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The general goal of these lectures

Start	from	the	concept	of	“soliton”	in	a	2D	system

Describe	its	implementation	in	a	binary	mixture	of	quantum	gases	

Study	the	transition	from	the	solitonic	to	a	droplet	regime,	and	compare	it	with	“quantum	droplets”	

No	significant	“beyond	mean-field	physics”	in	this	lecture

http://www.ma.hw.ac.uk/solitons/soliton1b.html

Front page of the book 

“Physique des solitons” 

by Peyrard & Dauxois
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Outline of Lecture 1

1.		Solitons	in	2D	?

2.	The	Townes	soliton

3.	The	binary	mixture	approach	to	the	Townes	soliton	

4.	A	first	look	at	experimental	results

The	constraints	imposed	by	scale	invariance

Arbitrary	size,	but	a	single	possible	atom	number

Evolution	of	a	minority	component	inside	an	infinite	bath
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Solitons for the Gross-Pitaevskii equation

Stationary wave function solution of the variational problem  for an attractive non-linearity δ [E(ψ)] = 0 g < 0

E[ψ] =
1
2 ∫ ( ∇ψ

2
+ g ψ

4) dDr ∫ |ψ |2 = N ℏ = m = 1

Relevant	in	optics,	atomic	physics,	condensed	matter…

5

Wikipedia: a soliton is a self-reinforcing wave packet that maintains its shape while it propagates

Cancellation of nonlinear and dispersive effects in the medium

Dimensional analysis for a wave packet of size : ℓ E(ℓ)
N

∼
1
ℓ2

−
N |g |

ℓD

Crucial	role	of	dimensionality

|ψ |2 ∼
N
ℓD

https://en.wikipedia.org/wiki/Wave_packet
https://en.wikipedia.org/wiki/Nonlinearity
https://en.wikipedia.org/wiki/Dispersion_relation


Solitons in 1D and 3D

Dimensional analysis for a wave packet of size : ℓ E(ℓ)
N

∼
1
ℓ2

−
N |g |

ℓD

In 1D: Stable solution for any  and any   N g

ℓ

E(ℓ)

ℓ*

Size   ℓ* ∝ 1/N |g |

In 3D: Dynamically unstable extremum

ℓ

E(ℓ)

ℓ*

Size  ℓ* ∝ N |g |

In the context of cold atoms: 
Salomon and Hulet’s groups (2002)

In the context of cold atoms: 
BoseNova: Cornell-Wieman group (2001)

g < 0
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Solitons in 2D

Dimensional analysis for a wave packet of size  in two dimensions: ℓ

E(ℓ)
N

∼
1
ℓ2

−
N |g |

ℓ2
E[ψ] =

1
2 ∫ ( ∇ψ

2
+ g ψ

4) d2r

∫ |ψ |2 = N

2D	is	a	critical	dimension:	

• Stationary	solutions	can	be	expected	only	for	discrete	values	of	 	N |g |

• For	such	a	value	of	 	,	no	length	scale	emerges	from	the	minimization	of	 	N |g | E[ψ]

A	manifestation	of	scale	invariance

g < 0



Scale invariant fluids

Consider	a	fluid	whose	equations	of	motion,	i.e.	its	action	 	,	are	invariant	in	the	following	rescaling:∫ E dt

Considerable	simplification	of	the	study	of	equilibrium	properties	and	dynamics

Positions:			r → r/λ Time:			t → t/λ2

Clearly		 			,	implying	that		 		is	invariant		Ekin → λ2Ekin ∫ Ekin dt

What	about	interactions?		Can	we	achieve			 			when			 		?Eint → λ2Eint r → r/λ

Velocity:			v → λv

8
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Cold	atomic	gases	with	scale	invariant	interactions

• Contact interaction in a 2D Bose gas:

r ! r/�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

g �(r) ! g �(r/�) = �2 g �(r)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

• 3D Fermi gas in the unitary regime (infinite scattering length, hence no length scale 
associated to interactions)

Eint ! �2Eint
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

r ! r/�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Valid only for relatively weak interactions, so that a classical field description (Gross-Pitaevskii 
equation) is valid (otherwise, quantum anomaly from the regularisation of   )δ(r)

• An interaction potential varying as    : emerges in some specific situations (Efimov) V(r) =
g
r2
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Classical field approach to the 2D Bose gas

Describe	the	gas	by	a	classical	field			 			obeying	the	Gross-Pitaevskii	equation	ψ(r, t)

Energy	of	the	gas:	 E( ) = Ekin( ) + Eint( )
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ekin( ) =
~2
2m

Z
|r |2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Eint( ) =
~2
2m

g̃

Z
| |4

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

   interaction strengthg̃ :
No singularity at the classical field level 

�1 �0.5 0 0.5 1 �1

0

1

0

0.5

1

1.5

x
y

In	2D,	the	interaction	strength		 		is	dimensionless:	no	length	scale	associated	with	interactionsg̃

In	3D,	 		where	 		is	the	scattering	lengthg̃ = 4πa(3D) a(3D)

g̃ = 8π
a(3D)

ℓz
Frozen	direction	 		z : ℓz = ℏ/mωz
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Outline of Lecture 1

1.		Solitons	in	2D	?

2.	The	Townes	soliton

3.	The	binary	mixture	approach	to	the	Townes	soliton	

4.	A	first	look	at	experimental	results

Arbitrary	size,	but	a	single	possible	atom	number

Ray Chiao, Esla Garmire & Charles Townes, 1964



Townes soliton in practice

Initially	proposed	in	the	context	of	non-linear	optics

The axis propagation ( ) plays the role of timez
x

y
z

Many	subsequent	experiments	in	bulk	photonic	systems	or	waveguides	
(filamentation,	light	bullets,…),	as	well	as	in	polariton	systems

Competition between self-focusing and diffraction

 Kartashov et al, Nature Reviews Phys. 1, 185 (2019)
12

Chiao, Garmire & Townes, “Self-Trapping of Optical Beams,” PRL 13, 479 (1964)
Moll, Gaeta & Fibich, Self-Similar Optical Wave Collapse: Observation of the Townes Profile, PRL 90, 203902 (2003)


30 cm BK7 glass

produced by inserting a roughened microscope slide into
the path of the input beam. Once again, we observed that
as the power was increased from the linear regime until
just below the threshold for collapse within the glass
sample, the beam radius decreased (an indication of
self-focusing), and the profile becomes smooth and nearly
perfectly circularly symmetric [see Fig. 4(b)].

We conclude from our numerical simulations that the
farther the initial beam shape deviates from the ideal
Townes profile, the closer the beam must propagate to
the point of complete collapse in order to evolve to the
Townes profile. Experimentally, the electric-field ampli-
tude cannot reach arbitrarily large intensities, and higher-
order nonlinear effects such as the formation of plasma
[20], saturation of the nonlinearity, and in the case of
pulsed lasers, temporal effects such as dispersion [21] and
self-steepening [22,23] play an increasingly important
role, which can result in the arrest of pulse collapse. For
the case of an ultrashort laser pulse, an optical ‘‘shock’’
forms at the back edge of the pulse as it undergoes
collapse, leading to the production of an extremely broad
spectrum of radiation known as super-continuum genera-
tion (SCG) [20,24]. As discussed above, we found that for
nearly circular input beams, Townes-profile formation

could be observed without the occurrence of SCG.
However, for the case of elliptical input beams observa-
tion of the Towne profile required propagation very near
to the collapse point, at which point SCG occurs.

Observation of SCG is thus a signature that the pulse
has undergone collapse, and we used this fact to deduce
the spatial shape of the beam near the collapse point for
the case of an elliptically shaped input beam. Such a beam
was produced by using a suitable pair of cylindrical
lenses that were inserted before the sample to reduce
the beam width in one dimension with respect to
the other. We found that regardless of the input-beam
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FIG. 3 (color online). Experimental observation of the
Townes profile. (a) Lineouts along one axis are taken through
the center of the beam at several different input powers. At
sufficiently high pulse energies, a strong on-axis component
[solid line in (b) and (c)] is observed which matches the Townes
profile [dashed line in (b) and (c)] predicted by numerical
simulations. The low-power profile [dotted line in (b)] has
been scaled by a constant factor to account for different input
powers and demonstrates the partial collapse of the beam. The
width and peak intensity of the fitted Townes profiles [(a) inset]
obey the scaling relation wT / I!0:6

T .

FIG. 4. Images of the transmitted beam profiles for randomly
distorted and elliptical input beams. At low powers, (a) a
randomly distorted beam and (c) an elliptically shaped input
beam with a 3:1 ratio of major to minor axes are passed
through the BK7-glass sample. As the power is increased,
(b) the distorted beam self-focuses, becoming smaller in
diameter as well as smooth and symmetric. For the elliptically
shaped beam, (d) circularly symmetric supercontinuum gen-
eration is formed. A color-glass filter was used to eliminate the
light at the fundamental wavelength and image the yellow
component of the SCG. Analysis of the captured image dem-
onstrates that the beam is circular to better than one part in
thirty. The speckle in (c) and (d) is a result of the frosted glass
used to image the output beam.

CCD Camera
or Linear Photodiode

Array

Optional Cylindrical
Lenses

30-cm Block BK7 Glass Frosted Glass
Screen or Thin Slit

Ti:Sapphire Laser Beam
Diameter~0.5mm

Energy
Meter

Shutter

Glass
Substrate

FIG. 2. Experimental setup. An amplified Ti:sapphire laser beam of 50-fs pulses propagates through a BK7 sample and undergoes
self-focusing. The power is adjusted such that the beam is collapsing at the output surface. The output beam is imaged by a CCD
camera. Optionally, a pair of cylindrical lenses is inserted into the beam to study the collapse dynamics with an elliptically shaped
beam. A computer controlled shutter allows for single-shot measurements.

P H Y S I C A L R E V I E W L E T T E R S week ending
23 MAY 2003VOLUME 90, NUMBER 20

203902-3 203902-3

Low power: 
randomly 

distorted beam

 critical power: 
self-cleaned 

beam

∼
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The solution for the Townes soliton

Radially symmetric, node-less solution of: 

−
1
2

∇2ψ + g ψ3 = μ ψ

Such a solution exists only if  (Ng)Townes
= − 5.85...

	 		[arb.un.]r

ψ(r)

Once a particular solution is known, scale invariance provides a continuous family of solutions

ϕ(r) = λ ψ(λr) μϕ = λ2μ

No particular length scale for the Townes soliton when it exists 

	realλ

However:	Instable	with	respect	to	a	change	in	shape	or	in	Ng

∫ |ψ |2 = N

It has    and   E = 0 μ < 0

E[ψ] =
1
2 ∫ ( ∇ψ

2
+ g ψ

4) d2r
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A few known results on Townes soliton 

• Variance identity, valid for any shape of the wave packet:

d2⟨r2⟩
dt2

=
4E
m

a consequence of the scale/conformal invariance of the problem
SO(2,1) symmetry  (Niederer, Pitaevskii & Rosch)

• Negative energy        Collapse⟹   becomes negative at a finite time⟨r2⟩

But the reciprocal statement is not true: there exist wave packets with  that collapseE > 0

• Small  RegularityN |g | ⟹ Threshold at the Townes critical number:  N |g | = 5.80…

But the reciprocal statement is not true: there exist wave packets with large atom numbers that do not collapse

C. Sulem & P.-L. Sulem, The nonlinear Schrödinger equation, self-focusing and wave collapse, 
Springer 1999

E[ψ] =
1
2 ∫ ( ∇ψ

2
+ g ψ

4) d2r
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Example: Townes profile vs. Gaussian

5.80…
N |g |

E > 0 E < 0
no	collapse 	collapse

For	an	initial	Townes	profile

E = 0

Both	 	and	 

increase	with	time

n(0) ⟨r2⟩

N |g |

E > 0 E < 0
no collapse  collapse

2π = 6.28…

For	an	initial	Gaussian	profile Fibich & Gaeta, 2000
E = 0

5.80… 5.96…

 collapse
E > 0

 no collapse
E > 0

E[ψ] =
1
2 ∫ ( ∇ψ

2
+ g ψ

4) d2r
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Observation of Townes soliton with  cold atomic gases

Paris group:     Phys. Rev. Lett. 127, 023603 (2021), use of a two-component gas with 87Rb                

Purdue group: Phys. Rev. Lett. 127, 023604 (2021), use of a Feshbach resonance with 133Cs

One	needs	to	achieve	an	effective	attractive	interaction		g̃ < 0
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127,

023604
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023604-2

Quench  
and switch from 1D to 2D

g̃ : + 0.13 → − 0.0215

Rescale all “droplets” together

⟨Ng̃⟩ = − 6.0 (8)

from Chen & Hung, PRL 127, 023604 (2021)

98% of the samples analyzed, we find Ns ≥ 1 total number
of solitons [Fig. 2(a)]. Thanks to a nearly remnant-free
background, we collect solitons of peak densities over a
finite range from np ∼ 8 to ∼30=μm2 [Fig. 2(b)]. This
allows us to study their density scaling behavior. On
the other hand, the average peak density n̄p ≈ 20=μm2

[Fig. 2(c)] is comparable to the initial density ni ≈ 18=μm2

and is approximately uniform along the sample. It is more
likely to find solitons near the edge, as shown in the
probability distribution pðyÞ in Fig. 2(d), potentially due to
a boundary effect that reduces soliton collision loss. We

observe that low density samples as shown in Fig. 1(d)
generate solitons with peak density 2≲ np ≲ 13=μm2.
We collect solitons of different sizes from our quenched

samples to perform the scaling tests. In Fig. 3, we show
sample soliton images, sorted with np monotonically
increasing from 7 to 30=μm2 for g ≈ −0.0215 [in
Fig. 3(a)] and from 1.5 to 9=μm2 for g ≈ −0.0075 [in
Fig. 3(b)]. The soliton size appears to monotonically
decrease with respect to the increasing peak density, as
shown in the radial density profiles nðrÞ in Fig. 3 insets.
We test the SI hypothesis by rescaling the density

profiles nðrÞ in a dimensionless form and search for a
universal behavior. In Fig. 3, we plot the rescaled density
ñ ¼ n=np as a function of the dimensionless radial position
r̃ ¼ ffiffiffiffiffinp

p r. Indeed, despite a large variation in soliton size,
we observe that all profiles measured at a fixed g collapse

(a)

(b)

FIG. 3. Testing scale invariance. (a) Images at the top, from left
to right, show solitons of low to high peak densities, selected
from samples as shown in Fig. 1(b). Image size 19 × 19 μm2.
Their radial density profiles nðrÞ (filled circles, inset) approx-
imately collapse onto a single curve in the rescaled coordinate
r̃ ¼ ffiffiffiffiffinp

p r and ñ ¼ n=np. Error bars include statistical and
systematic errors. Shaded band shows the standard deviation
of 20 rescaled radial profiles around their mean hñi (solid curve).
(b) Shows soliton images and profiles observed in Fig. 1(d).
Image size 60 × 60 μm2.

(a)

(b)

FIG. 4. Universal soliton density profile. (a) Filled symbols
show different scale-invariant mean profiles hñi (inset), measured
at interaction strengths g ≈ −0.0075 (triangle), −0.0170 (circle),
and −0.0215 (square), respectively. Open circles display a scaled
density profile reported in Ref. [17], for g ≈ −0.034 and with a
fixed np ≈ 5=μm2. These profiles collapse onto a single curve in
the rescaled radial coordinate R ¼

ffiffiffiffiffi
jgj

p
r̃, and the magenta band

marks their mean with standard error. Collapsed solid curves are
the universal Townes profile (black) and the solutions of full GPE
with the MDDI term Eq. (3), calculated using gc ¼ −0.009, np ¼
1=μm2 (red), and 10=μm2 (blue), respectively, and rescaled using
g ¼ gc þ 2gDD. For comparison, dashed curves show the same
solutions rescaled using g ¼ gc. (b) Universal atom number
Njgj ¼

R
ñdR using soliton profiles as in Fig. 3 and integrated

up to R ¼ 4. Solid line and gray band indicate the mean and
standard deviation.

PHYSICAL REVIEW LETTERS 127, 023604 (2021)

023604-3

Atom number/droplet:

to be compared with (Ng̃)Townes = − 5.85...
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Outline of Lecture 1

1.		Solitons	in	2D	?

2.	The	Townes	soliton

3.	The	binary	mixture	approach	to	the	Townes	soliton	

4.	A	first	look	at	experimental	results

Evolution	of	a	minority	component	inside	an	infinite	bath

component	1

component	2

n1(r)

n2(r)
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A two-component fluid

component	1

component	2

(a) g12

g
g

|1i |2i

(b)

n1
n�

n2
n�

(c)

Each	fluid	is	described	by	a	2D	Gross-Pitaevski	equation	and	is	stable:	 		for	 	gii > 0 i = 1,2

• Component	1	extends	to	infinity	with	the	asymptotic	density	n∞

• Component	2	contains	 	atomsN2

The	two	fluids	are	(slightly)	non-miscible:		g12 > g11g22

n1(r)

n2(r)

x

x

n∞



19

The weakly-depleted bath

Bath=component	1

component	2

size ℓ

μ1 ψ1 = (−
ℏ2

2m
∇2 + g11n1 + g12n2) ψ1

μ2 ψ2 = (−
ℏ2

2m
∇2 + g12n1 + g22n2) ψ2

Bath healing length ξ1 =
1

2g11n∞

Assume that  everywhere (weak depletion of comp. 1) and that   (large extension of comp. 2)n2 ≪ n1 ≈ n∞ ℓ ≫ ξ

Thomas-Fermi approximation for the bath (component 1):

μ1 = g11n1 + g12n2 n1 = n∞ −
g12

g11
n2

μ1 = g11n∞

n∞
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The minority component 

Bath=component	1

component	2

size ℓ

n∞ μ2 ψ2 = (−
ℏ2

2m
∇2 + g12n1 + g22n2) ψ2 n1 = n∞ −

g12

g11
n2

Simple	equation	for	the	component	2:	 μ ψ2 = (−
ℏ2

2m
∇2 + geff n2) ψ2

μ = μ2 − g12n∞ geff = g22 −
g2

12

g11

Bare	

interaction

(repulsive)

Interaction	mediated	by	the	bath:

• always	attractive

• independent	of	the	bath	density

Non-miscibility	criterion:

g2
12 > g11g22 ⇔ geff < 0
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Validity of this approach

Bath=component	1

component	2

size ℓ

n∞

μ1 ψ1 = (−
ℏ2

2m
∇2 + g11n1 + g12n2) ψ1In the equation for the bath

we have neglected   but we have kept   . Is it valid?  −
ℏ2

2m
∇2 g12n2

The wave function  of the bath is slightly distorted by a quantity  and we require ( ):ψ1 = n∞ δψ1(r) ℏ = m = 1

δψ1

ℓ2
≪ g12n2ψ1 ≪ g11n1ψ1

neglected kept kept

Valid	if:	
δψ1

ψ1
≪ g12 n2ℓ2 =

g12

|geff |
|geff |N2

≳ 1 	 	for	the	Townes	soliton= 5.80

OK	if			
δψ1

ψ1
≪ 1
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Outline of Lecture 1

1.		Solitons	in	2D	?

2.	The	Townes	soliton

3.	The	binary	mixture	approach	to	the	Townes	soliton	

4.	A	first	look	at	experimental	results

Permanent: Jérôme Beugnon, Sylvain Nascimbene, Jean Dalibard

PhD students : Brice Bakkali-Hassani, Chloé Maury, Guillaume Chauveau, 
Franco Rabec+ Raphaël Saint-Jalm, Edouard Le Cerf

Postdocs: Yiquan Zou, Patricia Castilho
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Our experimental setup (rubidium)

Frozen	motion	along	the	vertical	direction	z

!z/2⇡ = 4kHz
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Initial	confinement	in	the	xy	plane:

Box-like	potential	with	arbitrary	shape

Uniform	gas	with	up	to	105	atoms
50	μm

Density	up	to	100	atoms/μm2

F = 2
F = 1

1

2
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Our approach to Townes soliton creation

• Prepare	a	uniform	87Rb	gas	in	the	internal	state	 |1⟩

• Transfer	in	a	spatially	resolved	way	a	small	fraction	of	atoms	in	state	 |2⟩
|1i
|2i

x

y

z

+

10 µm

0 10

n2 (µm�2)

0 5 10 15 20

0

5

10

r µ

0 10 20

0.1

1

10

Atoms in  are still here, 
but not imaged

|1⟩

|1i
|2i

x

y

z

+

10 µm

0 10

n2 (µm�2)

0 5 10 15 20

0

5

10

r µ

0 10 20

0.1

1

10

Townes profile with 
very good precision

Atoms in |2⟩

de
ns
ity

	(
m

-2
)

μ

|1⟩
|2⟩

2

1

• Look	at	the	evolution	of	this	“bubble”	of	atoms	 	immersed	in	a	bath	of	|2⟩ |1⟩

geff = g22 −
g2

12

g11
≈ − 0.0076

a11=100.9	a0
a12=100.4	a0
a22=	94.9	a0

3D	 
scattering	 
lengths

2D	 
coupling	 
strengths

g11=0.160
g12=0.159
g22=0.151
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Observation of a Townes soliton

For our parameters, the threshold   corresponds to  NTownes |g | = 5.85 NTownes ≈ 770

|1i
|2i

x

y

z

+

10 µm

0 10

n2 (µm�2)

0 5 10 15 20

0

5

10

r µ

0 10 20

0.1

1

10

Here we print the Townes pattern with a given size , but with different atom numbersσ0 = 5.7 μm
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0 5 10

0

2

4

r (µm)

n
(µ

m
�

2
)

0.8ms
20ms
40ms

N = 720

0 5 10

0

5

10

r (µm)

N = 720

0 5 10

0

5

10

r (µm)

0.8ms
20ms
40ms

N = 1200

0 5 10

0

10

20

r (µm)

N = 1200

0 5 10

0

10

20

r (µm)

0.8ms
20ms
40ms

(a)

0 5 10

0

2

4

r (µm)

n
(µ

m
�

2
)

0.8ms
20ms
40ms

(b)

0 5 10

0

5

10

r (µm)

0.8ms
20ms
40ms

(c)

0 5 10

0

10

20

r (µm)

0.8ms
20ms
40ms

(d)

0 10 20 30 40

5

6

7

t (ms)

�
(µ

m
)

N = 250

N = 720

N = 1200

N = 250

0 5 10

0

2

4

r (µm)

n
(µ

m
�

2
)

geff = g22 −
g2
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≈ − 0.0076
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Scale invariance of Townes soliton

Expansion	factor

∝
d
dt

⟨r2⟩

The	stable	shape	is	always	obtained	for	 	the	same	atom	number,	irrespective	of	the	size≈

0 400 800 1200 1600

�1

0

1

N

�

� = 4.2 µm
� = 5.7 µm
� = 7.1 µm
� = 8.5 µm

3 5 7

1

2

|g̃e| (⇥10�3 )

N
ex

p
T

(⇥
1
0
3

)

(Ng)Townes = 5.85...
NTownes ≈ 770

PRL 127, 023603 (2021) see also PRL 127, 023603 (2021) by Chen & Hung

|1i
|2i
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Goals of the next lecture

Revisit	theoretically	the	coupling	between	the	two	species	by	a	microscopic	analysis

Yukawa	potential	between	atoms	of	the	minority	component,	mediated	by	the	bath

Finite-range	corrections:	enriching	the	Gross-Pitaevskii	equation	

Study	the	transition	from	the	soliton	to	the	droplet	regime	by	a	mean-field	analysis

Similarities	and	differences	with	the	now	well-known	Beyond	Mean-Field	(BMF)	“Quantum	droplets”

D. S. Petrov, PRL 115, 155302 (2015)

Experiments with BMF binary mixtures :   
C. R. Cabrera et al., Science 359, 301 (2018), G. Semeghini et al, PRL 120, 235301 (2018), 
C. D’Errico et al., PR Research 1, 033155 (2019), Guo et al, PR Research 3, 033247 (2021)


 
+ dipolar gases (Stuttgart, Innsbruck, Florence)


