Multicomponent spin mixtures of two-electron fermions

Enrico Fermi School on Quantum Mixtures Varenna, July 21st 2022

Dept. Physics and Astronomy – University of Florence LENS European Laboratory for Nonlinear Spectroscopy

Lecture 1

Î

Introduction to multicomponent quantum gases Interactions in two-electron fermions and SU(N) physics **Experimental techniques EXP:** SU(N) physics in low dimensions **EXP**: SU(N) Fermi-Hubbard and breaking SU(N) physics

Lecture 2

Multicomponent systems with coherent coupling / Synthetic dimensions and artificial magnetic fields 1 **EXP**: Chiral edge currents in synthetic ladders **EXP**: Synthetic Hall effect

Lecture 1

Introduction to multicomponent quantum gases

Interactions in two-electron fermions and SU(N) physics

- Experimental techniques
- **EXP**: SU(N) physics in low dimensions
- **EXP**: SU(N) Fermi-Hubbard and breaking SU(N) physics

Lecture 2

Multicomponent systems with coherent coupling
Synthetic dimensions and artificial magnetic fields
EXP: Chiral edge currents in synthetic ladders
EXP: Synthetic Hall effect

Two-level systems are everywhere in Nature and in the way we model and take advantage of quantum processes

Two-level systems are everywhere in Nature and in the way we model and take advantage of quantum processes

Spin of elementary particles (e.g. electrons)

Superconductivity Magnetism

...

and their realization in binary ultracold mixtures

Two-level systems are everywhere in Nature and in the way we model and take advantage of quantum processes

Light-matter interaction

two-level coherent dynamics

Two-level systems are everywhere in Nature and in the way we model and take advantage of quantum processes

Quantum information

Bloch sphere

Extend the Hilbert space! Larger space: more directions to explore, more fun

I→> Ib> I3> 17> 1a> 12> 11> le> 11> 14> 1g> 10>

Spin mixtures

Atoms are not elementary particles: 2F+1-dimensional spin manifold available

Spin mixture of two-electron fermions

Lecture 1

Introduction to multicomponent quantum gases
 Interactions in two-electron fermions and SU(N) physics
 Experimental techniques
 EXP: SU(N) physics in low dimensions
 EXP: SU(N) Fermi-Hubbard and breaking SU(N) physics

Lecture 2

Multicomponent systems with coherent coupling
Synthetic dimensions and artificial magnetic fields
EXP: Chiral edge currents in synthetic ladders
EXP: Synthetic Hall effect

Interactions in multicomponent mixtures

Interactions in multicomponent mixtures

Alkali and alkaline-earth atoms

Alkali and alkaline-earth atoms

Alkaline-earth fermions

Interactions in alkaline-earth fermions

SU(N) fermions

M. Cazalilla and A. M. Rey, Rep. Prog. Phys. 77, 124401 (2014).

SU(N) fermions

$$N = 2 \text{ conffoldents} \rightarrow SU(2)$$

$$N^{2}-1 = 3 \text{ generators} \rightarrow PAULI MATRICES$$

$$\sigma_{1} = \sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_{2} = \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_{3} = \sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$N = 3 \text{ conffoldents} \rightarrow SU(3)$$

$$N^{2}-1 = 8 \text{ generators} \rightarrow GEU-MANU MATRICES$$

$$\lambda_{1} := \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_{2} := \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_{3} := \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_{4} := \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

$$\lambda_{5} := \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad \lambda_{6} := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \lambda_{7} := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \lambda_{8} := \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

SU(N) fermions

Fermions with (large) nuclear spin: tunable SU(N) interaction symmetry

Stable multicomponent mixtures Larger Hilbert space Spectral degeneracies Exotic quantum phases Role of quantum statistics Connections with high-energy physics

...

Lecture 1

Introduction to multicomponent quantum gases Interactions in two-electron fermions and SU(N) physics **Experimental techniques EXP**: SU(N) physics in low dimensions **EXP**: SU(N) Fermi-Hubbard and breaking SU(N) physics

Lecture 2

Multicomponent systems with coherent coupling Synthetic dimensions and artificial magnetic fields **EXP**: Chiral edge currents in synthetic ladders **EXP**: Synthetic Hall effect

Two-electron fermions

Nuclear spin: all-optical manipulation

No magnetic trapping! (weak magnetic dipoles $\mu_N = \mu_B / 1836$: $\Delta E = m_F \times 200 \text{ Hz/G}$)

> **No Feshbach resonances!** (no role of nuclear spin in collisions)

Long nuclear spin coherence times (weak effect of magnetic field noise)

Spin detection and manipulation

Optical Stern-Gerlach detection Taie et al., PRL (2010) State-dependent optical dipole force

Spin detection and manipulation

Spin-selective preparation with optical pumping

Arbitrary-number spin mixtures:

Optical lattices

Quantum simulation of condmat systems

atoms in optical lattices electrons in solids + + -+ -+ + -+ -+ ₽ 7 + -<mark>-</mark>+ +_ "exact" implementations of models (Hubbard, Haldane, Anderson, Heisenberg, ...) 0 new "extreme" states of matter

Low-dimensional quantum systems

2D systems

1D systems

Lecture 1

 Introduction to multicomponent quantum gases
 Interactions in two-electron fermions and SU(N) physics
 Experimental techniques
 EXP: SU(N) physics in low dimensions
 EXP: SU(N) One-dimensional fermions with tunable SU(N) symmetry G. Pagano et al., Nature Phys. 10, 198 (2014)

Lecture 2

Multicomponent systems with coherent coupling
Synthetic dimensions and artificial magnetic fields
EXP: Chiral edge currents in synthetic ladders
EXP: Synthetic Hall effect

ŷ

SU(N) quantum wires

Strongly interacting quantum wires

- ≈ 100 fermionic wires
- ≈ 10 atoms/spin/wire

ź

SU(N) fermions with repulsive interactions

3D scattering length $a = +200 a_0$

1D physics

Low dimensions strongly amplify the effects of interactions between particles

Momentum distribution

Momentum distribution measured after time-of-flight expansion:

Momentum distribution measured after time-of-flight expansion:

Quantum correlations in 1D fermions

Collective dynamics

Interaction-induced redshift of breathing frequency in harmonic trap

Theory by H. Hu & X.-J. Liu (Swinburne) Bethe Ansatz + LDA + Hydrodynamic

For $M \rightarrow \infty$ the breathing frequency approaches that of spinless bosons

«bosonization» of large-spin fermions

Interplay between interactions and spin multiplicity (distinguishability)

"Bosonization" of large-spin fermions

A very general result first demonstrated by C. N. Yang C. N. Yang & Y. Yi-Zhuang, Chin. Phys. Lett. 28, 020503 (2011)

One-Dimensional w-Component Fermions and Bosons with Repulsive Delta Function Interaction *

C. N. YANG(杨振宁)^{1,2**}, YOU Yi-Zhuang(尤亦庄)¹

¹Institute for Advanced Study, Tsinghua University, Beijing 100084 ²Institute of Theoretical Physics, Chinese University of Hong Kong, Hong Kong

The ground state

energy for such a system was studied in the 1960s, first in 1963 by Lieb and Liniger^[1] for spinless Bosons, then in 1967 by Yang^[2] for spin 1/2 Fermoins, finally in 1968 by Sutherland^[3] for 3 component Fermions. This last result is readily generalizable to any value of w = number of components. In the present paper we complete this series of studies by solving the problem for w component Bosons via a detour through ∞ component Fermions.

Theorem 2.

$$Y_{F\infty}(Z) = Y_{B1}(Z)$$

See also measurement of Tan's contact (Hong Kong, Gyu-Boong Jo) B. Song et al., PRX 10, 041053 (2020)