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Outline of this lecture

1.	Summary	of	lecture	1
…and	some	responses	to	questions

2.	A	microscopic	view	on	soliton	formation		
Yukawa-type	interaction,	mediated	by	the	bath

3.	Towards	the	droplet	regime

The	role	of	non-local	interactions

4.	The	excitation	spectrum	of	the	soliton	(and	its	daughter	states)

Similarities	and	differences	with	the	now	well-known	“Quantum	droplets”

D. S. Petrov, PRL 115, 155302 (2015) , C. R. Cabrera et al., Science 359, 301 (2018),  
G. Semeghini et al, PRL 120, 235301 (2018), C. D’Errico et al., PR Research 1, 033155 (2019),  
Guo et al, PR Research 3, 033247 (2021) + dipolar gases (Stuttgart, Innsbruck, Florence)

cf. Lectures by Meera Parish

cf. Lectures by Dmitry Petrov
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Summary of lecture 1: The Townes soliton

Do	solitons	exist	in	a	2D	fluid	described	by	the	Gross-Pitaevskii	equation?

E[ψ] =
ℏ2

2m ∫ ( ∇ψ
2

+ g ψ
4) d2r ∫ |ψ |2 = N 	 	(dimensionless)	<	0g

Yes,	but	only	for	specific	values	of	 |g |N

Nodeless,	isotropic	solution	obtained	for	 	,	known	as	the	Townes	soliton		|g |N = 5.80

For	ultra-cold	atoms,	two	recent	experiments	explored	this	unusual	non-linear	object	

Chen	&	Hung,	PRL	127,	023604	(2021)	:	single	component	133Cs	gas	+	Feshbach	resonance

Bakkali-Hassani,	Maury,	Zou,	Le	Cerf,	Saint-Jalm,	Castilho,	Nascimbene,	Dalibard	&	Beugnon 

PRL	127,	023603	(2021)	:	immiscible	mixture	of	two	87Rb	hyperfine	states

Isotropic	solution	with	one	node	(two	nodes):	 		( )							[but	dynamically	unstable]|g |N = 38.6 97.9
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Summary of lecture 1: A mean-field analysis

Bath=component	1

component	2

size ℓ

n∞

Simple	equation	for	the	component	2:	 μ ψ2 = (−
ℏ2

2m
∇2 + geff n2) ψ2

geff = g22 −
g2

12

g11

Bare	

interaction

(repulsive)

Interaction	mediated	by	the	bath:

• always	attractive

• independent	of	the	bath	density

μi ψi = (−
ℏ2

2m
∇2 + giini + gijnj) ψi i, j = 1,2 i ≠ j

Hypotheses: weak depletion of comp. 1  ( )  and large extension of comp. 2  (  )n2 ≪ n1 ≈ n∞ ℓ ≫ ξ

geff < 0 ⇔ g2
12 > g11g22

+	stability

non-miscibility
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Summary of lecture 1: The Paris experiment (87Rb)
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Collisions	between	identical	solitons

In	1D,	the	two	solitons	emerge	“unperturbed”	from	the	collision

Nguyen, Dyke, Luo, Malomed and Hulet (Nat. Phys. 2014)

NATURE PHYSICS DOI: 10.1038/NPHYS3135 LETTERS
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Figure 1 | Schematic of the experiment and images of phase-dependent collisions. a, Schematic showing the process of soliton-pair formation. Beginning
with the bottom frame, the potential is shown as a black-dashed line with a condensate density profile shown in solid blue. After forming a condensate, the
barrier is turned on to split the condensate in two. The scattering length is ramped from a=+140a0 to a=−0.57a0 and pairs of solitons are formed. The
barrier is quickly turned o!, and the solitons move towards the centre of the trap. b, Time evolution of a soliton pair (N/Nc=−0.53) after the barrier is
turned o!. Solitons are accelerated towards the centre of the trap and collide at a quarter-period (τ=2π/ωz=32ms). The density peak appearing at the
centre-of-mass indicates that this is an in-phase ($φ≈0) collision. c, Similar to b, except the density node appearing at the centre-of-mass indicates an
out-of-phase ($φ≈π) collision.
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Figure 2 | Phase-dependent collisional dynamics. a, A collision between two solitons (N/Nc=−0.53) resulting in collapse. During the collision, the density
exceeds a critical value and becomes unstable against collapse. No remaining atoms are observed. b, A collision between two solitons (N/Nc=−0.53)
resulting in a merger. The remaining atom number after the collision is the same as that of a single soliton before the collision. c, Out-of-phase collisions
between two solitons after allowing them to oscillate for ten trap periods.

nonlinearity for repulsive condensates. For values ofN/Nc=−0.53,
we observe that in-phase collisions ($φ ≈ 0) sometimes result
in annihilation (Fig. 2a) or fusion of the soliton pair (Fig. 2b),
although more typically we observe partial collapses in which
the atom number and the oscillation amplitude are reduced after
multiple collisions. These effects can be understood as the result of
density-dependent inelastic collisions in which the system becomes
effectively 3D (refs 18–20). Similar effects have been observed
in nonlinear optics21. We find from the GPE simulations that

collisions with $φ=0 and N/Nc<−0.5 are unstable to collapse.
The observation that collisions with $φ ≈ 0 do not always lead
to collapse (for example, Fig. 1b) is consistent with the shot-to-
shot variation in N of ∼20% (Methods). For the same nonlinearity,
out-of-phase collisions ($φ ≈ π) are extremely robust against
collapse and survive many oscillations in the trap, as predicted
theoretically18,20,22. Although on the edge of integrability, we have
observed solitons with N/Nc=−0.53 and $φ=π to survive more
than 20 collisions (Fig. 2c).

NATURE PHYSICS | VOL 10 | DECEMBER 2014 | www.nature.com/naturephysics 919

© 2014 Macmillan Publishers Limited. All rights reserved

In	2D,	the	initial	relative	motion	of	the	solitons	sets	a	new	length/energy	scale

Head-on	collision	with	a	large	initial	velocity Head-on	collision	with	a	small	initial	velocity

Simulations by  
Brice Bakkali-Hassani

Collisions of self-bound 
quantum droplets,  

Ferioli et al.,  
PRL122, 090401 (2019)


merging/separation



Breaking the SO(2,1) symmetry with a quantum anomaly

Hammer & Son, PRL 93 250408 (2004): Going beyond the classical field analysis based on the Gross-Pitaevskii energy  

Introduction	of	a	short-distance	(i.e.	UV)	cutoff	at	 			(van	der	Waals	length	:	nanometer	size)r ∼ RvdW

In	practice,	for	our	interaction	strength	 ,	the	predicted	value	for	 	is	
physically	reasonable	only	for	

|geff | ≪ 1 σN
|N − NTownes | ∼ a	few	units

σ770 ∼ 10−9 σ750 !!!

There	exists	a	stable	solution	of	size	 		for	any	value	of	the	atom	number	σN N

Geometric	scaling:			
σN

σN+1
∼ 3

In	the	strongly	interacting	case	 ,	a	realistic	droplet	size	would	be	achieved	with	only	a	few	
atoms	and	one	could	observe	the	predicted	scaling	of	 	with	

|g | ∼ 1
σN N

7

See also Bazak & Petrov, New J. Phys. 20 023045 (2018)
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Outline of this lecture

1.	Summary	of	lecture	1

2.	A	microscopic	view	on	soliton	formation		

Yukawa-type	interaction	between	impurity	atoms,	mediated	by	the	bath

3.	Towards	the	droplet	regime

4.	The	excitation	spectrum	of	the	soliton	(and	its	daughter	states)

x

n1(x)

Ra

2

Rb

2

Bath:	component	1

n∞
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The Bose polaron problem
For a review, see Grusdt & Demler (2015)

Fröhlich Hamiltonian:

x

n1(x)

Ra

2

Bath:	component	1

̂V(Ra) = g12 Ψ̂†(Ra) Ψ̂(Ra)

 : field operator of the bath Ψ̂(r)

n∞

Description of the bath by the Bogoliubov approach:    Ψ̂(r) = n∞ + δΨ̂(r)

δΨ̂(r) = ∑
k≠0

eik⋅r

L2
̂ak ̂ak = ukb̂k + vkb̂†

−k

  dimensionless ( with )g12 ℏ = m = 1

Ground	state	in	the	presence	of	the	impurity	obtained	by	perturbation	theory:	|Φ′￼0⟩ = |Φ0⟩ + ∑
k

⟨Φk | ̂V(Ra) |Φ0⟩
E0 − Ek

|Φk⟩

Hole of size   with a relative depth ∼ ξ =
1

2g11n∞

δn1

n∞
∼ g12 ≪ 1

Typically  atom of the bath missing around the location of the impurity δn1ξ2 ∼
g12

g11
∼ 1
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Yukawa potential
Naidon, 2018

x

n1(x)

Ra

2

Rb

2

Bath:	component	1

n∞
Interaction	potential	:	 		𝒱̂ = ̂V(Ra) + ̂V(Rb)

induces at 2nd order of perturbation theory an 
energy shift  that depends on the distance  ΔE Rab

ΔE = − ∑
α≠0

⟨Φ0 |𝒱 |Φα⟩⟨Φα |𝒱̂ |Φ0⟩
Eα − E0

Interaction	between	the	two	impurities	mediated	by			
the	exchange	of	virtual	phonons	in	the	bath

Umed(Rab) = −
2g2

12n∞

(2π)D ∫
eik⋅(Ra − Rb)

ϵk + 2g11n∞
dDkA simple calculation gives: ϵk =

ℏ2k2

2m

Fourier transform of a Lorentzian: Yukawa potential (for ) of range D = 3 ξ = 1/ 2g11n∞

Note:  irrespective of the sign of  , i.e. the mediated interaction is always attractiveΔE < 0 g12
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Born approximation

x

n1(x)

Ra

2

Rb

2

Bath:	component	1

n∞
Umed(Rab) = −

2g2
12n∞

(2π)2 ∫
eik⋅(Ra − Rb)

ϵk + 2g11n∞
d2k

ϵk =
ℏ2k2

2m

Using	Born	approximation,	this	leads	to	the	dimensionless	interaction	strength	for	the	mediated	interaction:

gmed = ∫ Umed(R) d2R = −
2g2

12n∞

(2π)2 ∫ ∫
eik⋅R

ϵk + 2g11n∞
d2k d2R = − 2g2

12n∞ ∫
δ(k)

ϵk + 2g11n∞
d2k = −

g2
12

g11

δ(k) =
1

(2π)2 ∫ eik⋅R d2R

We thus recover   geff = gbare + gmed = g22 −
g2

12

g11

Warning:	The	bare	interaction	cannot	be	obtained	by	Born	approximation.	 
The	procedure	above	is	valid	thanks	to	the	separation	of	length	scales	:	RvdW ≪ ξ
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Outline of this lecture

2.	A	microscopic	view	on	soliton	formation		

3.	Towards	the	droplet	regime

4.	The	excitation	spectrum	of	the	soliton	(and	its	daughter	states)

The	role	of	non-local	interactions	+	finite	bath-depletion	effects

B. Bakkali-Hassani, C. Maury, S. Stringari, S. Nascimbene, J. Dalibard, J. Beugnon, arXiv

See also P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell,  
PRL 120, 135301 (2018) for a transition 1D to 3D in the beyond-mean-field context 

1.	Summary	of	lecture	1
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Non-local corrections

Back to the Gross-Pitaevskii equation for the minority component

Bath=component	1

component	2

μ2 ψ2(r) =
ℏ2

m [−
1
2

∇2 + g22n2(r) + ∫ Umed(r − r′￼) n2(r′￼) d2r′￼] ψ2(r)

Taylor expansion of  :Umed(r − r′￼)

μ2 ∂t ψ2(r) =
ℏ2

m [−
1
2

∇2 + (g22 −
g2

12

g22 ) n2(r) − β∇2n2(r) + …] ψ2(r)

geff Non-local correction that  
breaks scale invariance  

(stabilizing role !)

β = ( g12

g11 )
2 1

4n∞

Equation that has been studied in detail in the context of optics (Rosanov et al., 2002)
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Stabilization of the Townes soliton

μ2 ψ2(r) =
ℏ2

m [−
1
2

∇2 − |geff |n2(r) − β∇2n2(r)] ψ2(r)

Consider the equation including the first non-local correction
Bath=component	1

component	2

Component 2 with  atoms 
and a size  :   

N2
ℓ n2 ∼ N2/ℓ2

Energy/particle	for	component	2	for	a	Townes-like	profile:

E
N2

∼
α
ℓ2

−
|geff |N2

ℓ2
+ β

N2

ℓ4

prevents the collapse  
when |geff |N2 > 5.80

stable if and only if 
|geff |N2 = 5.80 Collapse for  N2 > NTownes = 5.80/ |geff |Expand for  N2 < NTownes

Valid only for a small depletion , i.e. if  n2 ≪ n∞ N2 − NTownes ≪ NTownes

β ∼ 1/n∞

ℓ2 ∼
β

|geff |
N2

N2 − NTownes
n2 ∼ n∞

N2 − NTownes

NTownes

E
N2

∼
|geff | (NTownes − N2)

ℓ2
+ β

N2

ℓ4
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Check of the validity of this “simple” non-local equation

N2 = 1.01 NTownes

vs.	solution	of	the	two	coupled	GP	equations

Solution of  μ2 ψ2(r) =
ℏ2

m [−
1
2

∇2 − |geff |n2(r) − β∇2n2(r)] ψ2(r)

n2(r)
n∞

[ % ]

N2 = 1.5 NTownes

r [ξspin] r [ξspin]

ξspin = 1/ 2 |geff |n∞

0 20 40
0

0.5

1

1.5

2

r
0 2 4 6 8 10
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n2(r)
n∞

[ % ]

g11 = g22

g12 = 1.01 g11
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Beyond the weak depletion regime

Take advantage the similarity of all coupling constants:        (SU(2) symmetry)g11 ≈ g12 ≈ g22

    where   is treated as a small parametern1 + n2 = n + δn δn

Spin healing length   Bath healing length   ξspin =
1

2geffn∞
≫ ξ =

1
2g11n∞

Formation of quasi-pure 
domains of the minority 
component
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μ2 ψ2(r) =
ℏ2

m [−
1
2

∇2 + geffn2(r) +
1
2

∇2 n∞ − n2(r)

n∞ − n2(r) ] ψ2(r)



N2 = 1.5 NTownes

r [ξspin]

						Solution	of	 
the	two	coupled	 
GP	equations

17

Validity of single component equations

N2 = 10 NTownes

n2(r)
n∞

[ % ]

μ2 ψ2(r) =
ℏ2

m [−
1
2

∇2 + geffn2(r) +
1
2

∇2 n∞ − n2(r)

n∞ − n2(r) ] ψ2(r)

μ2 ψ2(r) =
ℏ2

m [−
1
2

∇2 − |geff |n2(r) − β∇2n2(r)] ψ2(r)Weak	depletion	limit:

Exploiting	 SU(2)	symmetry:∼

r [ξspin]

						Solution	of	 
the	two	coupled	 
GP	equations

β = ( g12

g11 )
2 1

4n∞
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Comparison with quantum droplets

g12

+ g11g22− g11g22 0

Quantum 
droplets 

This 
work

N1 ∼ N2 Infinite	bath	of	 
component	1

Energy/particle

Quantum	droplet	(3D)

Kinetic Mean-field 
(contact)

Stabilizing	 
term

1/ℓ2 − |δg | N/ℓ3 ḡ5/2N3/2/ℓ9/2

This	work	(2D) 
(low	depletion	case)
 1/ℓ2 − |geff | N/ℓ2 β N/ℓ4

beyond	mean-field

non-local	potential

D. S. Petrov, PRL 115, 155302 (2015)
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Outline of this lecture

2.	A	microscopic	view	on	soliton	formation		

3.	Towards	the	droplet	regime

4.	The	excitation	spectrum	of	the	soliton	and	of	its	daughter	states

B. Bakkali-Hassani, C. Maury, S. Stringari, S. Nascimbene, J. Dalibard, J. Beugnon, arXiv 2207.06939 

Strong connection with the results of D. S. Petrov, PRL 115, 155302 (2015) 
in the context of beyond-mean-field Quantum Droplets

Quantum droplets in low dimension: Petrov & Astrakharchik, PRL 117, 100401 (2016). 

                                                          Stürmer et al., PRA 103, 053302 (2021)

1.	Summary	of	lecture	1

https://arxiv.org/abs/2207.06939
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Bogoliubov analysis

Two-component system ψj(r, t) = [ψstat
j (r) + αj(r, t) + iβj(r, t)] e−iμjt j = 1,2with	 	realψstat

j , αj, βj

Bogoliubov	linear	system

∂t

α1

β1
α2

β2

=

0 L̂(1)
0 0 0

−L̂(1)
1 0 −L̂12 0

0 0 0 L̂(2)
0

−L̂12 0 −L̂(2)
1 0

α1

β1
α2

β2

L̂(1)
0 = − μ1 −

1
2

∇2 + g11nstat
1 + g12nstat

2

L̂(1)
1 = − μ1 −

1
2

∇2 + 3g11nstat
1 + g12nstat

2

L̂12 = 2g12 nstat
1 nstat

2

Numerical	solution,	keeping	only	the	modes	corresponding	to	localized	 	functionsαj, βj



21

The result for the localized spectrum
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Calculation	performed	for	 		and		g11 = g22 ≡ g g12 = 1.01 g

5

(a)

1 1.2 1.4 1.6
0

0.05

0.1

0.15

0.2

N/NT

!
s
/
!
⇤

1 1.05
0

0.01

(b)

1 10 20 30
0

0.2

0.4

N/NT

!
s
/
!
⇤

(c)
s = 0 s = 2

s = 3 s = 4

s = 5 s = 6

FIG. 3. Frequencies of localized modes with azimuthal number s for nearby interaction parameters, here g12 = 1.01g. The
solid lines in (a,b) show the predictions of the Bogoliubov approach for the two coupled equations (1). (a) Breathing mode
s = 0. The dotted blue line gives the perturbative limit of Eq. (8). The inset (same axis) shows that this limit is approached
as N ! N+

T . (b) Surface modes s � 2. The dotted lines show the hydrodynamic prediction of Eq. (9), see (c) for the color
code. In (a) (resp.(b)) the dash-dotted line shows the sum-rule prediction for s = 0 (resp. s = 2), while the dashed grey line
indicates the limit for localized excitations !s = |µ|. There are no localized modes in the grey-shaded regions of (a) and (b).

from the continuum for N/NT & 3.5, see Fig. 3(b), and
other modes with larger values of s emerge for even larger
values of N/NT . We find that the localization for a mode
of azimuthal number s 2 N (see Fig. 3(c)) approximately
occurs when the perimeter of the domain equals s times
the spin healing length `0, which suggests an interpreta-
tion in terms of surface deformations, also called ripplons.

Such ripplons are well known from 3D incompressible
hydrodynamics [40]. For a two-dimensional system, sur-
face excitations of an incompressible circular bubble of
radius R oscillate with an angular frequency !s given by
(see e.g. Ref. [41])

!s =

r
T

2n1R3
s(s � 1)(s + 1). (9)

Eq. (9) features a linear tension coefficient T , which has
a simple expression in the limit of nearby interaction pa-
rameters (see e.g. Refs. [42, 43])

T ' 1

2

p
|ge| n3/2

1 . (10)

In the short-wavelength limit, one retrieves the dispersion
relation / k3/2 with wave number k = s/R expected for
a linear (not-curved) interface subject to capillary waves
[43]. In Fig. 3(b), we show that the surface mode fre-
quencies estimated using Eq. (9) asymptotically approach
the frequencies obtained for large N/NT from the two-
component Bogoliubov approach.

C. The intermediate regime: self-evaporation

For our choice of nearby interaction parameters, we
found that the steady-states comprised in the range

1.45 . N/NT . 3.5 do not possess any localized exci-
tation mode. Therefore, in this regime, any perturbation
from equilibrium leads to the emission of mass to infin-
ity, a dissipation mechanism known as self-evaporation.
This situation is reminiscent of the spectrum of quantum
droplets stabilized by beyond mean-field (BMF) effects
[18, 44, 45], as well as of giant resonances observed in
nuclear physics [46].

As discussed in Ref. [44], self-evaporation is not the
dominant dissipation mechanism for BMF droplets, be-
cause of the prevalence of three-body losses in these large
density systems. In contrast, for the two-component mix-
ture considered here, the density of the localized com-
ponent and thus the three-body loss rate can be tuned
through the bath density. For a low-enough density, self-
evaporation can then play a relevant role in the damp-
ing of the excitations of the system. It could be evalu-
ated either solving explicitly the time-dependent nonlin-
ear equations Schrödinger equations (1) or the extended
RPA-Bogoliubov approach accounting for the coupling to
the continuum (see e.g. Ref. [47]).

IV. CONCLUSIONS AND PERSPECTIVES

We have presented in this paper a mean-field study of
the crossover from a solitonic to a droplet-like behavior in
a 2D immiscible Bose mixture. We have determined both
the steady-state of the system and its dynamics resulting
from a small deviation from equilibrium. We have also
proposed simple models that have allowed us to interpret
the results obtained in the different limiting regimes.

Regarding the weak-depletion regime, we have shown
in Eqs. (5), (8) that the interaction mediated by the bath,
which is described by a Yukawa-type potential, leads to

ℏω ≤ g12n∞ − μ2

necessary	condition	 
for	a	localized	mode

ω* = ( g
g12 )

2

|geff |n∞

self-evaporation	 
zone

Self-evaporation: Stringari & Vautherin, Physics Letters B 88, 1 (1979) 
                            Ferioli et al., PR Research 2, 013269 (2020)  

                                                                             Fort & Modugno, Applied Sciences 11, 866 (2021) 
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The monopole mode  s = 0

Back	to	the	single-component	equation	with	its	non-local	correction

iℏ ∂t ψ2(r) =
ℏ2

m [−
1
2

∇2 − |geff |n2(r) − β∇2n2(r)] ψ2(r)

Rosanov	et	al.,	2002:	

ω0 = 0.95 ω* ( N
NTownes

− 1)
3/2

ω* = ( g
g12 )

2

|geff |n∞

Time-dependent	version	assuming	that	the	bath	follows	adiabatically	the	minority	component

g11 = g22 ≡ g

ω0

ω*

0

0.005

0.010

1 1.025 1.050

N/NTownes

adiabatic	approx.

full	calculation	 
(2	components)
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The monopole mode   : sum rules = 0

The	sum	rule	approach	provides	an	upper	bound	for	 	:	ω0 ω2
0 ≲

m1

m−1

		energy-weighted	sum	rulem1 :

Average	taken	by	integrating	the	density	of	the	minority	component	
using	the	ground	state	wave	function	of	the	mixture.	


m1 = − 2⟨x2 + y2⟩

		inverse	energy-weighted	sum	rulem−1 :

Static	response	of	the	system		 	to		a	perturbation	
	for	component	2

δ⟨x2 + y2⟩
λ0(x2 + y2)

m−1 = −
1

2λ0
δ⟨x2 + y2⟩

ω0

ω*

N/NTownes

1 1.2 1.4
0

0.1

0.2
adiabatic	approx.

sum	rule

full	calculation	 
(2	components)

mp = ∫ ωp S(ω) dω

S(ω) = ∑
n

⟨n |F |0⟩
2

δ(ω − ωn0)

F = ∑
j

x2
j + y2

j

Pitaevskii & Stringari, chap.12

  dynamic structure factorS(ω) :
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Surface waves

Interpretation	in	terms	of	surface	tension	(two-dimensional	ripplons)	by	2D	incompressible	hydrodynamics	

ωs =
𝒯

2n∞R3
s(s − 1)(s + 1) 𝒯 ≃

1
2

|geff | n3/2
∞

Akulenko & Nesterov, 1998 Ao & Chui, 1998 ; Barankov, 2002

5
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FIG. 3. Frequencies of localized modes with azimuthal number s for nearby interaction parameters, here g12 = 1.01g. The
solid lines in (a,b) show the predictions of the Bogoliubov approach for the two coupled equations (1). (a) Breathing mode
s = 0. The dotted blue line gives the perturbative limit of Eq. (8). The inset (same axis) shows that this limit is approached
as N ! N+

T . (b) Surface modes s � 2. The dotted lines show the hydrodynamic prediction of Eq. (9), see (c) for the color
code. In (a) (resp.(b)) the dash-dotted line shows the sum-rule prediction for s = 0 (resp. s = 2), while the dashed grey line
indicates the limit for localized excitations !s = |µ|. There are no localized modes in the grey-shaded regions of (a) and (b).

from the continuum for N/NT & 3.5, see Fig. 3(b), and
other modes with larger values of s emerge for even larger
values of N/NT . We find that the localization for a mode
of azimuthal number s 2 N (see Fig. 3(c)) approximately
occurs when the perimeter of the domain equals s times
the spin healing length `0, which suggests an interpreta-
tion in terms of surface deformations, also called ripplons.

Such ripplons are well known from 3D incompressible
hydrodynamics [40]. For a two-dimensional system, sur-
face excitations of an incompressible circular bubble of
radius R oscillate with an angular frequency !s given by
(see e.g. Ref. [41])

!s =

r
T

2n1R3
s(s � 1)(s + 1). (9)

Eq. (9) features a linear tension coefficient T , which has
a simple expression in the limit of nearby interaction pa-
rameters (see e.g. Refs. [42, 43])

T ' 1

2

p
|ge| n3/2

1 . (10)

In the short-wavelength limit, one retrieves the dispersion
relation / k3/2 with wave number k = s/R expected for
a linear (not-curved) interface subject to capillary waves
[43]. In Fig. 3(b), we show that the surface mode fre-
quencies estimated using Eq. (9) asymptotically approach
the frequencies obtained for large N/NT from the two-
component Bogoliubov approach.

C. The intermediate regime: self-evaporation

For our choice of nearby interaction parameters, we
found that the steady-states comprised in the range

1.45 . N/NT . 3.5 do not possess any localized exci-
tation mode. Therefore, in this regime, any perturbation
from equilibrium leads to the emission of mass to infin-
ity, a dissipation mechanism known as self-evaporation.
This situation is reminiscent of the spectrum of quantum
droplets stabilized by beyond mean-field (BMF) effects
[18, 44, 45], as well as of giant resonances observed in
nuclear physics [46].

As discussed in Ref. [44], self-evaporation is not the
dominant dissipation mechanism for BMF droplets, be-
cause of the prevalence of three-body losses in these large
density systems. In contrast, for the two-component mix-
ture considered here, the density of the localized com-
ponent and thus the three-body loss rate can be tuned
through the bath density. For a low-enough density, self-
evaporation can then play a relevant role in the damp-
ing of the excitations of the system. It could be evalu-
ated either solving explicitly the time-dependent nonlin-
ear equations Schrödinger equations (1) or the extended
RPA-Bogoliubov approach accounting for the coupling to
the continuum (see e.g. Ref. [47]).

IV. CONCLUSIONS AND PERSPECTIVES

We have presented in this paper a mean-field study of
the crossover from a solitonic to a droplet-like behavior in
a 2D immiscible Bose mixture. We have determined both
the steady-state of the system and its dynamics resulting
from a small deviation from equilibrium. We have also
proposed simple models that have allowed us to interpret
the results obtained in the different limiting regimes.

Regarding the weak-depletion regime, we have shown
in Eqs. (5), (8) that the interaction mediated by the bath,
which is described by a Yukawa-type potential, leads to

N/NTownes
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Concluding remarks

The	Townes	soliton	problem:	a	paradigm	to	study	the	consequences	of	scale	invariance…	and	the	ways	to	break	it	

A	non-linear	physics	problem:	 
addressable	by	mean-field	Gross-Pitaevski	equations,	but	
leading	to	a	phenomenology	close	to	the	quantum	droplets	
stabilized	by	beyond-mean-field	termsBath=component	1

component	2

Intriguing	domain	of	parameters	leading	to	self-
evaporation:	can	be	studied	here	at	a	very	low	density,	
where	other	loss	mechanisms	can	be	minimized
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See also Fort & Modugno (2021) for 41K-87Rb 


