constraints, we 

expand the above matrix equations into the 

following forms. 

1

2

3

ˆ






  
  
   
  
  

   

Gu

T0
s

D0

Z0

For the first case 



 

1

2

3

ˆ

ˆ

x y

x

y







 
 
  

    
                    
   

  
  
  

G G

T 0
u

0 T
s0

D 0
s0

0 D
0

Z 0

0 Z

For the second case 



T

D

Z

1

2

3

A matrix of temporal smoothness 

A matrix of spatial smoothness 

A matrix of the minimization of  

scalar seismic moment 

The weight 

where 

The weight 

The weight 



Minimization of the seismic scalar moment 



Temporal smoothing Spatial smoothing 



Summary 

We briefly overviewed the theory of inversion of 

earthquake rupture process, and emphasized the 

needs for the joint inversion of the needs of using 

both of the seismic and geodetic data 
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