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Outline

• Lecture 1: Elementary optical excitations of electron or hole-doped 
transition metal dichalcogenide (TMD) monolayers

• Lecture 2: Electrical control of optical properties: realization of 
quantum confined excitons in a monolayer p-i-n junction

• Lecture 3: Cavity-QED with excitons embedded in a degenerate 
electron system + moire physics with excitons (time permitting)



TMD (semiconductor)

hBN (insulator)

Graphene (metal)

Magnet, Superconductor, TI, …

Why are two-dimensional (2D) materials 
interesting for photonics?

• Ability to use gates to control charging and optical properties: 
monolayer or bilayer p-i-n diodes, exciton-based light sources

• Layered materials with weak van der 
Waals bonds between the 2D sheets 
can be exfoliated down to a monolayer

• Monolayers retain (to a large extent)   
the properties/functionality of the bulk 
material.



TMD (semiconductor)

A. K. Geim et al., Nature 499, 419 (2013)

Van der Waals heterostructure
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Why are two-dimensional (2D) materials 
interesting for photonics?

• Ability to use gates to control charging and optical properties: 
monolayer or bilayer p-i-n diodes, exciton-based light sources

New (optical) functionality 
upon stacking different     
mono-layers
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Why are two-dimensional (2D) materials 
interesting for photonics?

• Ability to use gates to control charging and optical properties: 
monolayer or bilayer p-i-n diodes, exciton-based light sources

• Very strong linear optical response ensured by tightly bound 
excitons (small Bohr radius aB): atomically thick mirror

• Natural incorporation into open cavity structures: cavity-polaritons
– aided by small aB

• Layer degree of freedom: long-lived dipolar optical excitations

• Excitons and exciton-polarons sense/detect many-body electronic 
states: spectroscopy
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Materials: Transition metal dichalcogenides (TMD)
- layered 2D semiconductors

Formula: MX2

M = Transition Metal
X = Chalcogen

Layered 
materials

Electrical 
property

Material

Semiconducting MoS2 MoSe2 WS2
WSe2 MoTe2 WTe2

Semimetallic TiS2 TiSe2

Metallic, CDW, 
Superconducting

NbSe2 NbS2 NbTe2

TaS2 TaSe2 TaTe2



Can be justified        
starting from 6    
band tight binding          
approach   





Simplified band structure



Excitons in 5 different TMD monolayers



Full exciton spectrum: A & B excitons
MoSe2 WSe2



Full exciton spectrum: Rydberg excitons
MoSe2









Charge tunable van der Waals heterostructures
• Exfoliation of and stacking of monolayers of semiconducting TMDs and 

graphene, together with ~50 nm thick insulating boron nitride (BN) layers

• A gate voltage applied between the top/bottom (transparent) graphene 

gate and the MoSe2 layer allows for tuning the electron/hole density

BN

BN

Vtg

Vbg

-+



Elementary optical excitations in monolayer MoSe2

Charge neutrality: tightly bound 1s exciton dominates

Exciton
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Elementary optical excitations in monolayer MoSe2

Charge neutrality: tightly bound 1s exciton dominates
Finite electron or hole density: spectrum is drastically modified

charge
neutral  
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• Excitons are neutral bosonic optical excitations (quanta of 
electronic polarization wave) that interact with itinerant electrons 
or holes and form a bound molecular state termed “trion” 

How to understand the modified spectrum:
Exciton-electron scattering in a monolayer TMD 

Exciton as a mobile impurity in 
a degenerate electron system















Elementary optical excitations in monolayer MoSe2

Charge neutrality: tightly bound 1s exciton dominates
Finite electron or hole density: exciton-polarons (many-body excitations)

Attractive-polaron (AP)

Repulsive-polaron (RP)
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→ Charge sensing

electron
charged 









Exciton-polarons at B=14 T: optical signature of IQH states
A filled Landau level shows up as a 
cusp in RP/exciton energy and a 
reduction in its linewidth



Brief summary
• TMD monolayers are outstanding optical materials at low T and 

when encapsulated by hBN.

• For low electrons densities (≤ 1x 1012 cm-2), exciton-electron 
interactions can be described by treating excitons as robust 
impurities (i.e. Bohr radius remains almost unchanged).
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