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Connection to previous lectures and keywords
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%z \M%k Steve Girvin: Circuit QED, photon manipulation by artificial atoms

Luigi Lugiato: Down-conversion of photons (three-wave-mixing)

Iacopo Carusotto: many-body states of light

Atac Imamoglu: quantum impurity physics



The system: a multi-mode cavity coupled to a single qubit

Multi-mode cavity fluxonium
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All in all: it’s a fancy Fabry-Perot coupled to a single atom

High-frequency mode #100

Low-frequency mode #2



Closer look to transmission line with Josephson Junction arrays
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Spectroscopy of the bare transmission line modes
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Equivalent circuit

Transmission line
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Equivalent lumped element circuits

(b)

‘Flux’ gauge




Equivalent lumped element circuits
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‘Flux’ gauge

‘Charge’ gauge

‘Hybrid’ gauge



Fluxonium atom and its flux dependence
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Ultrastrong couplings for different circuit gauges
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The manybody problem

Manymode transmission line = manybody problem (large Hilbert space)
Related to the so-called quantum impurity problems

H=H{1QHo® .. HN S Hatom
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Connection to quantum impurity physics (spin-boson
problem, Kondo physics,....)



Linear spectroscopy: a wide-frequency view of the “modes”
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Looking at low frequency branches
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Going up: emerging spectral fine structure

Richer fine structure
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Going up: fine spectral structure getting richer
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A jungle of resonances: to be revisited later...
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What’s going on? Let’s start with the circuit QED Hamiltonian

Josephson’s atom

HQED — Hqubit + }AImodes + IA{int

Hamiltonian
. 1 Josephson’s at
_ ~ 2 ~2 A phson’s atom
+00 . .
A Ih = Z f(bare) ATy « Bare » transmission line modes
O . o (in reality they include diamagnetic-like
renormalization)

1nt/h—_90ng(f)b +bT _|_an Z g(c) bT A.)
1=Jo+1

Atom-mode interaction (both rotating and counter-rotating wave terms)
in a hybrid gauge
Counter-rotating wave-terms important in the ultra-strong coupling regime



Diagonalization in one-excitation subspace: the “polaritons”

By, = {l e> |0>, | g> IA)ITc |O>} | Basis of single-excitation subspace
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Polariton-like creation operator

At the single-photon level,
the ‘atom’ mediates an hybridization between several cavity modes



Superstrong coupling regime: already observed with transmons

Atom-induced multimode hybridization already observed with transmon atoms

N.B. Transmon is a weakly anharmonic oscillator
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R. Kuzmin, N. Mehta, N. Grabon, R. Mencia, and V. E. Manucharyan, npj Quantum
Information (2019)5:20
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Superstrong coupling regime: already observed with transmons
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Also with fluxonium, single-excitation theory explains the
“envelope” of the branches
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Disclaimer: different kinds of polaritons....

Hopfield polariton is a linear superposition
of light and matter quanta
(e.g., exciton-polariton)

e

Pasta + sauce

[polariton) o |photon) + |exciton)

The ‘polariton’ here is the linear
superposition of the quanta of 2 circuits

- a&7hy. | Pasta 1 + Pasta?2



Multi-polariton subspaces

To understand the fine structure, multi-polariton states are needed:

Jo<k'<k .
{&L |0>} U {&L,dg 0) } 10<i<j Basis of two-excitation subspace
~¢>JO

o<k’ o<k’ k' Basis of
{ak|0>} U {a’k’a’z’ |0>} . U {ak’ak”a’ |0>}1 <i<io three-excitation
_ - subspace

Subspaces with different number of particles are coupled
via the counter-rotating-wave terms of the atom-resonator interaction
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Effective Hamiltonian

Down-conversion
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What is going on?

(a) (b)

superconducting transmission line

e e |

port mirror

Jodnw ygnb

—
e

2-particle states 3-particle states 4-particle states
4 /'\ /'\ /-\

fet \gjwmmwmwwmw T W<+ 9 wv\nwwm“
—~ A AR AR AR AR
5 WAN\AN A A Y, IAAMAMAAA ‘W/\/V\/\/V\/\/\A;“ MAMAAAY, IAMMAAAN
% WMNW A AAAAAARY AN M\/WW\N Ay
% AR AR A MAAY AR AV
=
W]
CI). SN Ya NN
s fit —o— oo o | -e00- |00

0+



Free spectral range is not constant: pseudo-random disorder

Mode spacing is not constant -> degeneracy of multi-particle states is lifted

For example f, # fio_n + fn
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Including two-photon states
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What about Fermi golden Rule?

iy = —|(IIH|f)|*6(Ey — E;)

25
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At Fermi1’s golden rule, particle decay is irreversible.....
Fermi’s golden rule calculates damping rate

Leoc S [(OaxVal,allo)25(fi — fur — f;)

k"3

The considered multi-mode circuit QED system has particle decay
(down-conversion) that dramatically breaks Fermi’s golden rule



States with three and four-particle components

Particle attempts to decay but fails... and hybridize with few-particle states
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Connection to Altschuler et al. proposal with fermions

VOLUME 78, NUMBER 14 PHYSICAL REVIEW LETTERS 7 APRIL 1997

Quasiparticle Lifetime in a Finite System: A Nonperturbative Approach

Boris L. Altshuler,! Yuval Gefen,? Alex Kamenev,? and Leonid S. Levitov3
INEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540
2Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot, 76100, Israel
3Massachusetts Institute of Technology, 12-112, Cambridge, Massachusetts 02139
(Received 30 August 1996)

The problem of electron-electron lifetime in a quantum dot is studied beyond perturbation theory
by mapping onto the [problem of localization in the Fock spacel Localized and delocalized regimes
are identified, corresponding to quasiparticle spectral peaks of zero and finite width, respectively.
In the localized regime, quasiparticle states are single-particle-like. In the delocalized regime, each
eigenstate is a superposition of states with very different quasiparticle content. The transition energy is
€. = A(g/In g)l/ 2 where A is mean level spacing, and g is the dimensionless conductance. Near €,
there is a|broad critical region not described by the golden rule] [S0031-9007(97)02895-0]

Quasiparticle in a Fermi liquid is not an eigenstate: it
decays into two quasiparticles and a hole. In an infinite
clean system, by using the golden rule (GR), quasiparticle
decay rate is estimated as y(e) ~ €2/er, where € is quasi-
particle energy and er is Fermi energy [1]. However, in
a finite system the eigenstate spectrum is discrete. In this
case, quasiparticles may be viewed as wave packets con-
structed of such states, the packet width being determined
by the lifetime in an infinite system: §€ = y(€). In this
paper we attempt to clarify the relation between quasipar-
ticles and many-particle states, and find that at different

energies it has different meanings. g—[o + ﬂl = Zeaclca + Z V;%BC;C;CIBCQ
a aByéd




Connection to Anderson localization
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PHYSICAL REVIEW VOLUME 109, NUMBER 5§ MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices

' P. W. ANDERSON
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received October 10, 1957)

This paper presents a simple model for such processes as spin diffusion or conduction in the “‘impurity
band.” These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

Single-particle problem with a random disordered potential

Photon localization

Atom localization

localized




Connection to many-body localization

Manybody localization is a sort of Anderson localization in the Fock space

"

Iningng...)

Inyinons...

Anderson localization is a single-particle localization in a disordered lattice

For Anderson-like many-body localization, the following analogy holds:
- Lattice site ¢====) manybody Fock state

- Hopping <==) coupling due to particle-particle interaction

- Disorder <===) disorder for manybody energy states

A manybody system initially prepared in an initial state remains ‘localized’ around it in Fock space

In the present circuit QED system, the initial single-photon state attempts to delocalize in Fock
space by delocalizing into a shower of multiparticle states, but fails to do so

References:

- B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov, Quasiparticle lifetime in a finite system:
A nonperturba- tive approach, Phys. Rev. Lett. 78, 2803 (1997)

- D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium: Many-body localization,
thermalization, and entanglement, Rev. Mod. Phys. 91, 021001 (2019).

- S. Girvin,
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« Hopping connectivity » in Fock space depends on atom!
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