The Townes soliton ... and beyond

The rich physics of non-miscible Bose mixtures

Lecture Il
Jean Dalibard Varenna, July 2022
College de France Course on “Quantum Mixtures
Laboratoire Kastler Brossel with Ultra-cold Atoms”
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Outline of this lecture

1. Summary of lecture 1

...and some responses to questions

2. A microscopic view on soliton formation |
cf. Lectures by Meera Parish

Yukawa-type interaction, mediated by the bath

3. Towards the droplet regime

The role of non-local interactions

4. The excitation spectrum of the soliton (and its daughter states) cf. Lectures by Dmitry Petrov

Similarities and differences with the now well-known “Quantum droplets”

D. S. Petrov, PRL 115, 155302 (2015) , C. R. Cabrera et al., Science 359, 301 (2018),
G. Semeghini et al, PRL 120, 235301 (2018), C. D’Errico et al., PR Research 1, 033155 (2019),
Guo et al, PR Research 3, 033247 (2021) + dipolar gases (Stuttgart, Innsbruck, Florence)



Summary of lecture 1: The Townes soliton

Do solitons exist in a 2D fluid described by the Gross-Pitaevskii equation?

hz &

i 2 4
Ely] =5 (‘Vl//‘ + g‘l/f‘ ) d°r Wl =N g (dimensionless) < 0

Yes, but only for specific values of |g| N

Nodeless, isotropic solution obtained for | g| N = 5.80, known as the Townes soliton

Isotropic solution with one node (two nodes): |g|N = 38.6 (97.9)  [but dynamically unstable]

For ultra-cold atoms, two recent experiments explored this unusual non-linear object
Chen & Hung, PRL 127, 023604 (2021) : single component 133Cs gas + Feshbach resonance

Bakkali-Hassani, Maury, Zou, Le Cerf, Saint-Jalm, Castilho, Nascimbene, Dalibard & Beugnon
PRL 127, 023603 (2021) : immiscible mixture of two 87Rb hyperfine states



Summary of lecture 1: A mean-field analysis

A size £
/\ component 2
>
A
\/ noo
Bath=component 1
>

n” .
HiY; = ( V24 gin; + &j”j) Vi L, =12

2m

Hypotheses: weak depletion of comp. 1 (n, < n; & n_,) and large extension of comp. 2 (£ > &)

Simple equation for the component 2: HYH = (

8eff = 822

. /

Interaction
(repulsive)

h2
2

I'm Vo + Seft o | Y1

8122
2
8ef <0 < 815> 8118n
S11 \ + stability
Interaction mediated by the bath: l

» always attractive

* independent of the bath density non-miscibility



Summary of lecture 1: The Paris experiment (87Rb)

Atoms in | 1) o2
. 12
‘ utt = &) ~ — 0.0076
811
. d  ,
Expansion factor o« —(r~)
ds
| a |
- 1 ‘ (V&) Townes 2585
o I N Townes ~ 7170
ﬁ Atoms In ‘ 2> . 5 S I A B
N Opm i ‘ —O—
| 1) 1 ||eeo=s <
5 |
Prepare a wave packet of atoms in |2) with the 0 400 800 1200 1600

Townes profile, immersed in the bath of atomsin | 1) N



Collisions between identical solitons

In 1D, the two solitons emerge “unperturbed” from the collision

Nguyen, Dyke, Luo, Malomed and Hulet (Nat. Phys. 2014)

In 2D, the initial relative motion of the solitons sets a new length/energy scale

t =0.0% _ t = 0.0

- . Simulations by
(0.8 0.8 Brice Bakkali-Hassani
0.6 rl.b o .
g = Collisions of self-bound
0.4 " 0.4~ guantum droplets,
Ferioll et al.,
0.2 0.2 PRL122, 090401 (2019)
merging/separation
) 100 200 "0 100 200
z |d/] T

Head-on collision with a large initial velocity Head-on collision with a small initial velocity



Breaking the SO(2,1) symmetry with a quantum anomaly

Hammer & Son, PRL 93 250408 (2004): Going beyond the classical field analysis based on the Gross-Pitaevskii energy
See also Bazak & Petrov, New J. Phys. 20 023045 (2018)

Introduction of a short-distance (i.e. UV) cutoff at r ~ R, 4w (van der Waals length : nanometer size)

— There exists a stable solution of size o), for any value of the atom number N

o
N
~ 3

Geometric scaling: O770 ~ 10~ Or59 !

ON+1

In practice, for our interaction strength | g.| << 1, the predicted value for oy, is
physically reasonable only for | N — Ny wnes | ~ @ few units

—> In the strongly interacting case | g| ~ 1, a realistic droplet size would be achieved with only a few
atoms and one could observe the predicted scaling of 6, with N



Outline of this lecture

2. A microscopic view on soliton formation

Yukawa-type interaction between impurity atoms, mediated by the bath

A

(%) 2 2

R .

Batzh: component 1

: > X
R R,



The Bose polaron problem

For a review, see Grusdt & Demler (2015)

A

1ny(x)

, i S
~ e, Frohlich Hamiltonian: ~ V(R,) = g,, #'(R,) P(R,)

‘i’(r) . field operator of the bath
. X g1, dimensionless (with s = m = 1)

EBath: component 1

R

a

Description of the bath by the Bogoliubov approach: P(r) = A/, + SP(r)
R eik-r A A
sV = Y — 4, G, = ub, + v, b’
k=0 V L? o

(D, | V(R,) | Do)

Ground state in the presence of the impurity obtained by perturbation theory: |®() = | ®,) + Z | D)
~ E,—E,
. 1 _ _ on,
» Hole of size ~ & = with a relative depth — ~ g, < 1
V2811700 Moo
» Typically 5n1§2 ~ 82 1 atom of the bath missing around the location of the impurity

811 9



Yukawa potential

Naidon, 2018

1ny(x)

A

2 2 Interaction potential : Y = ‘A/(Ra) -+ ‘A/(Rb)

W 00
i i induces at 2nd order of perturbation theory an
energy shift AE that depends on the distance R,

Batzh: component 1 .

R R,

a

A Z (D |7 | D ND, |7 | P,) Interaction between the two impurities mediated by
E — a a

E, —E, the exchange of virtual phonons in the bath
a#0 a

2 ~ 1k (R — R 21,2
2g12noo C ( a b) de €k _ h k
Q)P ) e+ 281114 2m

A simple calculation gives: U_.4(R ;) =

Fourier transform of a Lorentzian: Yukawa potential (for D = 3) of range & = 1/4/2g,n,,

Note: AL < O irrespective of the sign of g,, , i.e. the mediated interaction is always attractive

10



' ' _ b ke p
Born approximation ) = | 4R PR

(%) 2 2

2 2 n r eik-(Ra_Rb> W o0
Umed(Rab) — o127 e dzk : 5

2m)? ) €+ 28111

7272 Batih: component 1

€, = ' > X
ko 2m Ra Rb

Using Born approximation, this leads to the dimensionless interaction strength for the mediated interaction:

n 2 P n n oo elkR r 5 k P
¢ = U (R &R = — 212 i d’k d°R = — 2g%n,, ) A% = — 512
/ 2m)= J ) e+ 28111 ) €+ 28111 811
8122
We thus recover g.¢ = Share T &med = &2 "
11

Warning: The bare interaction cannot be obtained by Born approximation.

The procedure above is valid thanks to the separation of length scales : R, 3wy <K & :



Outline of this lecture

3. Towards the droplet regime

The role of non-local interactions + finite bath-depletion effects

B. Bakkali-Hassani, C. Maury, S. Stringari, S. Nascimbene, J. Dalibard, J. Beugnon, arXiv

See also P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell,
PRL 120, 135301 (2018) for a transition 1D to 3D in the beyond-mean-field context

12



Non-local corrections

Back to the Gross-Pitaevskii equation for the minority component 1
/\ component 2 X
hz 1 2 / N A2 A
Ho (1) = — _EV + 8001 (r) + | Upyeq(r — 1) ny(r) d7r'| yi(r) N\
Bath=component 1

Taylor expansion of U 4(r — 1) :

hz [ 1 9) ( g122 ) 9) ] 812 ’ 1
Wy O yn(r) = — | —=V 259 n,(r) — pVon,(r)+ ... | ys(r) f = <_> o
" 2 522 g1/ 4ng
Eeff Non-local correction that

breaks scale invariance
(stabilizing role !)

Equation that has been studied in detail in the context of optics (Rosanov et al., 2002) 13



Stabilization of the Townes soliton

/\ component 2
>

N\

Bath=component 1

Consider the equation including the first non-local correction
Pl 1_, ,
/421//2(”)=Z —EV — | &ettl ma(r) — pVony(r)| yy(r)

Component 2 with NV, atoms
B~ lin and a size 7 : n2~N2/f2

Energy/particle for component 2 for a Townes-like profile:

Expand for Ny < Nyownes

E a ‘ 8off ‘ N2 N2 L | geffl (NTownes o NZ) | N,

—_— A~ ! ﬂ_ - > | ﬁ_4

N, 2 22 /4 N, ¢ ¢
;—\,—_—J
stable if and only if

- | g.| N, = 5.80 > Collapse for Ny > Nygwnes = 9-80/| gofr |
\_\f_J
prevents the collapse , Vi N, Ny — Nigwnes
when ‘geﬁ“Nz > 580 £ Hy ~ Ny,

| geffl N2 o NTownes

Valid only for a small depletion n, < n_, i.e. if Ny — N1ownes << NTownes

N Townes

14



Check of the validity of this “simple” non-local equation

811 — 822
g, = 1.01 g4

h2

1 2 2
Vo — | gl ma(r) — pVony(r)| yy(r)

Solution of w, y,(r) =

m 2

vs. solution of the two coupled GP equations

N2 = 1.01 NTownes

N2 = 1.5 NTownes




Beyond the weak depletion regime

N2 — 7NTownes

! ; " 2.5 1 =]
: : 107 e 1 2.0 >
Formation of quasi-pure ol > N =
domains of the minority . > . C C 05 :
-1
component . . 0.5 ©
-0 i
0 20 40 - 0 20 40 i 0 | | | F=2
-1 F=> -50 0 50 position

Take advantage the similarity of all coupling constants: g, ® 2, ® &>, (SU(2) symmetry)

> ny+n, =n+ on where on is treated as a small parameter

1 1
- Spin healing length &g, = >> Bath healing length & =
\/zgeffnoo \/zgl 1Mo
h? 1, 1 Vz\/noo — n,(r)
o yr(r) = — | == V7 + gty (r) + Yo (r)
I 2 2 \/noo o nz(l’)

16



Validity of single component equations

811 — 822

812 = 1.01gy,
e[ o1 ) ) _ 812 1
Weak depletion limit:  pyr(r) = — |—=V~ — | gl n,(r) — BV n,(r)| yr(r) B = <_> B
m | 2 | 811/ g
o 1 Vi/ng —ny(r)
Exploiting ~SU(2) symmetry: pyp(r) = — | == V7 4 gtp (1) + W, (r)
m i 2 E \/noo o I/ZZ(I") .
N. 2 = 1.5N. Townes N2 - IONTOWHeS
v | l | 100 | | | | .
‘ o
‘ — Solution of ny(r) ——  Solution of
‘ [ %] the two coupled
\ the two coupled — Ny,

GP equations

2 4 6 3 10

GP equations




Comparison with quantum droplets

D. S. Petrov, PRL 115, 155302 (2015)

Quantum This
droplets work
B B B EE—E
—1/81182 0 +4/81182
N, ~ N, Infinite bath of

component 1

Energy/particle Kinetic Mean-field Stabilizing
(contact) term
Quantum droplet (3D) 1/£7 —|6g| NI 2N 22 beyond mean-field

This work (2D)

2 _ 2 4
(low depletion case) 1/Z | Gefr | N/T B NIE

non-local potential

18



Outline of this lecture

4. The excitation spectrum of the soliton and of its daughter states

B. Bakkali-Hassani, C. Maury, S. Stringari, S. Nascimbene, J. Dalibard, J. Beugnon, arXiv 2207.06939

Strong connection with the results of D. S. Petrov, PRL 115, 155302 (2015)
in the context of beyond-mean-field Quantum Droplets

Quantum droplets in low dimension: Petrov & Astrakharchik, PRL 117, 100401 (2016).
Sturmer et al., PRA 103, 053302 (2021)

19


https://arxiv.org/abs/2207.06939

Bogoliubov analysis

Two-component system

Bogoliubov linear system

a 0 LY
17 -L{" 0
12 | o o

P> i 0

Wir, 1) = [l//jStat(r) + ai(r, 1) + i (r, t)] e MK

P

%)

with l//jStat, a, f; real

Numerical solution, keeping only the modes corresponding to localized aj,ﬁj functions

20



The result for the localized spectrum

Calculation performed for g, = g, =g and g, = 1.0l g

W

0.4

0.2

necessary condition
for a localized mode

ho < gy — iy

|
self-evaporation

0ne

10

NIN Townes

30

s =10 s = 2
s =3 s =4
S =295 s—=0

(3

Self-evaporation: Stringari & Vautherin, Physics Letters B 88, 1 (1979)
Ferioli et al., PR Research 2, 013269 (2020)
Fort & Modugno, Applied Sciences 11, 866 (2021)
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The monopole mode s = ()

811 =80n =8

Back to the single-component equation with its non-local correction

h2

|
110, yr(r) = — ——V? — | et | 0 (F) — ﬂVznz(r) WH(r)

m 2

Time-dependent version assuming that the bath follows adiabatically the minority component

Rosanov et al., 2002:

3/2
N
NTownes

2
g
Wy = <_> ‘geff‘noo
812

()X

0.010

0.005

adiabatic approx.

1.025
N/NTownes

1.050

full calculation
(2 components)

22



The monopole mode s = 0 : sum rule

m, = o’ S(w) dw

, m
The sum rule approach provides an upper bound for @ : a)g < L
—1
m; . energy-weighted sum rule
2 | 2
m; = —2{x"+ y°) 0.2
Average taken by integrating the density of the minority component
using the ground state wave function of the mixture.
Wy
0.1
Q)
m_, . inverse energy-weighted sum rule
m_; = : 5(x* +y°)
- 2, 0

Static response of the system 5(x2 + yz) to a perturbation
/lo(x2 + y?) for component 2

S(w) : dynamic structure factor ‘
{ 2
;S(a)) = 2 ‘ (n|F|0) ‘ o(w — a)n())

n
_ 2 2
F=) %+
e

| .

L 4 S

adiabatic approx. .

'0
B ~sumrule -
0‘ -
. -
o -
* o
o

(2 components)

1 1.2 1.4

NIN Townes

23



Surface waves Petrov (2015) for

guantum droplets

Interpretation in terms of surface tension (two-dimensional ripplons) by 2D incompressible hydrodynamics

—
W, = J s(s — 1)(s + 1) gzl\/‘giﬂ n'?
2n. R’ 2 o
Akulenko & Nesterov, 1998 Ao & Chui, 1998 : Barankov, 2002

s = 2
@y
s =3 s =4
) :
s =205 s =20

24




Concluding remarks

The Townes soliton problem: a paradigm to study the consequences of scale invariance... and the ways to break it

X LA oot A non-linear physics problem:
addressable by mean-field Gross-Pitaevski equations, but
N leading to a phenomenology close to the quantum droplets
Bath=component 1 » stabilized by beyond-mean-field terms

a)S

ws | e g
Intriguing domain of parameters leading to self- - - -
evaporation: can be studied here at a very low density, - .
where other loss mechanisms can be minimized 0.2 | o \ ~

See also Fort & Modugno (2021) tfor 41K-87Rb 0 / | |
1 3 10 30



