Quantum Mixtures with Ultracold Atoms, Varenna, 18-23 July 2022

Rudolf Grimm

Experiments with quantum mixtures I: General ideas, a bit of history, and...

Austrian Acad. of Sciences

universität innsbruck

Inst. of Experimental Physics

All 40 songs from Europe's favourite TV show

mixture

combination of two or more pure substances in which each retains its individual chemical properties (can separate them by physical means)

pure matter vs. mixture

Figure https://www.pinterest.com/pin/ 660903314050618202/

immiscible quantum gas mixtures

 Lanthanide Series 	58 Ce	⁵⁹ Pr	60 Nd	⁶¹ Pm	62 Sm	Eu	Gd	⁶⁵ Tb	⁶⁶ Dy	67 Ho	68 Er	⁶⁹ Tm	70 Yb	⁷¹ Lu
+ Actinide	90	91	92	93	⁹⁴	95	⁹⁶	97	90	99	100	¹⁰¹	¹⁰²	103
Series	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

why mixtures – some general arguments

combining different properties

different quantum statistics BF mixtures

sympathetic cooling

species-specific optical manipulation

mass imbalance

creating systems with new properties

new quantum phases in optical lattices

> heteronuclear molecules

novel superfluids with mass imbalance

mixtures of three kinds

	quantum statistics	multi- compon.	coherent population control	specific optical potentials	mass imbalance	expt. complexity	
spin mixture	BB, FF	yes	yes	no	no	moderate	
isotope mixture	BB, (FF),	(no)	NO	(no)	(no)	medium	
species mixture							

Bose-Fermi isotope mixture of lithium

Rice Univ., Hulet group

Truscott et al., Science 291, 257 (2001)

ENS Paris, Salomon group

Schreck et al., Phys. Rev. Lett. 87, 080403 (2001)

mixtures of three kinds

	quantum statistics	multi- compon.	coherent population control	specific optical potentials	mass imbalance	expt. complexity	
spin mixture	BB, FF	yes	yes	no	no	moderate	
isotope mixture	BB, (FF), BF	(no)	no	(no)	(no)	medium	
species mixture	BB, FF, BF	(no)	no	yes	yes	high	

Ultracold mixtures of <u>different species</u>

brief history

cold species mixtures in MOTs mid-late 90's

bi-alkali combinations

Na-K, Na-Rb (São Paolo, Bagnato group)

Santos et al., PRA 52, R4340 (1995) Telles et al., PRA 59, R23 (1998)

Na-Cs (Rochester, Bigelow group) Shaffer et al., PRL 82, 1124 (1998)

Li-Cs (Heidelberg, Weidemüller/Grimm group) Schlöder et al., EPJD 7, 331 (1999)

interest: creation of heteronuclear molecules

degenerate species mixtures (first experiments) early 00's

K-Rb (LENS, Inguscio group) Modugno et al., Science 294, 1320 (2001)

Li-Na (MIT, Ketterle group) Hadzibabic et al., PRL 88, 160401 (2002)

K-Rb (LENS, Inguscio group) Roati et al., PRL 89, 150403 (2002)

K-Rb (JILA, Jin group) Goldwin et al., PRA 70, 021601(R) (2004) sympathetic cooling of ⁴¹K to BEC

sympathetic cooling of ⁶Li / ⁴⁰K to Fermi degeneracy

interactions - more than just (in)elastic collisions 2002

Collapse of a Degenerate Fermi Gas

Giovanni Modugno,* Giacomo Roati, Francesco Riboli, Francesca Ferlaino, Robert J. Brecha, Massimo Inguscio

Science 297, 2240 (2002)

sudden loss

of fermions!

⁸⁷Rb

⁴⁰K

heteronuclear Feshbach resonances

tuning the interspecies interaction

resonance center

zero crossing

scattering length

Rb width after TOF expansion

heteronuclear Feshbach molecules

KRb in an optical dipole trap (JILA, Jin group)

Zirbel et al., PRA 78, 013416 (2008)

time-of-flight expansion —

heteronuclear (dipolar) ground state molecules 2008

A High Phase-Space-Density Gas of Polar Molecules

K.-K. Ni,¹* S. Ospelkaus,¹* M. H. G. de Miranda,¹ A. Pe'er,¹ B. Neyenhuis,¹ J. J. Zirbel,¹ S. Kotochigova,² P. S. Julienne,³ D. S. Jin,¹† J. Ye¹†

Science 322, 231 (2008)

very active research field with many experiments worldwide (many bi-alkali systems and other combinations)

related work in Innsbruck on homonuclear molecules

Rb₂: Lang et al., PRL 101, 133005 (2008); Denschlag group Cs₂: Danzl et al., Science 321, 1062 (2008); Nature Phys. 6, 266 (2010); Nägerl group

species mixtures in Innsbruck

at UvA

since 2013

Li-K lab@ IQOQI

STEE STEE

G

IOI

isotopic combinations

typical experimental situation

ODT @ 1064nm

~10⁴ atoms

interaction tuning via FR

Fermi seaof ^{6}Li few 10^{5} atoms $T/T_{F} \approx 0.15$ strongly interacting spin mixtureor single spin state

research topics

 ${}^{6}\text{Li} - {}^{40}\text{K}$

interaction properties

strongly interacting Fermi-Fermi mixture

Fermi gas thermometry

few-body physics

phase separation

quantum impurities main research topic in last few years

Feshbach spectroscopy on ⁶Li-⁴⁰K

PRL 100, 053201 (2008)

PHYSICAL REVIEW LETTERS

week ending 8 FEBRUARY 2008

Exploring an Ultracold Fermi-Fermi Mixture: Interspecies Feshbach Resonances and Scattering Properties of ⁶Li and ⁴⁰K

E. Wille,^{1,2} F. M. Spiegelhalder,¹ G. Kerner,¹ D. Naik,¹ A. Trenkwalder,¹ G. Hendl,¹ F. Schreck,¹ R. Grimm,^{1,2} T. G. Tiecke,³ J. T. M. Walraven,³ S. J. J. M. F. Kokkelmans,⁴ E. Tiesinga,⁵ and P. S. Julienne⁵

experiment & theory together

Feshbach spectroscopy on ⁶Li-⁴⁰K

PRL 100, 053201 (2008)

PHYSICAL REVIEW LETTERS

week ending 8 FEBRUARY 2008

Exploring an Ultracold Fermi-Fermi Mixture: Interspecies Feshbach Resonances and Scattering Properties of ⁶Li and ⁴⁰K

E. Wille,^{1,2} F. M. Spiegelhalder,¹ G. Kerner,¹ D. Naik,¹ A. Trenkwalder,¹ G. Hendl,¹ F. Schreck,¹ R. Grimm,^{1,2} T. G. Tiecke,³ J. T. M. Walraven,³ S. J. J. M. F. Kokkelmans,⁴ E. Tiesinga,⁵ and P. S. Julienne⁵

Feshbach spectroscopy on ⁶Li-⁴⁰K

many resonances

		Experi	iment	ABM
i, j	$M_{\rm F}$	B_0	ΔB	B_0
		(mT)	(mT)	(mT)
2, 1	-5	21.56 ^a	0.17	21.67
1, 1	-4	15.76	0.17	15.84
1, 1	-4	16.82	0.12	16.92
1, 1	-4	24.9	1.1	24.43
1, 2	-3	1.61	0.38	1.39
1, 2	-3	14.92	0.12	14.97
1, 2	-3	15.95 ^a	0.17	15.95
1, 2	-3	16.59	0.06	16.68
1, 2	-3	26.3	1.1	26.07
1, 3	-2	Not ob	served	1.75
1, 3	-2	14.17	0.14	14.25
1, 3	-2	15.49	0.20	15.46
1, 3	-2	16.27	0.17	16.33
1, 3	-2	27.1	1.4	27.40

asymptotic bound state model

variation of two binding energy parameters (for known C_6 coefficient)

coupled-channels calculation for all spin states

			Ex	perimen	t	Coupled channels						
Channel	$M_{\rm tot}$	Group	B_0 (G)	$\begin{array}{c} \varDelta \\ (\mathrm{G}) \end{array}$	Ref.	$\begin{array}{c} B_0\\ (\mathrm{G}) \end{array}$	$\begin{array}{c} \varDelta \\ (\mathrm{G}) \end{array}$	$a_{\rm bg}/a_0$	$\frac{\delta \mu / h}{(\mathrm{MHz/G})}$	$\begin{array}{c} a_{\rm res} \\ (10^6 a_0) \end{array}$	$s_{\rm res}$	$\gamma_B \ (\mu G)$
ba	-5	\triangle	215.6		[4]	215.52	0.27	64.3	2.4	160	0.0048	0.11
aa	-4	0	157.6		[4]	157.50	0.14	65.0	2.3		0.0023	0
		\diamond	168.170(10)		[8]	168.04	0.13	63.4	2.5		0.0023	0
ab	-3	\bigcirc	149.2		[4]	149.18	0.23	67.0	2.1	14	0.0037	1.1
			159.5		[4]	159.60	0.51	62.5	2.4	5.3	0.0086	6.1
		\diamond	165.9		[4]	165.928	2×10^{-4}	58	2.5	0.3	3.3×10^{-6}	0.04
ac	-2	\bigcirc	141.7		[4]	141.46	0.25	67.6	2.1	7.5	0.0040	2.3
			154.707(5)	0.92(5)	this work	154.75	0.88	63.0	2.3	4.0	0.014	14
		\diamond	162.7		[4]	162.89	0.09	56.4	2.5	0.89	0.0014	5.7
ad	-1	\bigcirc				134.08	0.24	68.7	2.0	4.5	0.0038	3.7
						149.40	1.06	63.8	2.2	3.3	0.017	20
		\diamond				159.20	0.33	55.8	2.45	1.4	0.0051	13
ae	0	\bigcirc				127.01	0.22	68.5	2.05	2.8	0.0035	5.4
						143.55	1.20	65.7	2.2	2.8	0.020	29
		\diamond				154.81	0.69	55.1	2.4	1.6	0.010	24
af	1	\bigcirc				120.33	0.20	66.8	2.1	1.7	0.0031	7.9
						137.23	1.19	65.3	2.2	2.2	0.019	35
		\diamond				149.59	1.14	53.6	2.4	1.6	0.016	37
ag	2	\bigcirc				114.18	0.14	67.4	2.1	0.97	0.0023	9.7
						130.49	1.07	66.4	2.2	1.8	0.018	40
		\diamond				143.39	1.57	54.4	2.4	1.6	0.023	53
ah	3	\bigcirc				108.67	0.098	66.6	2.2	0.48	0.0016	14
						123.45	0.86	68.4	2.3	1.3	0.015	44
		\diamond				135.90	1.87	55.9	2.45	1.5	0.029	72
ai	4	\bigcirc				104.08	0.06	65.9	2.25	0.19	0.0010	21
						116.38	0.54	68.6	2.4	0.98	0.010	38
		\diamond				126.62	1.97	54.7	2.6	1.3	0.032	83
aj	5	0				100.90	0.02	64.3	2.3	0.03	3.2×10^{-4}	43
		\diamond	114.47(5)	1.5(5)	[7]	114.78	1.81	57.3	2.3	1.08	0.027	96

Naik et al., EPJD 65, 55 (2011)

complete understanding of two-body interaction physics! (by mass scaling also for all other isotopic combinations)

"best" resonance (Li1 – K3 channel)

$$a(B) = a_{\rm bg} \left(1 - \frac{\Delta}{B - B_0} \right)$$

$$B_0 = 154.699(1) \,\mathrm{G}$$

 $a_{\mathrm{bg}} = 63.0 \,a_0$
 $\Delta = 880 \,\mathrm{mG}$

$$\delta \mu / h = 2.35(2) \,\mathrm{MHz/G}$$

range parameter

$$R^* = \frac{\hbar^2}{2m_{\rm r}a_{\rm bg}\,\delta\mu\,\Delta}$$

$$= 2650(25)\,a_0$$
universal range

$$|a| \gg R^* \to |\Delta| \ll 20\,{\rm mG}$$

Petrov, PRL 93, 143201 (2004)

spin relaxation (not in the lowest spin channel)

resonant two-body losses

spontaneous dissociation of Feshbach molecules ⁶Li – ⁴⁰K

do experiments fast (few ms) and with precise magnetic control

Pauli suppression at work, see Petrov, Salomon, Shlyapnikov, PRL 93, 090404 (2004), but only very close to resonance

Feshbach resonance in the Fermi-Bose mixture ${}^{6}Li - {}^{41}K$

lowest spin channel: no two-body decay

resonance width and a_bg very similar to the Fermi-Fermi case:

facilitates direct comparison between FF and FB system

Lous et al., PRL 120, 243403 (2018)

degenerate Bose-Fermi mixture

small BEC immersed in a large Fermi sea

"fermionic reservoir approximation" BEC effect on fermion chemical potential negligible

tunable BF interactions!!!

repulsive interaction

increasing interspecies scattering length *a*

Probing the Interface of a Phase-Separated State in a Repulsive Bose-Fermi Mixture

Rianne S. Lous,^{1,2} Isabella Fritsche,^{1,2} Michael Jag,^{1,2,*} Fabian Lehmann,^{1,2} Emil Kirilov,² Bo Huang (黄博),^{1,†} and Rudolf Grimm^{1,2}

¹Institut für Quantenoptik und Quanteninformation (IQOQI), Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria

²Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria

three-body loss from ⁴¹K BEC

observables: L₃ and total loss rate

Fermi sea

Fermi sea

interesting questions

quantum nature of the interface

beyond mean-field approach (strongly interacting B-F mixture) 2D effects

elementary excitations (ripplons...)

collective behavior of the compressed BEC

surface modes and surface tension

Huang et al., PRA 99, 041602(R) (2019)