BernienLab@UChicago

Building quantum information processors and Atom-by-

Atom array quantum processors

Challenges:

- Measurements (long and destructive)
- Atom loss
- Array preparation + measurements > algorithm execution time
- Individual addressing on large scale

- Identical qubits each in its own tweezer
- Long lived qubits states
- Coherent interactions via Rydberg states

Unique opportunities:

- Long range connectivity
- Native multi-qubit gates
- Coherent movement of atoms
- Photonic interfaces

Dual-species architecture

Setup scheme

- Static tweezer array with spatial light modulators
- Rearrangement tweezers generated with AODs

Flexible trapping patterns

See also: Ebadi et al. Nature 595, 227 (2020)

A dual-element 512 site atom array

Singh, Anand, Pocklington, Kemp, Bernien PRX 12, 011040 (2022)

Arbitrary geometries with dual-element arrays

Bean

Singh, Anand, Pocklington, Kemp, Bernien PRX 12, 011040 (2022)

Continuous-mode operation

We can design experimental cycles where there are always atoms within the tweezer array available for measurements or computation

Singh, Anand, Pocklington, Kemp, Bernien PRX 12, 011040 (2022)

Rydberg for coherent inter/intra species interactions

- ⇒ Strong dipolar interactions: ~N¹¹/R⁶
- ⇒ GHz interaction over several micrometers

Rydberg review: Browaeys et al. J. Phys. B 49, 152001 (2016), Saffman J. Phys. B 49, 202001 (2016)

Rydberg for coherent inter/intra species interactions

- ⇒ Strong dipolar interactions: ~N¹¹/R⁶
- ⇒ GHz interaction over several micrometers

Asymmetric interaction regimes close to Förster resonances:

Inter species Förster resonances: Beterov, Saffman PRA 92, 042710 (2015)

Efficient GHZ generation

- Efficient GHZ generation
- Extendable to hyperfine states

See also proposal: Müller et al. PRL 102, 170502 (2009)

 $V_{Cs-Rb}, V_{Rb} \gg V_{Cs}$

Auxilary atoms for QND readout

- High fidelities
- Destructive

QND measurement of multiple atoms

- New probes for many body states
- feedback

Stabilizer measurements:

Scaling the distance between nodes

Hybrid system of nanophotonic devices & cold atoms

Neutral atoms:

Nanophotonics:

- Excellent coherence
- Controllability
- Indistinguishability

- Strong light confinement
- Engineered functionalities
- Scalabilty

Thompson et al. Science (2013), Dordevic, Samutpraphoot, Ocola, Bernien et al., Science (2021)

Can we work at telecom wavelengths?

See also with Yb: Covey et al. Phys Rev Applied 11, 034044 (2019)

Progress: Telecom cavities

Fabricated SiN cavities:

In collaboration with Alan Dibos (ANL)

The setup:

- Compact steel chamber
- Three objectives for traps, imaging and free space coupling
- Compatible with photonic chip

Features:

- Atom array generation
- Chip integration (prelim. 50% coupling)
- Multiplexing with multiple nodes

Free space coupling see also: Kimble group: Adv. Quantum Technol. 3, 2000008 (2020)

Going the distance:

~50km of fiber UChicago – ANL

Entanglement rate: $\Gamma_{ent} = \frac{1}{2} \gamma_{attempt} \eta_{coll.}^2 \eta_{detect}^2 \eta_{fiberatt.} \sim 10 \, \text{Hz}$

		6998.0		÷.	11			1		÷.		6423				100			1.0		12.2	5 B.	1.1.1
9 - Se - S			- Andrewski (* 1995) Andrewski (* 1995)		÷.		**			¥. 1				e 19		9.8e	1.00	305	194			8 N.S.	
		× .						* 1			s - 12	1.8.12		100	÷.,	10		1			2 4 Geo	529 Q C	5.79
		1. A.	100	٠ .		14	11			÷.,	400			18 A		24		1.0	14 M -				
			410	1		4			•	÷.,				4.1	e - 2					and the			
	14-	- T. P	1. C.	34		ж.				•			×.¢	16. A	1	2.1		18.					

Collaborators:

Alan Dibos (ANL), Johannes Borreegaard (TU Delft), Hannes Pichler (Innsbruck), Bill Fefferman (UChicago)

Bernienlab.com