Quantum photonics in 2D materials: polariton-electron interactions

Atac Imamoglu ETH Zurich

Outline

- <u>Lecture 1</u>: Elementary optical excitations of electron or hole-doped transition metal dichalcogenide (TMD) monolayers
- <u>Lecture 2</u>: Electrical control of optical properties: realization of quantum confined excitons in a monolayer p-i-n junction
- <u>Lecture 3</u>: Cavity-QED with excitons embedded in a degenerate electron system + moire physics with excitons (time permitting)

• Ability to use gates to control charging and optical properties: monolayer or bilayer p-i-n diodes, exciton-based light sources

Magnet, Superconductor, TI, ...

- Layered materials with weak van der Waals bonds between the 2D sheets can be exfoliated down to a monolayer
- Monolayers retain (to a large extent) the properties/functionality of the bulk material.

Ability to use gates to control charging and optical properties: monolayer or bilayer p-i-n diodes, exciton-based light sources

Magnet, Superconductor, TI, ...

Van der Waals heterostructure

New (optical) functionality upon stacking different mono-layers

- Ability to use gates to control charging and optical properties: monolayer or bilayer p-i-n diodes, exciton-based light sources
- Very strong linear optical response ensured by tightly bound excitons (small Bohr radius a_B): <u>atomically thin mirror</u>

- Ability to use gates to control charging and optical properties: monolayer or bilayer p-i-n diodes, exciton-based light sources
- Very strong linear optical response ensured by tightly bound excitons (small Bohr radius a_B): atomically thin mirror
- Natural incorporation into open cavity structures: cavity-polaritons
 - aided by small a_B

- Ability to use gates to control charging and optical properties: monolayer or bilayer p-i-n diodes, exciton-based light sources
- Very strong linear optical response ensured by tightly bound excitons (small Bohr radius a_B): atomically thin mirror
- Natural incorporation into open cavity structures: cavity-polaritons
 aided by small a_B
- Layer degree of freedom: long-lived dipolar optical excitations

- Ability to use gates to control charging and optical properties: monolayer or bilayer p-i-n diodes, exciton-based light sources
- Very strong linear optical response ensured by tightly bound excitons (small Bohr radius a_B): atomically thick mirror
- Natural incorporation into open cavity structures: cavity-polaritons

 aided by small a_B
- Layer degree of freedom: long-lived dipolar optical excitations
- Excitons and exciton-polarons sense/detect many-body electronic states: spectroscopy

<u>Materials</u>: Transition metal dichalcogenides (TMD)

- layered 2D semiconductors

	н		_		MX ₂													He	Electrical	Material
	Li	Be			X = Ch	ansition alcoge	n metal N						в	С	Ν	0	F	Ne	property	
Formula: MX ₂	Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Ρ	s	CI	Ar	Semiconducting	$MoS_2 MoSe_2 WS_2$
M = Transition Metal	к	Са	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr		
X = Chalcogen	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe	Semimetallic	$TiS_2 TiSe_2$
	Cs	Ва	La - Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	Metallic, CDW,	$NbSe_2 NbS_2 NbTe_2$
	Fr	Ra	Ac - Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo	Superconducting	$TaS_2 TaSe_2 TaTe_2$

effective monolayer

Mo

How do we understand optical transitions?
A) Description of the band structure
using massive Dirac model (direct bandge)

$$H_{z} = \begin{bmatrix} 4/z & v_{f}(tk_{x} - ik_{y}) \\ v_{f}(tk_{x} + ik_{y}) & -4/z \end{bmatrix} \begin{cases} T = +1 \iff K \\ -1 \iff K' \\ A = Band - gap. \end{cases}$$
acts on
$$\begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} |d_{z^{2}}\rangle \\ |d_{x^{2}-y^{2}}\rangle + iT|d_{xy} \end{pmatrix}$$
Can be justified starting from 6 band tight binding approach

B) Light - matter coupling
.
$$k_i \rightarrow k_i - eA_i$$
 $(i=x,y)$; k measured from K, K'
. K valley, RCP light $\vec{A} = \vec{A}_x + i\vec{A}_y = A_0(\hat{x} + i\hat{y})\hat{d}$
 \Rightarrow $H = \left[\begin{array}{cc} \Delta/z & V_i(k_x - ik_y + 2eA_0\hat{a}) \\ VB & couples to \\ CB & by annihil. \\ a & photon. \end{array}\right]$
similarly
for LCP light $H_{LCP} = \left[\begin{array}{cc} \Delta/z & V_i(k_x - ik_y) \\ V_i(k_x + ik_y) & -\Delta/z \end{array}\right]$
 $ie no coupling to LCP Light$

Simplified band structure

Excitons in 5 different TMD monolayers

aterial	m _r (m ₀)	E _b (meV)	E _{gap} (eV)	κ	r _o (nm)	r _{1s} (nm)	
BN MoS ₂ hBN	0.275 ± 0.015	221	2.160	4.45	3.4	1.2	
BN MoSe ₂ hBN	0.350 ± 0.015	231	1.874	4.4	3.9	1.1	
BN MoTe ₂ hBN	0.360 ± 0.040	177	1.352	4.4 ^a	6.4	1.3	
BN WS ₂ hBN	0.175 ± 0.007	180	2.238	4.35	3.4	1.8	
BN WSe ₂ hBN ^b	0.20 ± 0.01	167	1.890	4.5	4.5	1.7	

^bValues for hBN-encapsulated WSe₂ are taken from ref. ²⁷

2

NATURE COMMUNICATIONS | (2019)10:4172 | https://doi.org/10.1038/s41467-019-12180-y | www.nature.com/naturecommunications

Full exciton spectrum: Rydberg excitons

Resonant reflection spectroscopy
• For excitons that are broadened exclusively
by radiative decay, transmission = 0
=)
$$\Gamma_{rad} \propto \frac{1}{a_{g^2}} \gg 8$$
 dephasing $\Rightarrow R \sim 1$.
=) Highest specular reflection
reported $R \sim 0.85$

Resonant reflection spectroscopy
• For excitons that are broadened exclusively
by radiative decay, transmission = 0
=)
$$\Gamma_{rad} \propto \frac{1}{Q_{B^2}} \gg 8 dephasing \Rightarrow R \sim 1$$

• The thickness of the surrounding material
 $R_{W} = R_{O} \qquad Or \qquad 1$
 $R_{O} \qquad Or \qquad 1$

Resonant reflection spectroscopy
• For excitons that are broadened exclusively
by radiative decay, transmission = 0

$$\Rightarrow$$
 Ford $\propto \frac{1}{Q_B^2} \gg 8$ dephasing $\Rightarrow R \sim 1$.
• The thickness of the surrounding material
 $\frac{R(W)-R_0}{P_0} = \frac{N(W)-R_0}{P_0} = \frac{N(W)-R_0}{P_0}$

Charge tunable van der Waals heterostructures

- Exfoliation of and stacking of monolayers of semiconducting TMDs and graphene, together with ~50 nm thick insulating boron nitride (BN) layers
- A gate voltage applied between the top/bottom (transparent) graphene gate and the MoSe2 layer allows for tuning the electron/hole density

Elementary optical excitations in monolayer MoSe₂

Elementary optical excitations in monolayer MoSe₂

<u>Charge neutrality</u>: tightly bound 1s exciton dominates <u>Finite electron or hole density</u>: spectrum is drastically modified

How to understand the modified spectrum: Exciton-electron scattering in a monolayer TMD

 Excitons are neutral bosonic optical excitations (quanta of electronic polarization wave) that interact with itinerant electrons or holes and form a bound molecular state termed "trion"

Exciton as a mobile impurity in a degenerate electron system

electron © r = separation of an exciton & electon

exciton

Exciton - electron interactions
- We consider a single exciton, optically injected
into a 2D electron system (2DES) with
Fermi energy/momentum
$$E_F/k_F$$

 $H = \sum_{k_1} W_x(k_2) x_{k_1}^+ x_{k_1} + \sum_{k_2} E(k_2) e_{k_2}^+ e_{k_2}$
 $- V \sum x_{k_1+q}^+ e_{k_2-q}^+ e_{k_2-q} e_{k_2} x_{k_1}$
- We assume all electrons in
-K valley (optical pumping and
on exciton in K valley

• By letting
$$\chi(q) = \phi_0 + \sum \psi(k,q)$$
, we can solve
the eqns for $E_{p=0}$
 $E_{p=0} = \omega_x(0) + \sum_{q=0}^{k_E} \left[\frac{1}{V} - \sum_{k=k_F}^{R_E} \frac{1}{E_{p=0} - \omega_x(q-k) - \varepsilon(k) + \varepsilon(q)} \right]^1$
 $\sum_{x} (E_{p=0}) : exciton$
 $gelf-energy$
 \Rightarrow Absorption spectrum :
 $A(\omega) = Im \left[\frac{1}{\omega + i) \zeta - \omega_x(0) - \sum_x(\omega)} \right]$

Exciton - polaron - polaritons
• If the 2D material is inside a cavity, then

$$H \rightarrow H + \sum_{p} W_{c}(p) a_{p}^{+}a_{p} + \sum_{p} g_{c}(p) [a_{p}^{+}x_{p} + x_{p}^{+}a_{p}]$$

• Due to steep cavity dispersion, we only need
to consider exciton dressing; i.e.
 $|\Psi_{n,p}\rangle = [\mathcal{N}_{n,p} a_{p}^{+} + \mathcal{P}_{n,p} x_{p}^{+} + \sum_{k,g} \Psi_{n}(k,g) z_{p,g,k}^{+} e_{k,g}^{+}]|_{\mathcal{P}}^{k}$
yields:
 $E_{n,p} = W_{x}(p) + \sum_{x} (E_{n,p}) + \frac{g_{c}^{2}}{E_{n,p} - W_{c}(p)}$

Elementary optical excitations in monolayer MoSe₂

Charge neutrality:tightly bound 1s exciton dominatesFinite electron or hole density:exciton-polarons (many-body excitations)

Polaron vs. Trion: analogy to Tavis-Cummings (TC) madel Natoms 122> 12/ 1_{c} 1_{Δ} 192 $\left| g \right\rangle_{N}$ 19/2 ensemble of N atoms, each with weak coupling to the cavity cavity made

Exciton-polarons at B=14 T: optical signature of IQH states

A filled Landau level shows up as a cusp in RP/exciton energy and a reduction in its linewidth

Energy scales : $\frac{e}{\epsilon l_{B}} \sim 30 \text{ meV}$ $w_c = eB \sim 2.2 \text{ meV}$ Shubnikov de Haas oscillations in optical conductivity : precise determination of electron density

Brief summary

 TMD monolayers are outstanding optical materials at low T and when encapsulated by hBN.

 For low electrons densities (≤ 1x 10¹² cm⁻²), exciton-electron interactions can be described by treating excitons as robust impurities (i.e. Bohr radius remains almost unchanged).