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Two flavors of Quantum Simulators:

1. Simple, but non-programmable:  use the ‘natural’ Hamiltonian of a synthetic 
system with similar degrees of freedom to the system being simulated.

2.     Programmable:  Requires universal control of all quantum degrees of freedom to 
synthesize arbitrary Hamiltonian time evolution.

--Hamiltonian synthesis via ‘digital’ Trotter-Suzuki + Baker-Campbell-
Hausdorff gate sequences and/or analog optimal control theory

ALL simulators require the ability to make accurate and non-trivial measurements 
(hopefully beyond the capability of traditional experiment).

Error correction/mitigation will ultimately be needed in most cases.
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A possible hybrid lattice architecture:

 Continuous variable [CV] oscillators (resonators)
 Discrete variable [DV] ancilla qubits (transmons)

• Microwave photons stored in resonators [CV]

• Controllable beam splitters for SWAP operations

• Ancilla transmon qubits for control of resonators [DV]
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 Hardware native bosonic modes offer advantages for:

 Efficient quantum error correction

 Efficient quantum simulation of physical models containing bosons

 Hybrid qubit/oscillator combinations can achieve universal control

 We need a simple instruction set architecture (ISA) in order to be able to 
develop algorithms and reason about circuit depth/complexity

 Small ISA can be compiled to the control pulse level via OCT (optimal control 
theory) but entire algorithms cannot.  We need an ISA to compile algorithms, 
estimate circuit costs and reason about error propagation.

 Goals: 

 Develop ISA: instruction set architecture(s); 
apply to quantum simulations, algorithms, and error correction

 Represent the ISA in an extension of Qiskit that can treat bosonic modes;
promulgate as a co-design tool for the community

Take-home message:

4
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Towards Many-Body Quantum Simulations of 
Interacting Bosons in Circuit QED

Modern Condensed Matter Physics (Cambridge Press, 2019)

FQHE for bosons 
(photons)

Can we convince 
microwave 
photons that 
they are charged 
particles in a 
magnetic field?
fractional statistics

1/ 2 abelian semions
1  non-abelian

ν
ν
=
=

Example target application:
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Single-particle wave functions in the lowest Landau Level (2DEG strong B field)
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Laughlin correlated many-body ground state for 
Landau level filling factor 1
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Laughlin correlated many-body ground state for 
Landau level filling factor 1
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Plasma analogy
2D Coulomb potential (‘charge m rods’)
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Fractionally charged quasi-hole excitations

Particles avoid the 
position of quasi-hole

Charge m particles repelled by a charge 1 impurity

particle density

Z
z

Perfect screening in plasma implies local charge neutrality,
so the screening cloud has ‘charge’ ,

implying that the quasi-hole has net particle number .

A similar calculation shows the qu

1
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Example target application:  Bose-Hubbard/FQHE Hamiltonian Simulation

Rich many-body phase diagram:

• Superfluid
• Mott insulator
• Anderson localization/Bose glass
• FQHE with fractional non-abelian excitations

{ }† * †

†

† †

J V U

J ij i j ij j i
ij

V k k k
k

U k k k k
k

H H H H

H J b b J b b

H b b

H U b b b b
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= + +
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∑



boson hopping

randomly disordered site energies

Hubbard U boson repulsion

GOALS:
 Synthesize

 Ground state (VQE)
 Dynamics:

 Measure observables

( ) iHtU t e−=
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Example target application:  Bose-Hubbard/FQHE Hamiltonian Simulation

Theory/Experiments with SC qubits rather 
than resonators: See Prof. Gorlach’s talk.

Phys. Rev. Lett. 128, 213903 (2022)
Phys. Rev. B 105, L081107 (2022)
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Controllable beam splitters to realize boson hopping
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In quantum optics language, this is a
beam-splitter Hamiltonian



Co-Design Center for Quantum Advantage  https://bnl.gov/quantumcenter Quantum.Yale.edu

13

Realizing a programmable beam splitter Hamiltonian
Deterministic teleportation of a 
quantum gate between two logical 
qubits, Kevin S. Chou et al., 
Nature 561, 368 (2018)

‘Y-mon’
transmon 
geometry

JJ is parametrically pumped 
to turn on the beam splitter 
between cavities.
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† * †
BS BS BS( ) ( ) .H g t AB g t A B= + † † *

TMS TMS TMS( ) ( ) .H g t A B g t BA= +

Two-mode Gaussian Operations via 4-wave Mixing with a Transmon Coupler
[All bilinear couplers that can be turned on and off by microwave pulses are 

necessarily pumped non-linear devices.]

Phase and amplitude of the coupling is controlled by the 
choice of pump tone phases and amplitudes.
Pump supplies the energy change needed for the process to 
be resonant (e.g. frequency-converting beam splitter). 
No need to fine tune the cavity manufacture.

Each resonator has a 
distinct frequency to 
reduce cross-talk 
and enhance on/off 
ratio.

4Transmon 
anharmonicity

ϕ
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† * †
BS BS BS( ) ( ) .H g t AB g t A B= + † † *

TMS TMS TMS( ) ( ) .H g t A B g t BA= +

Two-mode Gaussian Operations via 4-wave Mixing

{ }† * †
J ij i j ij j i

ij
H J b b J b b

〈 〉

≡ +∑

Beam splitter realizes the 
boson hopping term.

Phase-locking the pump tones allows complex J and
Photon can acquire a non-zero phase around each plaquette.
Acts like a charged particle in a magnetic field ( )q qdr A rφ = ⋅ = Φ∫



 

 



φ

What does ‘phase locking’ mean?
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† † *
TMS TMS TMS( ) ( ) .H g t A B g t BA= +

Two-mode Gaussian Operations via 4-wave Mixing

{ }† * †
J ij i j ij j i

ij
H J b b J b b

〈 〉

≡ +∑

Beam splitter realizes the 
boson hopping term.

Relative phase of two pump tones at different frequency 
is not unique—depends on choice of time origin

Because going around the plaquette returns to the same 
initial site energy                                                               ,

The phase acquired is gauge (time-translation) invariant: 

1234 ( )q qdr A rφ = ⋅ = Φ∫
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Ordinary gauge Invariance =  charge conservation: 
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How do we create the randomly disordered site energy terms? †
V k k k

k
H b b≡∑

1 32 4

Detuning the pump drives means the photon 
cannot resonantly hop from one cavity to the 
next:                                                                 .1 2  +d d A BB Aω ω ω ω− = −−  

Fully in-operando programmable site energies.

Analogy to electrodynamics:

t
E V A∂
= − +∇

∂
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?

The quadratic terms in the Hamiltonian are now fully programmable.

How do we program the boson-boson repulsive interaction term?
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Qubit-Cavity Strong Dispersive Coupling

qcω ω≠

† †

2c
q z za a a aH

ω
σ χω σ++=

( )qS ω Qubit spectrum

ω
0n =1n =2n =3n =

2χ

Cavity photon number

 pulse on qubit 
conditioned on 
photon number

π

Synthesizing the cavity Hubbard U
interaction using the cavity-qubit 
dispersive coupling.

Microwaves are particles!!
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SNAP-gate Instruction Set

Use dispersive coupling of qubit to cavity to 
apply separate independent geometric 
phases to each photon Fock state.Krastanov et al., Phys. Rev. A 92, 040303(R) (2015)

Heeres et al., Phys. Rev. Lett. 115, 137002 (2015)

Provable universal control.

max

0

max

ˆ

SNAP

0 1

( )
ˆ | |

( , , , )

n

n n
n

zi P

n

n

U e

P n n

σ θ

θ

θ θ θ θ

=
∑

≡

= 〉〈

= …





( ) ( )2
x y

x yv n ni v

nU v e
σ σ+−

=




Co-Design Center for Quantum Advantage  https://bnl.gov/quantumcenter Quantum.Yale.edu

21

SNAP gateCavity displacement gate

Binomial QEC Code State Prep.

‘Efficient cavity control with SNAP gates,’ Fösel et al., arXiv:2004.14256 

SNAP instruction set is extremely efficient
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Programming the Hubbard boson repulsion

On each site k:

† †
U k k k k

k
H U b b b b≡ ∑

max

0

max

ˆ

SNAP

0 1

( )
ˆ | |

( , , , )

n

n n
n

zi P

n

n

U e

P n n

σ θ

θ

θ θ θ θ

=
∑

≡

= 〉〈

= …





ˆ ˆ( 1)
SNAP )

[ ( 1)]
(U k kiH t iUtn n

n

e U
Ut n n

e θ
θ

− − −= =
= − −





Co-Design Center for Quantum Advantage  https://bnl.gov/quantumcenter Quantum.Yale.edu

23
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Experimental status with 
microwave cavities:

Two sites

Two sites

One site







All required technology has been experimentally 
demonstrated, but not yet at scale.
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These microwave bosons are not strictly conserved.

It is possible to create an engineered quantum bath that will gently (adiabatically) replace missing bosons as 
long there is an excitation gap.

But for the FQHE: 

Novel slow dynamics if the ‘hole’ (missing photon) fractionalizes into two ‘charge’-1/2 quasiholes:

Autonomous stabilization of photonic Laughlin states through angular momentum potentials, 
R. O. Umucalılar, J. Simon and I. Carusotto, Phys. Rev. A 104, 023704 (2021). 

Stabilizing the Laughlin state of light: dynamics of hole fractionalization, Kurilovich et al., arXiv:2111.01157.

https://arxiv.org/abs/2111.01157
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2Another target application:  lattice gauge theory for bosons hopping on a lattice
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hop changes the sign of 
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Dynamical gauge field:
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2Realization of   lattice gauge theory for bosons with SNAP ISA

Cavity a

Cavity b

Ancilla a
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Physical intuition: each boson 
hop changes the sign of 
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[In 1D only need ancillae
connected to 1 cavity.]
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C2QA ISA (theory) collaboration 

Nathan Wiebe 
U. Toronto & PNNL

Tim Stavenger
PNNL

Chris Kang
U. Washington

Eleanor Crane
UCL

Micheline Solely
Yale

Kevin Smith
Yale

+ Ike Chuang (MIT)
+ Ali Javadi (IBM)

+ Alec Eickbusch 
and Devoret Lab

+Michael DeMarco
Teague Tomesh
Lena Funke
Stefan Kuehn

• Instruction Set Architecture for 
hybrid qubit/oscillator systems

• Qiskit extension to oscillators
• Represent levels of oscillator 

with a register of    qubits
• Access ISA and Wigner tomography 

toolkit within Qiskit

2nΛ =
2logn = Λ
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