The Townes soliton ... and beyond

The rich physics of non-miscible Bose mixtures
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The general goal of these lectures

Start from the concept of “soliton” in a 2D system
Describe its implementation in a binary mixture of quantum gases

Study the transition from the solitonic to a droplet regime, and compare it with “guantum droplets”

Front page of the book
“‘Physigue des solitons”
by Peyrard & Dauxois

http://www.ma.hw.ac.uk/solitons/soliton1b.html

No significant “beyond mean-field physics” in this lecture



Outline of Lecture 1

1. Solitonsin 2D ?

The constraints imposed by scale invariance

2. The Townes soliton

Arbitrary size, but a single possible atom number

3. The binary mixture approach to the Townes soliton

Evolution of a minority component inside an infinite bath

4. A first look at experimental results



Outline of Lecture 1

1. Solitonsin 2D ?

The constraints imposed by scale invariance




Solitons for the Gross-Pitaevskii equation

Wikipedia: a soliton is a self-reinforcing wave packet that maintains its shape while it propagates

Cancellation of nonlinear and dispersive effects in the medium

Stationary wave function solution of the variational problem o [E(l//)] = ( for an attractive non-linearity g < O

Ely] =% P(\w\z + g\w\“) d’r lyl =N h=m=1

Relevant in optics, atomic physics, condensed matter...
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Dimensional analysis for a wave packet of size ¢:
y p |y D v " b

Crucial role of dimensionality


https://en.wikipedia.org/wiki/Wave_packet
https://en.wikipedia.org/wiki/Nonlinearity
https://en.wikipedia.org/wiki/Dispersion_relation

Solitons in 1D and 3D

Dimensional analysis for a wave packet of size ¢ Ee) 1 Nlgl
N L2 P
In 1D: Stable solution for any N and any g In 3D: Dynamically unstable extremum
E®)|| Size ¢« x 1/N[g| E(Z) Size 7+ «x N|g|
5 f*
iIn the context of cold atoms: In the context of cold atoms:

Salomon and Hulet's groups (2002 BoseNova: Cornell-Wieman group (2001)



Solitons in 2D ¢ <0 [ Wl =N

Dimensional analysis for a wave packet of size £ in two dimensions:

Ely/ =1J<\Vw\2 + g\w\4) &2 . E@) 1 _Nlg|

2

2D is a critical dimension:

® Stationary solutions can be expected only for discrete values of N| g|

® For such avalue of N| g| , no length scale emerges from the minimization of E[y/]

A manifestation of scale invariance



Scale invariant fluids

Consider a fluid whose equations of motion, i.e. its action JE dz, are invariant in the following rescaling:

Positions: r — r/A Time: t — t/A%

N =

v \ ¢ YA

Velocity: v — Ay

Considerable simplification of the study of equilibrium properties and dynamics

Clearly E.. — A°E,.. ,implying that JEkin dr is invariant

What about interactions? Can we achieve E. . — /Iinnt when ¥ = r/A ?




Cold atomic gases with scale invariant interactions
r—r/\ Eoi — N B

. An interaction potential varying as V(r) = % . emerges in some specific situations (Efimov)
r

- 3D Fermi gas in the unitary regime (infinite scattering length, hence no length scale
associated to interactions)

- Contact interaction in a 2D Bose gas:

r—1r/A gé(r) = gd(r/X) =\ gd(r) \'-/

Valid only for relatively weak interactions, so that a classical field description (Gross-PitaevskKii
equation) is valid (otherwise, quantum anomaly from the regularisation of o(r) )



Classical field approach to the 2D Bose gas

Describe the gas by a classical field w(r,f) obeying the Gross-Pitaevskii equation

Energy of the gas: E(v) = Exin (V) + Eint(¢)

hQ

hQ
Ekin(w) — %/‘VQMZ Eint(w) — —m?]/wrl

~/

2 . Interaction strength

No singularity at the classical field level

(3D) (3D)

In 3D, ¢ = 4na where a is the scattering length

In 2D, the interaction strength g is dimensionless: no length scale associated with interactions

q D)

g=8r—

<

Frozen direction 7 : fz = \/h/me
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Outline of Lecture 1

2. The Townes soliton

Arbitrary size, but a single possible atom number

Ray Chiao, Esla Garmire & Charles Townes, 1964
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Townes soliton in practice

Initially proposed in the context of non-linear optics

Chiao, Garmire & Townes, “Self-Trapping of Optical Beams,” PRL 13, 479 (1964)
Moll, Gaeta & Fibich, Selt-Similar Optical Wave Collapse: Observation of the Townes Profile, PRL 90, 203902 (2003)

y
%’Z¢ The axis propagation (z) plays the role of time
X

/F'\ M Competition between self-focusing and diffraction

(b)

Low power: ~ critical power:
randomly self-cleaned
distorted beam beam

Many subsequent experiments in bulk photonic systems or waveguides
(filamentation, light bullets,...), as well as in polariton systems

Kartashov et al, Nature Reviews Phys. 1, 185 (2019)
12



The solution for the Townes soliton E[y] =

Radially symmetric, node-less solution of:

1
—5V2w+ gy =py Jh/f\2=N

Such a solution exists only if (Ng)T = — 5.85...

OWIES

thas E=0 and u <0

r [arb.un.]

Once a particular solution is known, scale invariance provides a continuous family of solutions

pr) = Aw(r) Hy = A4 J real

No particular length scale for the Townes soliton when it exists

However: Instable with respect to a change in shape or in Ng
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A few known results on Townes soliton Ely :%J(\w\%g M“) &

e Variance identity, valid for any shape of the wave packet:

d*(r’y 4E . .
W —p— a consequence of the scale/conformal invariance of the problem
t m
S0O(2,1) symmetry (Niederer, Pitaevskii & Rosch)
 Negative energy — Collapse (rz) becomes negative at a finite time

But the reciprocal statement is not true: there exist wave packets with E > 0 that collapse

e Small N|g| = Regularity Threshold at the Townes critical number: N|g| = 5.80...

But the reciprocal statement is not true: there exist wave packets with large atom numbers that do not collapse

C. Sulem & P.-L. Sulem, The nonlinear Schrédinger equation, self-focusing and wave collapse,
Springer 1999
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_ : - 1 2 4
Example: Townes profile vs. Gaussian g =5 | (9] +e|u]") @
For an initial Townes profile
E=0
E>O0 E <0
no collapse N collapse
- N|g|
5.80...
For an initial Gaussian profile Fibich & Gaeta, 2000
E=0
E>0 E>0 E>0 E<O
no collapse no collapse collapse X collapse
} } - N|g|
5.80... 5.96... 21 = 6.28...
\—  —

Both n(0) and (r?)
increase with time
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Observation of Townes soliton with cold atomic gases

One needs to achieve an effective attractive interaction ¢ < 0

Paris group:  Phys. Rev. Lett. 127, 023603 (2021), use of a two-component gas with 8’Rb
Purdue group: Phys. Rev. Lett. 127, 023604 (2021), use of a Feshbach resonance with 133Cs

Quench g: +0.13 - — 0.0215

and switch from 1D to 2D
Rescale all “droplets” together

Atom number/droplet: (Ng) = — 6.0 (8)

to be compared with (N2)1ownes = — 9.83...

from Chen & Hung, PRL 127, 023604 (2021)
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Outline of Lecture 1

3. The binary mixture approach to the Townes soliton

Evolution of a minority component inside an infinite bath

ny(r) t

/\ component 2

ny(r)

\/

component 1




A two-component fluid

A

ny(r)

A

ny(r)

component 1

Each fluid is described by a 2D Gross-Pitaevski equation and is stable: g;; > 0 fori = 1,2

® Component 1 extends to infinity with the asymptotic density n__

® Component 2 contains NV, atoms

The two fluids are (slightly) non-miscible: g, > \/811822

/\ component 2 . /’ /
\/

18



The weakly-depleted bath

A size
h? 5
LN comonent? Hy Yy = ( =V g+ 822”2) 7z
%
N\ .
Bath=component 1 I1Z31 WI — 2m VZ T gllnl + g12n2 ll/l K1 = gllnoo

Bath healing length &, =

\/zgllnoo

Assume that n, < n, = n_, everywhere (weak depletion of comp. 1) and that £ > £ (large extension of comp. 2)

Thomas-Fermi approximation for the bath (component 1):

M1 = 8111 T 81071 > ny = Ny, n,

19



The minority component

\ size
/\ component 2
g 2
A Uy Yo = hV2+gn+gn W n,=n 812n
n, — 1 — 2
\/ 22 Y 127%1 22742 2 00 91
Bath=component 1
hZ
Simple equation for the component 2: HY, = 5 V2 + Ly | WS
m
8122
U= Uy — 817N, Sof = &) Non-miscibility criterion:
11
2
’\ 8> 81182 © 8 <0
Bare Interaction mediated by the bath:
Interaction * always attractive

(repulsive) * independent of the bath density 20



Validity of this approach

| n*_, A size £
In the equation for the bath  u; ¥ = —%V T 81 812 | W A component?
2 A
we have neglected V? but we have kept 2,1, . Is it valid? Mg
g o Pl g1-o7, N\

Bath=component 1

The wave function y; = , /n__ of the bath is slightly distorted by a quantity oy, (r) and we require (7 = m = 1):

oy
A <K i < 81y
neglected kept kept
oy 812
Valid if: — K g ml’ = | Gefr | V> OK if %«1
! | et | ?\ W
> ]

~ = 5.80 for the Townes soliton 21



Outline of Lecture 1

4. A first look at experimental results

PhD students : Brice Bakkali-Hassani, Chloé Maury, Guillaume Chauveau,
Franco Rabec+ Raphaél Saint-dalm, Edouard Le Cerf

Postdocs: Yiquan Zou, Patricia Castilho

Permanent: Jérdme Beugnon, Sylvain Nascimbene, Jean Dalibard
22



Our experimental setup (rubidium)

Frozen motion along the vertical direction z

Init

w,/2m = 4kHz

al confinement in the xy plane:

Box-like potential with arbitrary shape

< >

50 um

Uniform gas with up to 10> atoms
Density up to 100 atoms/pum?

23



Our approach to Townes soliton creation

* Prepare a uniform 87Rb gas in the internal state | 1)

ffffff
- ~
~
= ~

Atoms in |25

Townes profile with
very good precision

density (xm-2)

Atoms in | 1) are still here,
but not imaged

r (pm)

» Look at the evolution of this “bubble” of atoms |2) immersed in a bath of | 1)

a11=100.9 ag 2D g11=0.160 2
3D | 812
scattering { @12=100.4 ao > coupling g12=0.159 > 8otf = 820 ~ — 0.0076
h
lengths a22=94.9 a9 SHrengths g22=0.151 511

24



Observation of a Townes soliton

8122
811

For our parameters, the threshold Ny wnes | €1 = 5.85 corresponds to Npywnes = 770

Here we print the Townes pattern with a given size 6, = 5.7 um, but with different atom numbers

N = 250 N =720 N = 1200 '
, , O N = 250
0 0.8 ms o N = 720
10 \ 020ms ||
40 ms
\

m N = 1200
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Scale invariance of Townes soliton

Expansion factor
d &
2
X —(r
7 t( )

0 400 300 1200 1600

The stable shape is always obtained for &~ the same atom number, irrespective of the size

PRL 127, 023603 (2021) see also PRL 127, 023603 (2021) by Chen & Hung
26



Goals of the next lecture

Revisit theoretically the coupling between the two species by a microscopic analysis

Yukawa potential between atoms of the minority component, mediated by the bath

Finite-range corrections: enriching the Gross-Pitaevskii equation

Study the transition from the soliton to the droplet regime by a mean-field analysis

Similarities and differences with the now well-known Beyond Mean-Field (BMF) “Quantum droplets”

D. 5. Petrov, PRL 115, 155302 (2015)

Experiments with BMF binary mixtures :
C. R. Cabrera et al., Science 359, 301 (2018), G. Semeghini et al, PRL 120, 235301 (2018),
C. D’Errico et al., PR Research 1, 033155 (2019), Guo et al, PR Research 3, 033247 (2021)

+ dipolar gases (Stuttgart, Innsbruck, Florence)
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