Lecture 2

Towards quantum impurity physics with atoms and ions Rene Gerritsma

Lecture 2

- Can we get colder?
- Spin dynamics
- Controlling interactions: Rydbergs
- Quantum chemistry: Trapped ions interacting with Feshbach dimers
- Conclusions

Crossover to quantum regime

Type of motion	$E_{\rm kin}/{ m k_B}(\mu{ m K})$	$E_{\rm col}/k_{\rm B}(\mu{\rm K})$
Radial secular ion	$2 \times 21(9)$	1.4(0.6)
Intrinsic micromotion	$2 \times 21(9)$	1.4(0.6)
Axial secular ion	65(18)	2.2(0.4)
Excess micromotion	44(13)	1.5(0.4)
Total ion energy	193(42)	6.6(1.4)
Atom temperature	$3/2 \times 2.3(0.4)$	3.3(0.6)
Total collision energy		9.9(2.0)

Measurement of all types of motion

$$E_{col} = 1.15(23) \times E_{s}$$

Coldest results

Crossover into quantum regime, can we get colder?

T. Feldker et al., *Nature Physics*, 16, 413-416 (2020).

Prospects for getting colder

Prospects for getting colder

Experimentally determined collision energy

→ Denser gas eliminates background heating lims
 → Faster repetition of experiments reduces overestimation
 J factor 2?

Prospects for getting colder

 \rightarrow Colder gas eliminates atomic energy \rightarrow another factor of 2?

Prospects for getting colder

Collision energy

70

 \rightarrow Simulations suggest another factor of 2 within reach

Simulations:

Parameter optimization of trap voltage

- Optimal q depends on excess micromotion
 - Measure micromotion -> select q
- Can feasibly decrease ion temperature by factor 2
- Can also decrease \bar{n} through choice of q

Simulated

Simulations: Parameter optimization of Paul trap drive freq.

• Optimal Ω_{rf} also depends on excess micromotion

NJP 24, 035004 (2022).

Simulations: Parameter optimization of Paul trap drive freq.

• Optimal Ω_{rf} also depends on excess micromotion

- → The simulations show that $\bar{n} \sim 1$ are possible: Buffer gas cooling is competitive w.r.t. sub-Doppler cooling?
- \rightarrow What will be the role of quantum effects?

NJP 24, 035004 (2022).

Interactions in quantum regime

Type of motion	$E_{\rm kin}/{ m k_B}(\mu{ m K})$	$E_{\rm col}/k_{\rm B}(\mu{\rm K})$
Radial secular ion	$2 \times 21(9)$	1.4(0.6)
Intrinsic micromotion	$2 \times 21(9)$	1.4(0.6)
Axial secular ion	65(18)	2.2(0.4)
Excess micromotion	44(13)	1.5(0.4)
Total ion energy	193(42)	6.6(1.4)
Atom temperature	$3/2 \times 2.3(0.4)$	3.3(0.6)
Total collision energy		9.9(2.0)

Measurement of all types of motion

$$E_{\rm col} = 1.15(23) \times E_{\rm s}$$

Coldest results

So can we measure something 'quantum' about it?

T. Feldker et al., *Nature Physics*, 16, 413-416 (2020).

- \rightarrow Spin exchange rates
- \rightarrow Prepare spin in ion after buffer gas cooling, detect spin flip

- \rightarrow Spin exchange rates
- \rightarrow Prepare spin in ion after buffer gas cooling, detect spin flip

- \rightarrow Spin exchange rates
- \rightarrow Prepare spin in ion after buffer gas cooling, detect spin flip

- \rightarrow Spin exchange rates
- \rightarrow Prepare spin in ion after buffer gas cooling, detect spin flip

\rightarrow Scan collision energy via radial excess MM

\rightarrow Scan collision energy via radial excess MM

Estimates on scattering lengths

Work by M. Tomza and D. Wiater

T. Feldker et al., *Nature Physics*, 16, 413-416 (2020).

Candidates for Feshbach in Yb+/6Li

Spin dynamics in atom-ion mixtures

 \rightarrow Things are a bit different than in neutral mixtures....

From: L. Ratschbacher, C. Sias, L. Carcagni, J. M. Silver, C. Zipkes, and M. Köhl Phys. Rev. Lett. 110, 160402 (2013).

Spin dynamics of ¹⁷¹Yb⁺

transition rates in units of the Langevin rate

Population dynamics for starting in the ${}^{171}Yb^{+}$ ${}^{2}S_{1/2} |1,0\rangle$ state

Almost every Langevin collision flips the Spin when in $|1, -1\rangle$

Phys. Rev. A 98, 012713 (2018)

Spin exchange and relaxation

- Hyperfine qubit in ¹⁷¹Yb⁺ + ⁶Li:

These states should be protected by spin and energy conservation

 \rightarrow But they are not, what is happening?

Previous Work on Rb-Yb⁺ and Rb-Sr⁺

L. Ratschbacher et al., Phys. Rev. Lett. **110**, 160402 (2013) T. Sikorski et al., Nature Communications. 9, 920 (2018)

> Rb in streched state $|1,1\rangle_a$ Yb ion in either $|1/2, 1/2\rangle_i$ or $|1/2, -1/2\rangle_i$

Yb⁺ is in a mixed state after interaction \rightarrow Spin relaxation dominates exchange

 \rightarrow total spin is not conserved!

Similar results in Rb-Sr⁺: Exchange is 5 times faster than relaxation

Mechanism

Second order spin-orbit coupling T. V. Tscherbul et al., Phys. Rev. Lett. 117, 143201 (2016)

Causes effective spin-spin interaction Made worse by crossing of potential lines and heavy ions → qubits in atomic gases seems not sustainable

Controlling the interactions between atoms and ions

- Feshbach resonances
- Rydberg dressing

↑ The group of Tobias Schaetz observed Feshbach resonances between ⁶Li and Ba⁺ Nature 600, 429-433 (2021).

Controlling the interactions

→ Interaction between atoms and ion proportional to polarizability

$$V_{a,i}(r) = -\frac{C_4}{2 r^4}$$

Controlling the interactions

→ Interaction between atoms and ion proportional to polarizability

Rydberg dressing: Polarizability scales as n^7

Can be many orders of magnitude larger even for weak dressing

Rydberg dressing and ions

→ Weakly couple atom to Rydberg state → increased range and strength of potential, but not limited by Rydberg lifetime

$$H_{3-level} = \begin{pmatrix} 0 & \hbar\Omega_d(\mathbf{r}_a) & \hbar\Omega \\ & \hbar\Omega_d(\mathbf{r}_a) & -\hbar\Delta_d & 0 \\ & & \hbar\Omega & 0 & -\hbar\Delta_0 - \frac{C_4^{|R\rangle}}{R^4} \end{pmatrix}$$

Rydberg dressing and ions

→ Weakly couple atom to Rydberg state → increased range and strength of potential, but not limited by Rydberg lifetime

Let's try it: start with Rydberg excitation

- \rightarrow Two photon Rydberg excitation to 24S_{1/2}
- \rightarrow Image atoms and ions

Polarizability of 24S state is about 10⁸ times larger than for the ground state

Exciting Rydbergs

- \rightarrow Two photon Rydberg excitation to 24S_{1/2}
- \rightarrow Image atoms and ions: Losses?

Polarizability of 24S state is about 10⁸ times larger than for the ground state

Rydberg atom-ion interactions

Ion loss spectrum for 20 µs excitation pulse

Rydberg atom-ion interactions

Ion loss spectrum for 20 µs excitation pulse 0.6 a) $P_{ m loss,\ ions}$ 0.4 0.2 0.0 -40 -30-20 -1010 0 Δ [MHz] Yb⁺ Li Rydberg atom Li+ Yb Rydberg atom

Ion loss exceeds Langevin collision rate for ground state atoms by factor $\approx 10^3$ We have boosted the interaction strength!

Repulsive interactions

ightarrow We boosted the interactions \odot , but we lose our ions \otimes

 \rightarrow We should use repulsive interactions: Prevent charge transfer

Rydberg state with opposite dipole moment

Unfortunately in Li, transitions to such states are not allowed

Repulsive interactions

- ightarrow We boosted the interactions \odot , but we lose our ions \otimes
- \rightarrow We should use repulsive interactions: Prevent charge transfer

Rydberg state with

opposite dipole moment

Unfortunately in Li, transitions to such states are not allowed

Unless of course, the atom is in a strong electric field

Excitation on a dipole forbidden transition in the field of a single Ion: first attempt

Note: The P state has the wrong sign of the polarizability so we still lose ions Prospect: Engineer repulsive interaction

Phys. Rev. Lett. 122, 253401 (2019).

Now for some chemistry

Ion in a bath of Feshbach Dimers

Dimer Density

 \rightarrow No fit parameters, but we assume all dimer-ion collisions lead to dark ions

Theory based on: Jochim et al., Science **302** (2003); Chin and Grimm, PRA **69** (2004);

Density of states

 \rightarrow Density of states much larger for atom-ion potential \rightarrow Expect molecular ions to be formed

Feshbach dimers

 \leftarrow Taken from Chin et al., RMP 82, 1225 (2010).

Li₂ dimers created by three-body recombination

 \checkmark

Up until now, we ramp the B-field to 0....

Trapped ions in a bath of Feshbach dimers

→Tune size of Feshbach dimers with magnetic field →Interesting crossover of length scales: $E^*_{atom-ion} = E_{binding Li-Li} @ B = 704 G$ →Crossover from atom-ion to molecule-ion collisions

Classical theory by: H. Hirlzer and Jesús Pérez-Ríos

H. Hirzler et al., Phys. Rev. Research 2, 033232 (2020)

Summary

- Plenty of interesting physics to explore with atoms and ions!
- We introduced the atom-ion interaction potential
- We introduced ion trapping
- We explored micromotion-induced heating and what to do about it
- We now have two systems, Yb⁺/⁶Li and Ba⁺/⁶Li that have reached the crossover into the quantum regime
- Tomorrow: Some quantum chemistry and controlling interactions between atoms and ions