Quantum electron transport controlled by cavity vacuum fields

Cristiano Ciuti

Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, France

Connection to previous lectures and keywords

Steve Girvin: circuits and QED vacuum fluctuations

Tomoki Ozawa: edge states and topology

Nicola Regnault: 2D electron systems, Landau levels, topology

Atac Imamoglu: light-matter interaction in 2D electron gases

Experiments and theory:

F. Appugliese, J. Enkner, G. L. Paravicini-Bagliani, M. Beck, C. Reichl, W. Wegscheider, G. Scalari, CC, J. Faist, *Breakdown of topological protection by cavity vacuum fields in the integer quantum Hall effect*, Science 375, 1030 (2022)

Theory:

CC, *Cavity-mediated electron hopping in disordered quantum Hall systems*, PRB 104, 155307 (2021)

G. Arwas and CC, *Quantum electron transport controlled by cavity vacuum fields*, arXiv:2206.13432

Acknowledgements

Felice Appugliese Josephine Giacomo Scalari Jérôme Faist Enkner

Geva Arwas

Introduction

Quantum vacuum

Quantum vacuum is not empty, but filled with fluctuating fields

Famous effects due to electromagnetic quantum vacuum

Spontaneous photon emission (luminescence)

Lamb shift of the hydrogen atom

Casimir forces

Enhancing vacuum effects by spatial confinement: cavity QED

CAVITY QUANTUM ELECTRODYNAMICS

A new generation of experiments shows that spontaneous radiation from excited atoms can be greatly suppressed or enhanced by placing the atoms between mirrors or in cavities.

Serge Haroche and Daniel Kleppner

Vacuum field increases with decreasing mode volume

Vacuum electric field fluctuation

Mode volume

Emerging topic: manipulation of matter by vacuum fields

RESEARCH

REVIEW SUMMARY

LIGHT-MATTER COUPLING

Manipulating matter by strong coupling to vacuum fields

Francisco J. Garcia-Vidal*, Cristiano Ciuti*, Thomas W. Ebbesen*

Modification of:

- Condensed matter phases
- **Transport properties**
- Chemical reactions

....

Garcia-Vidal, C. Ciuti, Ebbesen, Science 373, 178 (2021)

Other recent reviews

Applied Physics Reviews REVIEW scitation.org/jo		org/journal/are	•	
Cavity quantum materials 👩				
Cavity quantum materials (F) Cite as: Appl. Phys. Rev. 9, 011312 (2022); doi: 10.1063/5.0083825				
Cavity quantum materials Cite as: Appl. Phys. Rev. 9, 011312 (2022); doi: 10.1063/5.0083825 Submitted: 30 December 2021 · Accepted: 31 January 2022 ·			Ċ	

Perspective

Strongly correlated electron-photon systems

https://doi.org/10.1038/s41586-022-04726-w	Jacqueline Bloch ¹ , Andrea Cavalleri ² , Victor Galitski $^{3\boxtimes}$, Mohammad Hafezi 4 & Angel Rubio 25
Received: 2 December 2020	
Accepted: 2 December 2021	An important goal of modern condensed-matter physics involves the search for states
Published online: 25 May 2022	of matter with emergent properties and desirable functionalities. Although the tools
Check for updates	for material design remain relatively limited, notable advances have been recently achieved by controlling interactions at heterointerfaces, precise alignment of low- dimensional materials and the use of extreme pressures. Here we highlight a paradigm based on controlling light-matter interactions, which provides a way to manipulate and synthesize strongly correlated quantum matter. We consider the case in which both electron–electron and electron–photon interactions are strong and give rise to a variety of phenomena. Photon-mediated superconductivity, cavity fractional quantum Hall physics and optically driven topological phenomena in low dimensions are among the frontiers discussed in this Perspective, which highlights a field that we term here 'strongly correlated electron–photon science'.

Cavity-control of quantum Hall systems

Cavity Quantum Electrodynamics CQED

Lamb shift, Casimir,... Enhanced light matter-interaction Vacuum Rabi oscillations,...

CAVITY QUANTUM ELECTRODYNAMICS

A new generation of experiments shows that spontaneous radiation from excited atoms can be greatly suppressed or enhanced by placing the atoms between mirrors or in cavities.

Serge Haroche and Daniel Kleppner

Quantum Hall Effect (QHE)

Paradigmatic Topological Insulator

Giant vacuum fields with split-ring resonators

LC-like resonator

Strong vacuum electric fields in the capacitive gap

Deeply subwavelength mode confinement

$$10^{-10} (\lambda/n)^3 < V < 10^{-4} (\lambda/n)^3$$

Courtesy of J. Faist's group @ ETH

The new frontier: 2D electron gas in split-ring resonators

Optics: Landau polaritons Hagenmüller, De Liberato, CC, PRB (2010) Scalari et al, Science (2012)

See next talk by J. Mornhinweg and references therein

Magneto-transport: Shubnikov-de Haas regime

Paravicini-Bagliani et al., Nature Physics (2019) Bartolo & CC, PRB (2018)

Can the **cavity quantum vacuum** fluctuations **modify quantum Hall physics**?

Quantum Hall transport: edge picture

Integer quantum Hall: edge transport picture

- Localized bulk states do not contribute to transport
- No back-scattering for chiral 1D edge channels

Edge transport is topologically protected

The only way would be for an electron in one edge state to scatter to the other side

Absence of backscattering for chiral edge states

M. Büttiker, Phys. Rev. B 38, 9375 (1988)

Quantization of conductance is topological property

A mug or a donut have one hole

When edge states have no back-scattering, number of edge channels is what matters

Resistance metrology: QH is topologically robust

Séminaire Poincaré 2 (2004) 39 - 51

Séminaire Poincaré

The Quantum Hall Effect as an Electrical Resistance Standard*

B. JECKELMANN and B. JEANNERET Swiss Federal Office of Metrology and Accreditation Lindenweg 50 CH-3003 Bern-Wabern Switzerland

Abstract. The quantum Hall effect (QHE) provides an invariant reference for resistance linked to natural constants. It is used worldwide to maintain and compare the unit of resistance. The reproducibility reached today is almost two orders of magnitude better than the uncertainty of the determination of the ohm in the International System of Units SI. This article is a summary of a recently published review article which focuses mainly on the aspects of the QHE relevant for its metrological application.

Metrological accuracy....

Giant vacuum fields a threat to the topological protection?

Can cavity vacuum fluctuations induce a inter-edge coupling?

All in all, we have.....

1) Cavity vacuum field is all over the 2D electron gas

2) Topological robustness not immune to non-local perturbations

Experiments (collaboration with Faist's group at ETH Zürich)

ETH zürich

Felice Appugliese

Josephine Enkner

Giacomo Scalari Jér

Jérôme Faist

F. Appugliese, J. Enkner, G. L. Paravicini-Bagliani, M. Beck, Ch. Reichl, W. Wegscheider, G. Scalari, C. Ciuti, J. Faist, Science 375, 1030 (2022)

Breakdown of the topological protection of integer QH effect

Cavity-mediated electron hopping in disordered electron quantum Hall systems

CC, PRB 104, 155307 (2021)

Cavity-mediated electron hopping with disordered Landau levels

Yes ... The physical mechanism

Yes... The physical mechanism

 L_y

0

Yes... The physical mechanism

Yes... The physical mechanism

 L_y

Cavity-mediated hopping via the exchange of a virtual cavity photon

Summarizing the final Hamiltonian

Single-particle Hamiltonian in terms of disordered eigenstates (wall included)

$$\hat{H}_{\rm sp} = \hat{H}_{\rm el} + \hat{H}_{\rm dis} = \sum_{n,\kappa,\sigma} \left(\epsilon_{n,\lambda} + \frac{1}{2} \sigma \, \mathbf{g}_e \mu_B B \right) \hat{d}_{n,\lambda,\sigma}^{\dagger} \hat{d}_{n,\lambda,\sigma} \,,$$

Renormalized cavity mode (due to diamagnetic term)

$$\hat{H}_{\text{mode}} = \hat{H}_{\text{cav}} + \hat{H}_{\text{dia}} = \hbar \tilde{\omega}_{\text{cav}} \hat{\alpha}^{\dagger} \hat{\alpha}$$

Interaction between disordered eigenstates and renormalized mode

$$\hat{H}_{\text{para}} = \sum_{n,\lambda,\lambda^{\prime\prime},\sigma} (-\mathbf{i})\hbar \tilde{g}_{\lambda,\lambda^{\prime}}^{(n,n+1)} \left(\hat{\alpha} + \hat{\alpha}^{\dagger}\right) \hat{d}_{n+1,\lambda^{\prime\prime},\sigma}^{\dagger} \hat{d}_{n,\lambda,\sigma} + \text{h.c.}$$
Renormalized interaction (disorder + diamagnetic)

Renormalized interaction (disorder + diamagnetic term)

Coupling constant modified by disorder and diamagnetism

$$g = \frac{eA_{\rm vac}}{\hbar} \sqrt{\frac{\hbar\omega_{cyc}}{2m}}$$

Cavity-mediated hopping between disordered Landau states

Effective hopping coupling

Effective cavity-mediated hopping (lowest order perturbation theory)

$$\Gamma_{\lambda,\lambda'}^{(n)} \simeq \sum_{\lambda''} \frac{\hbar^2 \, \tilde{g}_{\lambda,\lambda''}^{(n,n+1)} \tilde{g}_{\lambda',\lambda''}^{(n,n+1) \star}}{\epsilon_{n,\lambda} - \epsilon_{n+1,\lambda''} - \hbar \tilde{\omega}_{cav}}$$

Long-range interaction

Cavity mediate-scattering rate

Achilles' heel of the integer quantum Hall effect

Topological insulator (integer quantum Hall system)

Experiments: J. Faist's group @ ETH Zürich

F. Appugliese, J. Enkner, G. L. Paravicini-Bagliani, M. Beck, Ch. Reichl, W. Wegscheider, G. Scalari, C. Ciuti, J. Faist, Science 375, 1030 (2022)

Experiments: J. Faist's group @ ETH Zürich

QH Plateaux at odd integer filling are destroyed....

Transport via the Büttiker formalism with inter-edge coupling

Multiprobe network model with inter-edge coupling

P. McEuen et al., PRL 64, 2062 (1990).

A. Szafer, A. D. Stone, P. McEuen, B. Alphenaar, Granular Nanoelectronics (Springer, 1991), pp. 195–222

Predictions of the model at integer filling factors

Inter-edge coupling fitted from longitudinal resistance
 Transverse Hall resistance predicted without adjustable parameters

Application of the network model at integer filling factors

Knowing the longitudinal resistance, we can get the inter-edge coupling

With no adjustable parameters, we can then calculate the Hall resistance and find excellent agreement with experimental values

Effect increase with increasing vacuum Rabi frequency

Why odd/even strong asymmetry?

Cavity-mediated hopping is spin-independent but

i) Cyclotron splitting much larger than Zeeman splitting

ii) EDGE states at ODD integer filling factors are CLOSER TO BULK states

EDGE states at EVEN integer filling factors are energetically more distant from bulk states

A general theoretical framework for coherent quantum electron transport controlled by cavity vacuum fields

Geva Arwas

G. Arwas and CC, arXiv:2206.13432

A microscopic quantum electron transport theory

Tight-binding model

$$\hat{\mathcal{H}} = \sum_{\mathbf{i}} E_{\mathbf{i}} \hat{d}_{\mathbf{i}}^{\dagger} \hat{d}_{\mathbf{i}} - \sum_{\langle \mathbf{i}, \mathbf{j} \rangle} J e^{i\frac{q}{\hbar} \int_{\mathbf{r}_{\mathbf{i}}}^{\mathbf{r}_{\mathbf{j}}} \hat{\mathbf{A}}(\mathbf{r}) \cdot d\mathbf{r}} \hat{d}_{\mathbf{i}}^{\dagger} \hat{d}_{\mathbf{j}} + \hbar \omega_{cav} \hat{a}^{\dagger} \hat{a}}$$

$$g_{\mathbf{i}\mathbf{j}} = \frac{q}{\hbar} \int_{\mathbf{r}_{\mathbf{i}}}^{\mathbf{r}_{\mathbf{j}}} \mathbf{A}_{vac}(\mathbf{r}) \cdot d\mathbf{r}$$

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_{0} + \hbar \omega_{cav} \hat{a}^{\dagger} \hat{a} + \hat{V}$$

$$\hat{\mathcal{H}}_{0} = \sum_{\mathbf{i}} E_{\mathbf{i}} \hat{d}_{\mathbf{i}}^{\dagger} \hat{d}_{\mathbf{i}} - J \sum_{\langle \mathbf{i}, \mathbf{j} \rangle} \hat{d}_{\mathbf{i}}^{\dagger} \hat{d}_{\mathbf{j}} = \sum_{\lambda} \epsilon_{\lambda} \hat{c}_{\lambda}^{\dagger} \hat{c}_{\lambda}$$

$$\hat{\mathcal{V}} = -J \sum_{\lambda,\lambda'} \sum_{n=1}^{\infty} \frac{i^{n}}{n!} \tilde{g}_{\lambda,\lambda'}^{(n)} (\hat{a} + \hat{a}^{\dagger})^{n} \hat{c}_{\lambda}^{\dagger} \hat{c}_{\lambda'}$$

$$\tilde{g}_{\lambda\lambda'}^{(n)} = \sum_{\langle \mathbf{i}, \mathbf{j} \rangle} g_{\mathbf{i}\mathbf{j}}^n \langle \phi_\lambda | \mathbf{i} \rangle \langle \mathbf{j} | \phi_{\lambda'} \rangle$$

Effective interaction mediated by intermediate states

Effective interaction mediated by intermediate states

Effective interaction mediated by intermediate states

$$\tilde{\Gamma}_{\lambda,\lambda'} \simeq \sum_{\epsilon_{\mu} \ge E_F} \frac{J^2 \, \tilde{g}_{\lambda,\mu} \tilde{g}_{\mu,\lambda'}}{\epsilon_{\mu} - \epsilon_{\lambda} + \hbar \omega_{cav}} - \sum_{\epsilon_{\mu} < E_F} \frac{J^2 \, \tilde{g}_{\lambda,\mu} \tilde{g}_{\mu,\lambda'}}{\epsilon_{\lambda'} - \epsilon_{\mu} + \hbar \omega_{cav}}$$

$$\hat{\mathcal{H}}_{\text{eff}} = \sum_{\lambda} \epsilon_{\lambda} |\phi_{\lambda}\rangle \langle \phi_{\lambda}| + \sum_{\lambda,\lambda'} \frac{\tilde{\Gamma}_{\lambda,\lambda'} + \tilde{\Gamma}^{*}_{\lambda',\lambda}}{2} |\phi_{\lambda}\rangle \langle \phi_{\lambda'}| \,.$$

Quantum conductance in terms of transmission coefficients

 $G(E_{\rm F}) = \frac{e^2}{h} \sum_{j \in \mathcal{S}, j' \in \mathcal{D}} T_{j,j'}(E_{\rm F})$

Transmission matrix between contacts calculated with effective Hamiltonian

See e.g.

ELECTRONIC TRANSPORT IN MESOSCOPIC SYSTEMS

SUPRIYO DATTA Professor of Electrical Engineering Purdue University

Example of 1D system: asymmetric double quantum well

Example of 1D system: symmetric double well

Example of 1D system: smooth disordered potential

Example of 2D system: disordered quantum Hall system

Electromagnetic vacuum fluctuations cannot be generally overlooked in mesoscopic systems

Cavity-mediated long-range interactions alter quantum transport

Topological conductors not immune to cavity-mediated interactions

Challenge: we might try this physics as a tool to control