The Townes soliton ... and beyond

The rich physics of non-miscible Bose mixtures Lecture II

Jean Dalibard Collège de France Laboratoire Kastler Brossel

Varenna, July 2022 Course on "Quantum Mixtures with Ultra-cold Atoms"

Outline of this lecture

1. Summary of lecture 1 ...and some responses to questions

2. A microscopic view on soliton formation Yukawa-type interaction, mediated by the bath

3. Towards the droplet regime The role of non-local interactions

4. The excitation spectrum of the soliton (and its daughter states) cf. Lectures by Dmitry Petrov

D. S. Petrov, PRL **115**, 155302 (2015), C. R. Cabrera et al., Science **359**, 301 (2018), G. Semeghini et al, PRL **120**, 235301 (2018), C. D'Errico et al., PR Research **1**, 033155 (2019), Guo et al, PR Research 3, 033247 (2021) + dipolar gases (Stuttgart, Innsbruck, Florence)

cf. Lectures by Meera Parish

Similarities and differences with the now well-known "Quantum droplets"

Summary of lecture 1: The Townes soliton

Do solitons exist in a 2D fluid described by the Gross-Pitaevskii equation?

$$E[\psi] = \frac{\hbar^2}{2m} \int \left(\left| \nabla \psi \right|^2 + g \left| \psi \right|^4 \right) d^2 r$$

Yes, but only for specific values of |g|N

For ultra-cold atoms, two recent experiments explored this unusual non-linear object

Chen & Hung, PRL **127**, 023604 (2021) : single component ¹³³Cs gas + Feshbach resonance

Bakkali-Hassani, Maury, Zou, Le Cerf, Saint-Jalm, Castilho, Nascimbene, Dalibard & Beugnon PRL **127**, 023603 (2021) : immiscible mixture of two ⁸⁷Rb hyperfine states

$$\int |\psi|^2 = N \qquad g \text{ (dimensionless)} < 0$$

Nodeless, isotropic solution obtained for |g|N = 5.80, known as the Townes soliton Isotropic solution with one node (two nodes): |g|N = 38.6 (97.9) [but dynamically unstable]

Summary of lecture 1: A mean-field analysis

Hypotheses: weak depletion of comp. 1 $(n_2 \ll n_1 \approx n_\infty)$ and large extension of comp. 2 $(\ell \gg \xi)$ Simple equation for the component 2: $\mu \psi_2 = \left(- \right)$

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + g_{ii}n_i + g_{ij}n_j\right)\psi_i \qquad i,j=1,2 \qquad i\neq$$

$$-\frac{\hbar^2}{2m}\nabla^2 + g_{\rm eff} n_2 \bigg) \psi_2$$

 $g_{\rm eff} < 0 \iff g_{12}^2 > g_{11}g_{22}$ + stability non-miscibility

Interaction mediated by the bath:

independent of the bath density

Summary of lecture 1: The Paris experiment (⁸⁷Rb)

Collisions between identical solitons

In 1D, the two solitons emerge "unperturbed" from the collision

Nguyen, Dyke, Luo, Malomed and Hulet (Nat. Phys. 2014)

In 2D, the initial relative motion of the solitons sets a new length/energy scale

Simulations by Brice Bakkali-Hassani

Breaking the SO(2,1) symmetry with a quantum anomaly

Hammer & Son, PRL 93 250408 (2004): Going beyond the classical field analysis based on the Gross-Pitaevskii energy See also Bazak & Petrov, New J. Phys. 20 023045 (2018)

Introduction of a short-distance (i.e. UV) cutoff at $r \sim R_{vdW}$ (van der Waals length : nanometer size) There exists a stable solution of size σ_N for any value of the atom number N

Geometric scaling:
$$\frac{\sigma_N}{\sigma_{N+1}} \sim 3$$

In practice, for our interaction strength $|g_{eff}| \ll 1$, the predicted value for σ_N is physically reasonable only for $|N - N_{\text{Townes}}| \sim \text{a few units}$

In the strongly interacting case $|g| \sim 1$, a realistic droplet size would be achieved with only a few atoms and one could observe the predicted scaling of σ_N with N

$$\sigma_{770} \sim 10^{-9} \sigma_{750}$$
 !!!

Outline of this lecture

1. Summary of lecture 1

2. A microscopic view on soliton formation

Yukawa-type interaction between impurity atoms, mediated by the bath

3. Towards the droplet regime

4. The excitation spectrum of the soliton (and its daughter states)

The Bose polaron problem

Description of the bath by the Bogoliubov approach:

$$\delta \hat{\Psi}(\boldsymbol{r}) = \sum_{k \neq 0} \frac{\mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}}}{\sqrt{L^2}} \hat{a}_k$$

$$\longrightarrow \text{ Hole of size } \sim \xi = \frac{1}{\sqrt{2g_{11}n_{\infty}}} \text{ with a}$$

$$\longrightarrow \text{ Typically } \delta n_1 \xi^2 \sim \frac{g_{12}}{g_{11}} \sim 1 \text{ atom of th}$$

Fröhlich Hamiltonian: $\hat{V}(\mathbf{R}_a) = g_{12} \hat{\Psi}^{\dagger}(\mathbf{R}_a) \hat{\Psi}(\mathbf{R}_a)$ $\hat{\Psi}(\boldsymbol{r})$: field operator of the bath g_{12} dimensionless (with $\hbar = m = 1$)

$$\hat{\Psi}(\boldsymbol{r}) = \sqrt{n_{\infty}} + \delta \hat{\Psi}(\boldsymbol{r})$$

$$\hat{a}_{k} = u_{k}\hat{b}_{k} + v_{k}\hat{b}_{-k}^{\dagger}$$

Ground state in the presence of the impurity obtained by perturbation theory: $|\Phi'_0\rangle = |\Phi_0\rangle + \sum_k \frac{\langle \Phi_k | \hat{V}(R_a) | \Phi_0 \rangle}{E_0 - E_k} | \Phi_k \rangle$ a relative depth $\frac{\delta n_1}{M} \sim g_{12} \ll 1$ n_{∞}

ne bath missing around the location of the impurity

Yukawa potential

$$\Delta E = -\sum_{\substack{\alpha \neq 0}} \frac{\langle \Phi_0 | \mathscr{V} | \Phi_\alpha \rangle \langle \Phi_\alpha | \mathscr{V} | \Phi_0 \rangle}{E_\alpha - E_0}$$

A simple calculation gives: $U_{\text{med}}(R_{ab}) = -$

Interaction potential :
$$\hat{\mathcal{V}} = \hat{V}(\boldsymbol{R}_a) + \hat{V}(\boldsymbol{R}_b)$$

induces at 2nd order of perturbation theory an energy shift ΔE that depends on the distance R_{ab}

Interaction between the two impurities mediated by the exchange of virtual phonons in the bath

$$\frac{2g_{12}^2 n_{\infty}}{(2\pi)^D} \int \frac{\mathrm{e}^{\mathrm{i}\boldsymbol{k} \cdot (\boldsymbol{R}_a - \boldsymbol{R}_b)}}{\epsilon_k + 2g_{11}n_{\infty}} \,\mathrm{d}^D \boldsymbol{k} \qquad \epsilon_k = \frac{\hbar^2 k^2}{2m}$$

Fourier transform of a Lorentzian: Yukawa potential (for D = 3) of range $\xi = 1/\sqrt{2g_{11}n_{\infty}}$

Note: $\Delta E < 0$ irrespective of the sign of g_{12} , i.e. the mediated interaction is always attractive

Born approximation

$$U_{\text{med}}(R_{ab}) = -\frac{2g_{12}^2 n_{\infty}}{(2\pi)^2} \int \frac{e^{i\boldsymbol{k}\cdot(\boldsymbol{R}_a - \boldsymbol{R}_b)}}{\epsilon_k + 2g_{11}n_{\infty}} d^2k$$
$$\epsilon_k = \frac{\hbar^2 k^2}{2m}$$

Using Born approximation, this leads to the dimensionless interaction strength for the mediated interaction:

$$g_{\text{med}} = \int U_{\text{med}}(R) \, \mathrm{d}^2 R = -\frac{2g_{12}^2 n_\infty}{(2\pi)^2} \int \int \frac{\mathrm{e}^{\mathrm{i}k \cdot R}}{\epsilon_k + 2g_{11}n_\infty} \, \mathrm{d}^2 k \, \mathrm{d}^2 R = -2g_{12}^2 n_\infty \int \frac{\delta(k)}{\epsilon_k + 2g_{11}n_\infty} \, \mathrm{d}^2 k = -\frac{g_{12}^2}{g_{11}} \, \mathrm{d}^2 k \, \mathrm{d}^2 R$$

Warning: The bare interaction cannot be obtained by Born approximation. The procedure above is valid thanks to the separation of length scales : $R_{
m vdW} \ll \xi$

$$\delta(\boldsymbol{k}) = \frac{1}{(2\pi)^2} \int \mathrm{e}^{\mathrm{i}\boldsymbol{k}}$$

We thus recover $g_{\text{eff}} = g_{\text{bare}} + g_{\text{med}} = g_{22} - \frac{g_{12}^2}{2}$ **8**11

Outline of this lecture

1. Summary of lecture 1

2. A microscopic view on soliton formation

3. Towards the droplet regime

The role of non-local interactions + finite bath-depletion effects

B. Bakkali-Hassani, C. Maury, S. Stringari, S. Nascimbene, J. Dalibard, J. Beugnon, arXiv

See also P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell, PRL **120**, 135301 (2018) for a transition 1D to 3D in the beyond-mean-field context

4. The excitation spectrum of the soliton (and its daughter states)

Non-local corrections

Back to the Gross-Pitaevskii equation for the minority component

$$\mu_2 \psi_2(\mathbf{r}) = \frac{\hbar^2}{m} \left[-\frac{1}{2} \nabla^2 + g_{22} n_2(\mathbf{r}) + \int U_{\text{med}}(\mathbf{r} - \mathbf{r}) \right]$$

Taylor expansion of $U_{\rm med}(\mathbf{r}-\mathbf{r}')$:

$$\mu_2 \partial_t \psi_2(\mathbf{r}) = \frac{\hbar^2}{m} \left[-\frac{1}{2} \nabla^2 + \left(g_{22} - \frac{g_{12}^2}{g_{22}} \right) n_2(\mathbf{r}) - \beta \nabla^2 n_2(\mathbf{r}) + \dots \right] \psi_2(\mathbf{r})$$

$$\underbrace{g_{\text{eff}}}$$
Non-local correction that

Equation that has been studied in detail in the context of optics (Rosanov et al., 2002)

$$\beta = \left(\frac{g_{12}}{g_{11}}\right)^2 \frac{1}{4n}$$

Non-local correction that breaks scale invariance (stabilizing role !) l_{∞}

$$\mu_2 \psi_2(\mathbf{r}) = \frac{\hbar^2}{m} \left[-\frac{1}{2} \nabla^2 - |g_{\text{eff}}| n_2(\mathbf{r}) - \beta \right]$$

$$\beta$$

Valid only for a small depletion $n_2 \ll n_{\infty}$, i.e. if $N_2 - N_{\text{Townes}} \ll N_{\text{Townes}}$

$$e^2 \sim \frac{\beta}{|g_{\text{eff}}|} \frac{N_2}{N_2 - N_{\text{Townes}}} \qquad n_2$$

Check of the validity of this "simple" non-local equation

Solution of $\mu_2 \psi_2(\mathbf{r}) = \frac{\hbar^2}{m} \left[-\frac{1}{m} \right]$

vs. solution of the two coupled GP equations

 $N_2 = 1.01 N_{\text{Townes}}$

$$g_{11} = g_{12}$$

$$\frac{1}{2}\nabla^2 - |g_{\text{eff}}|n_2(\mathbf{r}) - \beta \nabla^2 n_2(\mathbf{r}) \right] \psi_2(\mathbf{r})$$

 $\xi_{\rm spin} = 1/\sqrt{2 |g_{\rm eff}| n_{\infty}}$

Beyond the weak depletion regime

Formation of quasi-pure domains of the minority component

Take advantage the similarity of all coupling constants: $g_{11} \approx g_{12} \approx g_{22}$ (SU(2) symmetry)

 $\rightarrow n_1 + n_2 = n + \delta n$ where δn is treated as a small parameter \rightarrow Spin healing length $\xi_{spin} = \frac{1}{\sqrt{2 \alpha_{spin}}} \gg$ Bath healing length $\xi = \frac{1}{\sqrt{2 \alpha_{spin}}}$ $\mu_2 \psi_2(\mathbf{r}) = \frac{\hbar^2}{m} \left| -\frac{1}{2} \nabla^2 + g_{\text{eff}} \right|$

$${}_{\mathrm{f}}n_2(\mathbf{r}) + \frac{1}{2} \frac{\nabla^2 \sqrt{n_\infty - n_2(\mathbf{r})}}{\sqrt{n_\infty - n_2(\mathbf{r})}} \bigg] \psi_2(\mathbf{r})$$

 $g_{11} = g_{22}$

$$g_{12} = 1$$

$$\frac{\hbar^2}{m} \left[-\frac{1}{2} \nabla^2 - |g_{\text{eff}}| n_2(\mathbf{r}) - \beta \nabla^2 n_2(\mathbf{r}) \right] \psi_2(\mathbf{r}) \qquad \beta = \left(\frac{g_{12}}{g_{11}} \right)$$

$$\frac{\hbar^2}{m} \left[-\frac{1}{2} \nabla^2 + g_{\text{eff}} n_2(\mathbf{r}) + \frac{1}{2} \frac{\nabla^2 \sqrt{n_\infty - n_2(\mathbf{r})}}{\sqrt{n_\infty - n_2(\mathbf{r})}} \right] \psi_2(\mathbf{r})$$

Comparison with quantum droplets

Energy/particle	Kinetic	Mea (co
Quantum droplet (3D)	$1/\ell^2$	$- \delta $
This work (2D) (low depletion case)	$1/\ell^2$	- 8

Outline of this lecture

- 1. Summary of lecture 1
- 2. A microscopic view on soliton formation
- 3. Towards the droplet regime

4. The excitation spectrum of the soliton and of its daughter states

B. Bakkali-Hassani, C. Maury, S. Stringari, S. Nascimbene, J. Dalibard, J. Beugnon, arXiv 2207.06939

Strong connection with the results of D. S. Petrov, PRL **115**, 155302 (2015) in the context of beyond-mean-field Quantum Droplets

Quantum droplets in low dimension: Petrov & Astrakharchik, PRL **117**, 100401 (2016). Stürmer et al., PRA **103**, 053302 (2021)

Bogoliubov analysis

Two-compo

Bogoliubov

$$\begin{aligned} \text{potent system} \qquad & \psi_{j}(\mathbf{r},t) = \left[\psi_{j}^{\text{stat}}(r) + \alpha_{j}(\mathbf{r},t) + \mathrm{i}\beta_{j}(\mathbf{r},t)\right] \mathrm{e}^{-\mathrm{i}\mu_{j}t} \qquad \text{with } \psi_{j}^{\text{stat}}, \alpha_{j}, \beta_{j} \text{ real} \qquad j = \\ \\ \partial_{t} \begin{pmatrix} \alpha_{1} \\ \beta_{1} \\ \alpha_{2} \\ \beta_{2} \end{pmatrix} = \begin{pmatrix} 0 & \hat{L}_{0}^{(1)} & 0 & 0 \\ -\hat{L}_{1}^{(1)} & 0 & -\hat{L}_{12} & 0 \\ 0 & 0 & 0 & \hat{L}_{0}^{(2)} \\ -\hat{L}_{12} & 0 & -\hat{L}_{1}^{(2)} & 0 \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \beta_{1} \\ \alpha_{2} \\ \beta_{2} \end{pmatrix} \qquad \qquad \\ \hat{L}_{1}^{(1)} = -\mu_{1} - \frac{1}{2} \nabla^{2} + g_{11} n_{1}^{\text{stat}} + g_{12} n_{2}^{\text{stat}} \\ \hat{L}_{1}^{(1)} = -\mu_{1} - \frac{1}{2} \nabla^{2} + 3g_{11} n_{1}^{\text{stat}} + g_{12} n_{2}^{\text{stat}} \\ \hat{L}_{12} = 2g_{12} \sqrt{n_{1}^{\text{stat}} n_{2}^{\text{stat}}} \end{aligned}$$

Numerical solution, keeping only the modes corresponding to localized $lpha_j, eta_j$ functions

$$\omega_* = \left(\frac{g}{g_{12}}\right)^2 |g_{\text{eff}}| n_{\infty}$$

Self-evaporation: Stringari & Vautherin, Physics Letters B 88, 1 (1979) Ferioli et al., PR Research 2, 013269 (2020) Fort & Modugno, Applied Sciences 11, 866 (2021)

The monopole mode s = 0

Back to the single-component equation with its non-local correction

$$i\hbar \partial_t \psi_2(\mathbf{r}) = \frac{\hbar^2}{m} \left[-\frac{1}{2} \nabla^2 - |g_{\text{eff}}| n_2(\mathbf{r}) - \beta \nabla^2 n_2(\mathbf{r}) \right] \psi_2(\mathbf{r})$$

Time-dependent version assuming that the bath follows adiabatically the minority component

Rosanov et al., 2002:

$$\omega_0 = 0.95 \ \omega_* \left(\frac{N}{N_{\text{Townes}}} - 1\right)^{3/2}$$
$$\omega_* = \left(\frac{g}{g_{12}}\right)^2 |g_{\text{eff}}| n_{\infty}$$

The monopole mode s = 0 : sum rule

The sum rule approach provides an upper bound for ω_0 :

 m_1 : energy-weighted sum rule

$$m_1 = -2\langle x^2 + y^2 \rangle$$

Average taken by integrating the density of the minority component using the ground state wave function of the mixture.

 m_{-1} : inverse energy-weighted sum rule

$$m_{-1} = -\frac{1}{2\lambda_0}\delta\langle x^2 + y^2\rangle$$

Static response of the system $\delta \langle x^2 + y^2 \rangle$ to a perturbation $\lambda_0(x^2 + y^2)$ for component 2

Surface waves

Concluding remarks

The Townes soliton problem: a paradigm to study the consequences of scale invariance... and the ways to break it

Intriguing domain of parameters leading to selfevaporation: can be studied here at a very low density, where other loss mechanisms can be minimized

See also Fort & Modugno (2021) for ⁴¹K-⁸⁷Rb

A non-linear physics problem:

addressable by mean-field Gross-Pitaevski equations, but leading to a phenomenology close to the quantum droplets stabilized by beyond-mean-field terms

